Barra Cargada Axialmente

BARRA CARGADA AXIALMENTE En esta sección se determinará la distribución del esfuerzo promedio que actúa sobre el área de

Views 20 Downloads 0 File size 129KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

BARRA CARGADA AXIALMENTE En esta sección se determinará la distribución del esfuerzo promedio que actúa sobre el área de la sección transversal de una barra cargada axialmente, como la que se muestra en la figura 1-13a. Esta barra es prismática porque todas las secciones transversales son iguales en toda su longitud. Cuando la carga P se aplica a la barra a través del centroide del área de su sección transversal, la barra se deformará de manera uniforme en toda la región central de su longitud, como se muestra en la figura 1-13b, siempre y cuando el material de la barra sea homogéneo e isotrópico. Un material homogéneo tiene las mismas propiedades físicas y mecánicas en todo su volumen, y un material isotrópico tiene estas mismas propiedades en todas las direcciones. Muchos materiales de ingeniería pueden aproximarse a ser homogéneos e isotrópicos como se supone aquí. Por ejemplo, el acero contiene miles de cristales orientados aleatoriamente en cada milímetro cúbico de su volumen, y como la mayoría de los problemas que involucran este material tienen un tamaño físico que es mucho mayor a un solo cristal, la hipótesis anterior sobre la composición del material es bastante realista. Tenga en cuenta que los materiales anisotrópicos como la madera tienen propiedades distintas en diferentes direcciones, y aunque este sea el caso, si la anisotropía de la madera está orientada a lo largo del eje de la barra, está también se deformará de manera uniforme cuando se someta a la carga axial P. DISTRIBUCIÓN DEL ESFUERZO NORMAL PROMEDIO. Si se pasa una sección través de la barra y se separa en dos partes, entonces el equilibrio requiere que la fuerza normal resultante en la sección sea P, figura 1-13c. Dada la deformación uniforme del material, es necesario que la sección transversal esté sometida a una distribución del esfuerzo normal constante, figura 1-13d. En consecuencia, cada pequeña área ¢A en la sección transversal está sometida a una fuerza ¢F = s ¢A, y la suma de estas fuerzas que actúan sobre toda el área de la sección transversal debe ser equivalente a la fuerza interna resultante P en la sección. Si se hace que ¢A : dA y por consiguiente ¢F : dF, entonces como s es constante, se tiene Aquí s = esfuerzo normal promedio en cualquier punto del área de la sección transversal. P = fuerza normal interna resultante, que actúa a través del centroide del área de la sección transversal. P se determina usando el método de las secciones y las ecuaciones de equilibrio. A = área de la sección transversal de la barra, donde se determina s.

Como la carga interna P pasa por el centroide de la sección transversal, la distribución uniforme del esfuerzo producirá momentos nulos respecto a los ejes x y y que pasan a través de este punto, figura 1-13d. Para demostrar esto, se requiere que el momento de P respecto a cada eje sea igual al momento de la distribución del esfuerzo respecto a los ejes, es decir, Estas ecuaciones se satisfacen, ya que por definición del centroide ∫y dA = 0 y ∫x dA = 0 (vea el apéndice A). Equilibrio. Debería ser evidente que sólo existe esfuerzo normal en cualquier pequeño elemento de volumen de material ubicado en cada punto sobre la sección transversal de una barra cargada axialmente. Si se considera el equilibrio vertical del elemento, figura 1-14, entonces al aplicar la ecuación de equilibrio de fuerzas En otras palabras, las dos componentes del esfuerzo normal sobre el elemento deben ser iguales en magnitud pero opuestas en dirección. A esto se le llama esfuerzo uniaxial. El análisis anterior se aplica a elementos sometidos a tensión o a compresión, como se muestra en la figura 1-15. Como una interpretación gráfica, la magnitud de la fuerza interna resultante P es equivalente al volumen bajo el diagrama de esfuerzo; es decir, P = s A (volumen = altura * base). Además, como consecuencia del equilibrio de momentos, esta resultante pasa por el centroide de este volumen. Aunque este análisis se ha desarrollado para barras prismáticas, esta suposición puede ser un poco flexible a fin de incluir las barras que tengan un pequeño ahusamiento. Por ejemplo, puede demostrarse, mediante un análisis más exacto de la teoría de la elasticidad, que para una barra con sección transversal rectangular ahusada, en la cual el ángulo entre dos lados adyacentes es de 15°, el esfuerzo normal promedio, calculado según s = PNA, es sólo 2.2% menor que el valor calculado con la teoría de la elasticidad. Esfuerzo normal promedio máximo. En el análisis previo, tanto la fuerza interna P como el área A de la sección transversal se consideraron constantes a lo largo del eje longitudinal de la barra y, por consiguiente, se obtuvo un esfuerzo normal s = PNA también constante en toda la longitud de la barra. Sin embargo, en ocasiones la barra puede estar sometida a varias cargas externas a lo largo de su eje, o puede ocurrir un cambio en el área de su sección transversal. En consecuencia, el esfuerzo normal dentro de la barra podría ser diferente de una sección a otra y, si debe calcularse el esfuerzo normal promedio máximo, entonces se vuelve importante determinar la ubicación donde la razón PNA sea máxima. Para esto es necesario determinar la fuerza interna P en diferentes secciones a lo largo de la barra. Aquí puede resultar útil mostrar esta variación dibujando un diagrama de fuerza normal o axial.

En específico, este diagrama es una gráfica de la fuerza normal P en función de su posición x a lo largo de la longitud de la barra. A manera de convención de signos, P será positiva si causa tensión en el elemento y será negativa si produce compresión. Una vez que se conozca la carga interna en toda la barra, podrá identificarse la razón máxima de PNA. Esta barra de acero se usa como soporte para suspender una porción de una escalera, por ello está sometida a un esfuerzo de tensión. • Cuando se secciona un cuerpo sometido a cargas externas, existe una distribución de fuerza que actúa sobre el área seccionada, la cual mantiene en equilibrio a cada segmento del cuerpo. La intensidad de esta fuerza interna en un punto del cuerpo se conoce como esfuerzo. • El esfuerzo es el valor límite de la fuerza por unidad de área, cuando el área se aproxima a cero. Para esta definición, se considera que el material es continuo y cohesivo. • La magnitud de las componentes de esfuerzo en un punto depende del tipo de carga que actúa sobre el cuerpo, y de la orientación del elemento en el punto. • Cuando una barra prismática está hecha de un material homogéneo e isotrópico, y se encuentra sometida a una fuerza axial que actúa a través del centroide del área de su sección transversal, entonces la región central de la barra se deformará de manera uniforme. En consecuencia, el material estará sometido sólo a esfuerzo normal. Este esfuerzo es uniforme o un promedio sobre toda el área de la sección transversal. Procedimiento de análisis La ecuación s = P/A proporciona el esfuerzo normal promedio en el área de la sección transversal de un elemento cuando la sección está sometida a una fuerza normal interna resultante P. Para aplicar esta ecuación a elementos cargados axialmente, deben realizarse los siguientes pasos. Cargas internas. • Seccione el elemento en forma perpendicular a su eje longitudinal en el punto donde debe determinarse el esfuerzo normal y utilice el diagrama de cuerpo libre necesario y la ecuación de equilibrio de fuerzas para obtener la fuerza axial interna P en la sección. Esfuerzo normal promedio. • Determine el área de la sección transversal del elemento y calcule el esfuerzo normal promedio s = P/A. • Se sugiere mostrar a s actuando sobre un pequeño elemento de volumen del material, que se encuentre en el punto de la sección donde se va a calcular el

esfuerzo. Para ello, primero dibuje s en la cara del elemento coincidente con el área seccionada A. Aquí s actúa en la misma dirección que la fuerza interna P ya que todos los esfuerzos normales en la sección transversal desarrollan esta resultante. El esfuerzo normal s sobre la otra cara del elemento actúa en la dirección opuesta.

1.5 Carga axial. Esfuerzo normal Como ya se ha indicado, la varilla BC del ejemplo considerado en la sección precedente es un elemento de dos fuerzas y, por lo tanto, las fuerzas FBC y F9BC que actúan en sus extremos B y C (figura 1.5) se dirigen a lo largo del eje de la varilla. Se dice que la varilla se encuentra bajo carga axial. Un ejemplo real de elementos estructurales bajo carga axial es dado por los elementos de la armadura del puente que se muestra en la fotografía 1.1. Retornando a la varilla BC de la figura 1.5, hay que recordar que la sección que se cortó para determinar su fuerza interna y su correspondiente esfuerzo era perpendicular a su eje; la fuerza interna era, por lo tanto, normal al plano de la sección (figura 1.7) y el esfuerzo correspondiente se describe como un esfuerzo normal. Así, la fórmula (1.5) da el esfuerzo normal en un elemento bajo carga axial: Es preciso advertir que, en la fórmula (1.5), s se obtiene al dividir la magnitud P de la resultante de las fuerzas internas distribuidas en la sección transversal entre el área A de la sección transversal; representa, por lo tanto, el valor promedio del esfuerzo a través de la sección transversal, y no el valor de un esfuerzo en un punto específico de la sección transversal. Para definir el esfuerzo en un punto dado Q en la sección transversal, debe considerarse una pequeña área DA (figura 1.9). Cuando se divide la magnitud de DF entre DA, se obtiene el valor promedio del esfuerzo a través de DA. Al aproximar DA a cero, se halla el esfuerzo en el punto Q: (1.6) En general, el valor obtenido para el esfuerzo, s, en un punto dado, Q, de la sección es diferente al valor del esfuerzo promedio dado por la fórmula (1.5), y se encuentra que s varía a través de la sección. En una varilla delgada sujeta a cargas concentradas, P y P9, iguales y opuestas (figura 1.10a), la variación es pequeña en una sección que se encuentre lejos de los puntos de aplicación de las cargas concentradas (figura 1.10c), pero es bastante notoria cerca de estos puntos (figuras 1.10b) y d). De la ecuación (1.6), se deduce que la magnitud de la resultante de las No obstante, las condiciones de equilibrio de cada una de las porciones de varilla mostradas en la figura 1.10 requiere que esta magnitud sea igual a la magnitud P de las cargas concentradas. Se tiene, entonces, (1.7) lo que significa que el volumen bajo cada una de las superficies esforzadas en la figura 1.10 debe ser igual a la magnitud P de las cargas. Esto, sin embargo, es la única información que es posible determinar a partir de nuestro conocimiento sobre

estática, con respecto a la distribución de los esfuerzos normales en las diversas secciones de la varilla. La distribución real de los esfuerzos en cualquier sección dada es estáticamente indeterminada. Para saber más acerca de esta distribución, es necesario considerar las deformaciones que resultan del modo particular de la aplicación de las cargas en los extremos de la varilla. Esto se explicará con mayor atención en el capítulo 2. En la práctica, se supondrá que la distribución de los esfuerzos normales en un elemento cargado axialmente es uniforme, excepto en la vecindad inmediata de los puntos de aplicación de las cargas. El valor s del esfuerzo es entonces igual a sprom y puede calcularse con la fórmula (1.5). Sin embargo, hay que darse cuenta de que, cuando se supone una distribución uniforme de los esfuerzos en la sección, es decir, cuando se supone que las fuerzas internas se encuentran distribuidas uniformemente a través de la sección, la estática elemental† dice que la resultante P de las fuerzas internas debe aplicarse en el centroide C de la sección (figura 1.11). Esto significa que una distribución uniforme del esfuerzo es posible solo si la línea de acción de las cargas concentradas P y P9 pasa a través del centroide de la sección considerada (figura 1.12). Este tipo de carga se denomina carga céntrica y se supondrá que tiene lugar en todos los elementos rectos de dos fuerzas que se encuentran en armaduras y en estructuras conectadas con pasadores, como la que se considera en la figura 1.1. Sin embargo, si un elemento con dos fuerzas está cargado de manera axial, pero excéntricamente, como en la figura 1.13a), se encuentra que, a partir de las condiciones de equilibrio de la porción del elemento que se muestra en la figura 1.13b), las fuerzas internas en una sección dada deben ser equivalentes a una fuerza P aplicada al centroide de la sección y a un par M cuyo momento es M 5 Pd. La distribución de fuerzas —y, por lo tanto, la correspondiente distribución de esfuerzos— no puede ser uniforme. Tampoco la distribución de esfuerzos puede ser simétrica como se muestra en la figura 1.10. Este punto se analizará detalladamente en el capítulo 4.