Pretarea Grupo 23

DISENO DE PLANTAS Y EQUIPOS EN INGENIERIA AMBIENTAL UNIDAD 1: PRETAREA - CALCULAR CAPTACIÓN DE AGUA LLUVIA PARA ABASTECI

Views 135 Downloads 3 File size 926KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

DISENO DE PLANTAS Y EQUIPOS EN INGENIERIA AMBIENTAL UNIDAD 1: PRETAREA - CALCULAR CAPTACIÓN DE AGUA LLUVIA PARA ABASTECIMIENTO

Por: JUAN DAVID ORTIZ CÓDIGO: 1.078.778.178 DIEGO FABIAN SALINAS RICO CÓDIGO: 1079177192 KATHERIN YISETH CASTRO CÓDIGO:1075266188 OSCAR HERNANDO GUTIERREZ CÓDIGO: 1075248922 NATALIA ORTIZ CÓDIGO:

Grupo: 23

Presentado A:

JAIME LUIS FORTICH Tutor

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD ESCUELA DE CIENCIAS AGRÍCOLAS, PECUARIAS Y DEL MEDIO AMBIENTE PROGRAMA DE INGENIERIA AMBIENTAL FEBREO 2018

INTRODUCCIÓN La recolección de agua de lluvia, ahora en desuso, fue muy empleado por las sociedades antiguas en todo el mundo y en muchas ocasiones supuso del único procedimiento para el abastecimiento de agua en algunas regiones. Muchos edificios antiguos estaban dispuestos de tal forma que el agua que caía en los tejados se canalizaba a un gran depósito subterráneo o semisubterráneo, ahora bien en este curso estamos vienfo la importancia que tiene para la comunidad y es una de las alternativas posibles, implelentada con un numero de calculos que nos ayudaran a entender este proceso y sus resultados positivios o negativos que es lo que veeremos en el desarrollo de este trabajo. Se realizara la memoria de calculos y nalisis de resultados con el objetivo de un aprendizaje grupal e individual para el fortalecimiento de los conocimientos.

MEMORIA DE CÁLCULOS JUAN DAVID ORTIZ AVILES 1. Identifique los datos a tener en cuenta para el ejercicio: Evalúe la pertinencia de captar el agua de lluvia para abastecer un lavadero de carros que utiliza 220 L (Dot) en el lavado de cada auto pequeño y 395 L (Dot) en el lavado de carros grandes, y atiende un total de carros al día (número de dos dígitos, que será el número dos “2” y último dígito del código del estudiante), de los cuales el 35 % son carros grandes y el 65 % restantes son carros pequeños. El lavadero dispone de 1790 m2 (Ac) de techo para la captación en sus instalaciones. La coeficiencia de escorrentía es de 0,9 (Ce) para todo el sistema y la precipitación promedio mensual (Ppi) para los últimos 10 años estudiados, estos se disponen en la tabla 1. Tabla 1. Precipitaciones promedias mensuales (mm) de los últimos diez (10) años. Precipitación (mm) Ene Febre Mar Ab Ma Jun Jul Agos Septiem Octu Noviem ro ro zo ril yo io io to bre bre bre 107, 114,1 100, 192 207 155, 65, 67,3 102 190,2 224,3 8 6 ,8 1 4

Diciem bre 296,6

Formulas a utilizar Tabla 2. Fórmulas para la determinación de la demanda y del volumen del tanque de almacenamiento según el Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente, 2003. 1.Determinación de la demanda mensual: 𝑁𝑢 ∗ 𝑁𝑑 ∗ 𝐷𝑜𝑡 𝐷𝑖 = 1000 (1) Donde, Nu: Número de carros que se benefician del sistema. Nd: Número de días del mes analizado 1000: Factor de conversión de L a m3 Dot: Dotación en L / (carro. día) Di: Demanda mensual en m3 2.Determinación del abastecimiento mensual: 𝑃𝑝𝑖 ∗ 𝐶𝑒 ∗ 𝐴𝑐 𝐴𝑖 = 1000 (2) Donde, Ppi: precipitación promedio mensual en L/m2 Ce: coeficiente de escorrentía Ac: área de captación m2 1000: Factor de conversión de mm a m Ai: Abastecimiento correspondiente al mes “i” en m3

INDICACIONES PARA EL CÁLCULO Inicialmente debe hallar el número total de autos. Está compuesto por el número “2” y el último dígito de su código. Código: 1.078.778.178 Mi código termina en 8, entonces el número total de autos será 28. Con el total de autos podrá hallar el número de autos grandes y pequeños. Se calcula la cantidad de autos grandes con una regla de tres

100% → 28 35%

𝑋

𝑋 = 9.8 𝐴𝑝𝑟𝑜𝑥𝑖𝑚𝑜 𝑎 10

Cantidad de autos pequeños (valor que sumado a 10 de 28 o se realiza igualmente una regla de tres) 100% → 28 65%

𝑋

𝑋 = 18.2 𝐴𝑝𝑟𝑜𝑥𝑖𝑚𝑜 𝑎 18

Determinación de la demanda mensual de carros grandes: Se remplazan los valores en la formula dada. 𝐷𝑒𝑛𝑒𝑟𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠

𝐿 10 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠) ∗ 31 (𝑑í𝑎𝑠) ∗ 395( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 122,45 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐷𝑚𝑎𝑟𝑧𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠

𝐿 10 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠) ∗ 30 (𝑑í𝑎𝑠) ∗ 395( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 118,5 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐷𝑓𝑒𝑏𝑟𝑒𝑟𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠

𝐿 10 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠) ∗ 28 (𝑑í𝑎𝑠) ∗ 395( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 110,6 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

Para los meses restantes se tienen en cuenta los resultados anteriores ya que la cantidad de días es igual en algunos meses. Determinación de la demanda mensual de carros pequeños:

Se remplazan los valores en la formula dada. 𝐷𝑒𝑛𝑒𝑟𝑜_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐿 18(𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 31 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 122,76 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐷𝑚𝑎𝑟𝑧𝑜_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐿 18 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 30 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 118,8 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐷𝑓𝑒𝑏𝑟𝑒𝑟𝑜_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐿 18 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 28 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 110,88 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

Para los meses restantes se tienen en cuenta los resultados anteriores ya que la cantidad de días es igual en algunos meses.

Determinación del abastecimiento mensual: Se remplazan los valores en la formula dada.

𝐴𝑒𝑛𝑒𝑟𝑜 =

107,8 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 173,66 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑓𝑒𝑏𝑟𝑒𝑟𝑜 =

114,1 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 183,81 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑚𝑎𝑟𝑧𝑜 =

100,6 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 162,06 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑎𝑏𝑟𝑖𝑙 =

192 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 309,31 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑚𝑎𝑦𝑜 =

207,8 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 334,26 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑗𝑢𝑛𝑖𝑜 =

155,1 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 249,86 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑗𝑢𝑙𝑖𝑜 =

65,4 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 105,35 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑎𝑔𝑜𝑠𝑡𝑜 =

67,3 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 108,42 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑠𝑒𝑝𝑡𝑖𝑒𝑚𝑏𝑟𝑒 =

𝐴𝑜𝑐𝑡𝑢𝑏𝑟𝑒 =

102 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 164,32 𝑚3 1000 (𝑚𝑚/𝑚)

190,2 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 306,41 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑛𝑜𝑣𝑖𝑒𝑚𝑏𝑟𝑒 =

224,3 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 361,34 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑑𝑖𝑐𝑖𝑒𝑚𝑏𝑟𝑒 =

296,6 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 477,82 𝑚3 1000 (𝑚𝑚/𝑚)

TABLA DE RESULTADOS JUAN DAVID ORTIZ Datos: Nu:

28

Ce:

0,9

Ac: Dot:

1790 m2 220 L (autos pequeños) 395 L (autos grandes)

Resultados: Abastecimiento (m3) Mes

Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

Demanda (m3)

Días del Precipitación mes (mm)

Parcial

Acumulado

Carros pequeños

31 28 31 30 31 30 31 31 30 31 30 31

173,66 183,81 162,06 309,31 334,76 249,86 105,35 108,42 164,32 306,41 361,34 477,82

173,66 183,81 162,06 309,31 406,77 411,42 279,47 142,68 164,32 306,41 422,54 663,06

122,76 110,88 122,76 118,8 122,76 118,8 122,76 122,76 118,8 122,76 118,8 122,76

107,8 114,1 100,6 192 207,8 155,1 65,4 67,3 102 190,2 224,3 296,6

Parcial

Suma

Carros Parciales grandes 122,45 110,6 122,45 118,5 122,45 118,5 122,45 122,45 118,5 122,45 118,5 122,45

245,21 221,48 245,21 237,3 245,21 237,3 245,21 245,21 237,3 245,21 237,3 245,21

Diferencia (m3) Acumulado 245,21 221,48 245,21 237,3 245,21 237,3 245,21 245,21 237,3 245,21 237,3 245,21

-71,55 -37,67 -83,15 72,01 161,56 174,12 34,26 -102,53 -72,98 61,2 185,24 417,85

DIEGO FABIAN SALINAS RICO Primera parte: Individual 2. Identifique los datos a tener en cuenta para el ejercicio: Evalúe la pertinencia de captar el agua de lluvia para abastecer un lavadero de carros que utiliza 220 L (Dot) en el lavado de cada auto pequeño y 395 L (Dot) en el lavado de carros grandes, y atiende un total de carros al día (número de dos dígitos, que será el número dos “2” y último dígito del código del estudiante), de los cuales el 35 % son carros grandes y el 65 % restantes son carros pequeños. El lavadero dispone de 1790 m2 (Ac) de techo para la captación en sus instalaciones. La coeficiencia de escorrentía es de 0,9 (Ce) para todo el sistema y la precipitación promedio mensual (Ppi) para los últimos 10 años estudiados, estos se disponen en la tabla 1. Tabla 1. Precipitaciones promedias mensuales (mm) de los últimos diez (10) años. Precipitación (mm) Enero Febrero Marzo Abril Mayo Junio Julio Agosto 107,8

114,1

100,6

192

207,8

155,1

65,4

Septiembre Octubre Noviembre Diciembre

67,3

102

190,2

224,3

296,6

Formulas a utilizar Tabla 2. Fórmulas para la determinación de la demanda y del volumen del tanque de almacenamiento según el Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente, 2003. 3. Determinación de la demanda mensual:

𝐷𝑖 =

𝑁𝑢 ∗ 𝑁𝑑 ∗ 𝐷𝑜𝑡 1000 (1)

Donde, Nu: Número de carros que se benefician del sistema. Nd: Número de días del mes analizado 1000: Factor de conversión de L a m3 Dot: Dotación en L / (carro. día) Di: Demanda mensual en m3

4. Determinación del abastecimiento mensual: 𝐴𝑖 =

𝑃𝑝𝑖 ∗ 𝐶𝑒 ∗ 𝐴𝑐 1000

(2) Donde, Ppi: precipitación promedio mensual en L/m2 Ce: coeficiente de escorrentía Ac: área de captación m2 1000: Factor de conversión de mm a m Ai: Abastecimiento correspondiente al mes “i” en m3 3. Indicaciones para el cálculo Inicialmente debe hallar el número total de autos. Está compuesto por el número “2” y el último dígito de su código. Código: 1079 177 192 Mi código termina en 2, entonces el número total de autos será 22. Con el total de autos podrá hallar el número de autos grandes y pequeños. Se calcula la cantidad de autos grandes con una regla de tres

100% → 22 35%

X

𝐗 = 𝟕. 𝟕 𝐀𝐩𝐫𝐨𝐱𝐢𝐦𝐨 𝐚 𝟖

Cantidad de autos pequeños (valor que sumado a 8 de 22 o se realiza igualmente una regla de tres) 100% → 22 65%

X

𝐗 = 𝟏𝟒. 𝟑 𝐀𝐩𝐫𝐨𝐱𝐢𝐦𝐨 𝐚 𝟏𝟒

Determinación de la demanda mensual de carros grandes: Se remplazan los valores en la formula dada. Denero_grandes

L 14 (carros grandes) ∗ 31 (días) ∗ 395( ) carros ∗ día = 171,43 m3 = L 1000 ( 3 ) m

DFebrero_grandes

L 14 (carros grandes) ∗ 28 (días) ∗ 395( ) carros ∗ día = 154,84 m3 = L 1000 ( 3 ) m

DMarzo_grandes

L 14 (carros grandes) ∗ 31 (días) ∗ 395( ) carros ∗ día = 171,43 m3 = L 1000 ( 3 ) m

DAbril_grandes

L 14 (carros grandes) ∗ 30 (días) ∗ 395( ) carros ∗ día = 165,9 m3 = L 1000 ( 3 ) m

L 14 (carros grandes) ∗ 31 (días) ∗ 395( ) carros ∗ día = 171,43 m3 = L 1000 ( 3 ) m

DMayo_grandes

L 14 (carros grandes) ∗ 30 (días) ∗ 395( ) carros ∗ día = 165,9 m3 DJunio_grandes = L 1000 ( 3 ) m

DJulio_grandes

L 14 (carros grandes) ∗ 31 (días) ∗ 395( ) carros ∗ día = 171,43 m3 = L 1000 ( 3 ) m

DAgosto_grandes

L 14 (carros grandes) ∗ 31 (días) ∗ 395( ) carros ∗ día = 171,43 m3 = L 1000 ( 3 ) m

DSeptiembre_grandes

DOctubre_grandes

L 14 (carros grandes) ∗ 30 (días) ∗ 395( ) carros ∗ día = 165,9 m3 = L 1000 ( 3 ) m

L 14 (carros grandes) ∗ 31 (días) ∗ 395( ) carros ∗ día = 171,43 m3 = L 1000 ( 3 ) m

DNoviembre_grandes

𝐷 𝐷𝑖𝑐𝑖𝑒𝑚𝑏𝑟𝑒_𝑔𝑟𝑎𝑛𝑑𝑒𝑠

L 14 (carros grandes) ∗ 30 (días) ∗ 395( ) carros ∗ día = 165,9 m3 = L 1000 ( 3 ) m 𝐿 14 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠) ∗ 31 (𝑑í𝑎𝑠) ∗ 395( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 171,43 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

Determinación de la demanda mensual de carros pequeños: Se remplazan los valores en la formula dada. 𝐿 8(𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 31 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐷𝑒𝑛𝑒𝑟𝑜_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐷𝐹𝑒𝑏𝑟𝑒𝑟𝑜_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐿 8 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 28 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 88,48 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐷𝑀𝑎𝑟𝑧𝑜_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐿 8 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 31 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐷𝐴𝑏𝑟𝑖𝑙_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐷𝑀𝑎y𝑜_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐿 8(𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 30 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 94,8 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐿 8 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 31 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐷𝐽𝑢𝑛𝑖𝑜_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐿 8 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 30 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 94,8 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐷𝐽𝑢𝑙𝑖𝑜_𝑝𝑒q𝑢𝑒ñ𝑜𝑠

𝐿 8(𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 31 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐷𝐴𝑔𝑜𝑠𝑡𝑜_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐿 8 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 31 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐷𝑆𝑒𝑝𝑡𝑖𝑒𝑚𝑏𝑟𝑒_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐷𝑂𝑐𝑡𝑢𝑏𝑟𝑒_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐿 8(𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 31 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐷𝑁𝑜𝑣𝑖𝑒𝑚𝑏𝑟𝑒_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐷𝐷𝑖𝑐𝑖𝑒𝑚𝑏𝑟𝑒_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠

𝐿 8 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 30 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 94,8 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐿 8(𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 30 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 94,8 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

𝐿 8 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 31 (𝑑í𝑎𝑠) ∗ 220( ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3 = 𝐿 1000 ( 3 ) 𝑚

Determinación del abastecimiento mensual: Se remplazan los valores en la formula dada. 𝐴𝑖 =

𝑃𝑝𝑖 ∗ 𝐶𝑒 ∗ 𝐴𝑐 1000

Donde, Ppi: precipitación promedio mensual en L/m2 Ce: coeficiente de escorrentía Ac: área de captación m2 1000: Factor de conversión de mm a m Ai: Abastecimiento correspondiente al mes “i” en m3

𝐴𝑒𝑛𝑒𝑟𝑜 =

107,8 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 173,66 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑓𝑒𝑏𝑟𝑒𝑟𝑜 =

114,1 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 183,81 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑚𝑎𝑟𝑧𝑜 =

100,6 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 162,06 𝑚3 1000 (𝑚𝑚/𝑚)

Aabril =

192 (mm) ∗ 0,9 ∗ 1790 (m2 ) = 309,31 m3 1000 (mm/m)

Amayo =

207,8 (mm) ∗ 0,9 ∗ 1790 (m2 ) = 334,26 m3 1000 (mm/m)

Ajunio =

155,1 (mm) ∗ 0,9 ∗ 1790 (m2 ) = 249,86 m3 1000 (mm/m)

Ajulio =

65,4 (mm) ∗ 0,9 ∗ 1790 (m2 ) = 105,35 m3 1000 (mm/m)

Aagosto =

67,3 (mm) ∗ 0,9 ∗ 1790 (m2 ) = 108,42 m3 1000 (mm/m)

Aseptiembre =

Aoctubre =

102 (mm) ∗ 0,9 ∗ 1790 (m2 ) = 164,32 m3 1000 (mm/m)

190,2 (mm) ∗ 0,9 ∗ 1790 (m2 ) = 306,41 m3 1000 (mm/m)

Anoviembre =

224,3 (mm) ∗ 0,9 ∗ 1790 (m2 ) = 361,34 m3 1000 (mm/m)

Adiciembre =

296,6 (mm) ∗ 0,9 ∗ 1790 (m2 ) = 477,82 m3 1000 (mm/m)

Datos: Nu:

22 Ac:

1790 m2

C e:

0,9 Dot:

(220 autos pequeños) (395 autos grandes)

Resultados: Abastecimiento (m3) Mes

Días del mes

Precipitación (mm)

Demanda (m3) Parcial

Parcial

Acumulado

Suma

Carros pequeños

Carros grandes

Parciales

Acumulado

Diferencia (m3)

Ene

31

107,8

173,66

173,66

97,96

171,43

269,39

269,39

-95,73

Feb

28

114,1

183,81

183,81

88,48

154,84

243,32

243,32

-59,51

Mar

31

100,6

162,06

162,06

97,96

171,43

269,39

269,39

-107,33

Abr

30

192

309,31

309,31

94,8

165,9

260,7

260,7

48,61

May

31

207,8

334,76

383,37

97,96

171,43

269,39

269,39

113,98

Jun

30

155,1

249,86

363,84

94,8

165,9

260,7

260,7

103,14

Jul

31

65,4

105,35

208,49

97,96

171,43

269,39

269,39

-60,9

Ago

31

67,3

108,42

108,42

97,96

171,43

269,39

269,39

-160,97

Sep

30

102

164,32

164,32

94,8

165,9

260,7

260,7

-96,38

Oct

31

190,2

306,41

306,41

97,96

171,43

269,39

269,39

37,02

Nov

30

224,3

361,34

398,36

94,8

165,9

260,7

260,7

137,66

Dic

31

296,6

477,82

615,48

97,96

171,43

269,39

269,39

346,09

Análisis de los resultados: Se deduce que el abastecimiento en 6 meses como enero, febrero, marzo,julio , agosto, y septiembre se necesita una fuente externa para suplir la necesidad de la demanda de agua, y que en el resto de los meses se acumuló supliendo las necesidades de la demanda para el otro mes.

Tabla Resumen de Resultados

KATHERIN YISETH CASTRO HERMOSA

Primera parte: Individual 1. Identifique los datos a tener en cuenta para el ejercicio: Evalúe la pertinencia de captar el agua de lluvia para abastecer un lavadero de carros que utiliza 220 L (Dot) en el lavado de cada auto pequeño y 395 L (Dot) en el lavado de carros grandes, y atiende un total de carros al día (número de dos dígitos, que será el número dos “2” y último dígito del código del estudiante), de los cuales el 35 % son carros grandes y el 65 % restantes son carros pequeños. El lavadero dispone de 1790 m2 (Ac) de techo para la captación en sus instalaciones. La coeficiencia de escorrentía es de 0,9 (Ce) para todo el sistema y la precipitación promedio mensual (Ppi) para los últimos 10 años estudiados, estos se disponen en la tabla 1. Tabla 1. Precipitaciones promedias mensuales (mm) de los últimos diez (10) años. Precipitación (mm) Ene ro

Febr ero

Mar zo

Ab ril

May o

Juni o

Jul io

Ago sto

Septie mbre

Octu bre

Novie mbre

Diciem bre

107 ,8

114, 1

100 ,6

19 2

207 155 ,8 ,1

65 ,4

67, 3

102

190, 2

224,3

296,6

Formulas a utilizar Tabla 2. Fórmulas para la determinación de la demanda y del volumen del tanque de almacenamiento según el Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente, 2003. 5. Determinación de la demanda mensual: 𝐷𝑖 =

𝑁𝑢 ∗ 𝑁𝑑 ∗ 𝐷𝑜𝑡 1000

(1)

Donde, Nu: Número de carros que se benefician del sistema. Nd: Número de días del mes analizado 1000: Factor de conversión de L a m3 Dot: Dotación en L / (carro. día) Di: Demanda mensual en m3

6. Determinación del abastecimiento mensual: 𝐴𝑖 =

𝑃𝑝𝑖 ∗ 𝐶𝑒 ∗ 𝐴𝑐 1000

(2)

Donde, Ppi: precipitación promedio mensual en L/m2 Ce: coeficiente de escorrentía Ac: área de captación m2 1000: Factor de conversión de mm a m Ai: Abastecimiento correspondiente al mes “i” en m3

2 Indicaciones para el cálculo Inicialmente debe hallar el número total de autos. Está compuesto por el número “2” y el último dígito de su código. Código: 1075266188 Mi código termina en 8, entonces el número total de autos será 28. Con el total de autos podrá hallar el número de autos grandes y pequeños. Se calcula la cantidad de autos grandes con una regla de tres

100% → 28 35%

𝑋

𝑋 = 9.8 𝐴𝑝𝑟𝑜𝑥𝑖𝑚𝑜 𝑎 10

Cantidad de autos pequeños (valor que sumado a 10 de 28 o se realiza igualmente una regla de tres) 100% → 28 65%

𝑋

𝑋 = 18.2 𝐴𝑝𝑟𝑜𝑥𝑖𝑚𝑜 𝑎 18

Determinación de la demanda mensual de carros grandes: Se remplazan los valores en la formula dada. 𝐷𝑒𝑛𝑒𝑟𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

10 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠) ∗ 31 (𝑑í𝑎𝑠) ∗ 395( 1000 (

𝐿 ) 𝑚3

𝐿 ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 122,45 𝑚3

10 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠) ∗ 30 (𝑑í𝑎𝑠) ∗ 395(

𝐷𝑚𝑎𝑟𝑧𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

1000 (

𝐷𝑓𝑒𝑏𝑟𝑒𝑟𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

𝐿 ) 𝑚3

𝐿 ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 118,5 𝑚3

10 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠) ∗ 28 (𝑑í𝑎𝑠) ∗ 395( 1000 (

𝐿 ) 𝑚3

𝐿 ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 110,6 𝑚3

Para los meses restantes se tienen en cuenta los resultados anteriores ya que la cantidad de días es igual en algunos meses. Determinación de la demanda mensual de carros pequeños: Se remplazan los valores en la formula dada. 𝐷𝑒𝑛𝑒𝑟𝑜_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠 =

18(𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 31 (𝑑í𝑎𝑠) ∗ 220(

𝐷𝑚𝑎𝑟𝑧𝑜_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠 =

𝐷𝑓𝑒𝑏𝑟𝑒𝑟𝑜_𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠 =

1000 (

𝐿 ) 𝑚3

𝐿 ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 122,76 𝑚3

18 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 30 (𝑑í𝑎𝑠) ∗ 220( 1000 (

𝐿 ) 𝑚3

18 (𝑐𝑎𝑟𝑟𝑜𝑠 𝑝𝑒𝑞𝑢𝑒ñ𝑜𝑠) ∗ 28 (𝑑í𝑎𝑠) ∗ 220( 1000 (

𝐿 ) 𝑚3

𝐿 ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 118,8 𝑚3

𝐿 ) 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 110,88 𝑚3

Para los meses restantes se tienen en cuenta los resultados anteriores ya que la cantidad de días es igual en algunos meses. Determinación del abastecimiento mensual: Se remplazan los valores en la formula dada.

107,8 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 173,66 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑒𝑛𝑒𝑟𝑜 =

𝐴𝑓𝑒𝑏𝑟𝑒𝑟𝑜 =

114,1 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 183,81 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑚𝑎𝑟𝑧𝑜 =

100,6 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 162,06 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑎𝑏𝑟𝑖𝑙 =

192 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 309,31 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑚𝑎𝑦𝑜 =

207,8 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 334,26 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑗𝑢𝑛𝑖𝑜 =

155,1 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 249,86 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑗𝑢𝑙𝑖𝑜 =

65,4 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 105,35 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑎𝑔𝑜𝑠𝑡𝑜 =

67,3 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 108,42 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑠𝑒𝑝𝑡𝑖𝑒𝑚𝑏𝑟𝑒 =

𝐴𝑜𝑐𝑡𝑢𝑏𝑟𝑒 =

102 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 164,32 𝑚3 1000 (𝑚𝑚/𝑚)

190,2 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 306,41 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑛𝑜𝑣𝑖𝑒𝑚𝑏𝑟𝑒 =

224,3 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 361,34 𝑚3 1000 (𝑚𝑚/𝑚)

𝐴𝑑𝑖𝑐𝑖𝑒𝑚𝑏𝑟𝑒 =

296,6 (𝑚𝑚) ∗ 0,9 ∗ 1790 (𝑚2 ) = 477,82 𝑚3 1000 (𝑚𝑚/𝑚)

Tabla Resumen de Resultados Datos: Nu: 28 Ce:

Ac: 1790 m2

0,9

(220 autos pequeños) (395 autos grandes)

Dot: Resultados: Abastecimiento (m3)

Días Precipitación Mes del (mm) mes Parcial Acumulado Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

31 28 31 30 31 30 31 31 30 31 30 31

107,8 114,1 100,6 192 207,8 155,1 65,4 67,3 102 190,2 224,3 296,6

173,66 183,81 162,06 309,31 334,76 249,86 105,35 108,42 164,32 306,41 361,34 477,82

173,66 183,81 519,53 828,84 1163,6 1413,46 1356,75 1627,23 1617,89 2097,96 2459,3 2937,12

Demanda (m3) Parcial

Suma

Acumulado Carros Carros Parciales pequeños grandes 122,76 122,45 245,21 245,21 110,88 110,6 221,48 466,69 122,76 122,45 245,21 711,9 118,8 118,5 237,3 949,2 122,76 122,45 245,21 1194,41 118,8 118,5 237,3 1431,71 122,76 122,45 245,21 1676,92 122,76 122,45 245,21 1922,13 118,8 118,5 237,3 2159,43 122,76 122,45 245,21 2404,64 118,8 118,5 237,3 2641,94 122,76 122,45 245,21 2887,15

Diferencia (m3)

- 71,55 - 282,88 - 192,37 - 120,36 - 30,81 - 18,25 - 320,17 - 294,9 - 541,54 - 306,68 - 182,64 49,97

Primera parte OSCAR HERNANDO GUTIÉRREZ SAAVEDRA

1. Identifique los datos a tener en cuenta para el ejercicio: Evalúe la pertinencia de captar el agua de lluvia para abastecer un lavadero de carros que utiliza 220 L (Dot) en el lavado de cada auto pequeño y 395 L (Dot) en el lavado de carros grandes, y atiende un total de carros al día (número de dos dígitos, que será el número dos “2” y último dígito del código del estudiante), de los cuales el 35 % son carros grandes y el 65 % restantes son carros pequeños. El lavadero dispone de 1790 m2 (Ac) de techo para la captación en sus instalaciones. La coeficiencia de escorrentía es de 0,9 (Ce) para todo el sistema y la precipitación promedio mensual (Ppi) para los últimos 10 años estudiados, estos se disponen en la tabla 1.

Tabla 1. Precipitaciones promedias mensuales (mm) de los últimos diez (10) años.

Precipitación (mm) Enero

Febrero

Marzo

Abril

Mayo

Junio

Julio

Agosto

Septiembre

Octubre

Noviembre

Diciembre

107,8

114,1

100,6

192

207,8

155,1

65,4

67,3

102

190,2

224,3

296,6

1. Establecer el número de carros para su caso que será el número 2 y el último dígito de su cédula que es 2.

El ultimo digito de mi cedula es 2, por lo tanto el número de carros lavados diarios es de 22 de los cuales el 35% corresponden a carros Grandes que son (7.7 se aproxima) 8 carros grandes y el 65 % restantes son carros pequeños que equivalen a 14 carros pequeños.

Por lo tanto, para carros grandes tenemos: Aplicamos la siguiente fórmula 𝐷𝑖 =

𝑁𝑢 ∗ 𝑁𝑑 ∗ 𝐷𝑜𝑡 1000

Reemplazamos en la fórmula

𝐷𝑒𝑛𝑒𝑟𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

1000𝐿/𝑚3

𝐷𝑓𝑒𝑏𝑟𝑒𝑟𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

𝐷𝑚𝑎𝑟𝑧𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

𝐷𝑎𝑏𝑟𝑖𝑙_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

8 𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠 ∗ 28 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

1000𝐿/𝑚3

1000𝐿/𝑚3

395𝐿 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3

8 𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠 ∗ 30 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

8 𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠 ∗ 31 𝑑í𝑎𝑠 ∗

𝐷𝑎𝑔𝑜𝑠𝑡𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

395𝐿 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 94,8 𝑚3

8 𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠 ∗ 30 𝑑í𝑎𝑠 ∗

1000𝐿/𝑚3

𝐷𝑗𝑢𝑛𝑖𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

1000𝐿/𝑚3

395𝐿 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 94,8 𝑚3

395𝐿 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3

8 𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠 ∗ 31 𝑑í𝑎𝑠 ∗

𝐷𝑠𝑒𝑝𝑡𝑖𝑒𝑚𝑏𝑟𝑒_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

395𝐿 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 88,48 𝑚3

395𝐿 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3

8 𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠 ∗ 31 𝑑í𝑎𝑠 ∗

8 𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠 ∗ 31 𝑑í𝑎𝑠 ∗

𝐷𝑚𝑎𝑦𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

𝐷𝑗𝑢𝑙𝑖𝑜_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

395𝐿 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3

8 𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠 ∗ 31 𝑑í𝑎𝑠 ∗

1000𝐿/𝑚3

395𝐿 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3

8 𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠 ∗ 30 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

395𝐿 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 94,8 𝑚3

𝐷𝑜𝑐𝑡𝑢𝑏𝑟𝑒_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

395𝐿 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3

8 𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠 ∗ 31 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

𝐷𝑛𝑜𝑣𝑖𝑒𝑚𝑏𝑟𝑒_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

𝐷𝑑𝑖𝑐𝑖𝑒𝑚𝑏𝑟𝑒_𝑔𝑟𝑎𝑛𝑑𝑒𝑠 =

8 𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠 ∗ 30 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

8 𝑐𝑎𝑟𝑟𝑜𝑠 𝑔𝑟𝑎𝑛𝑑𝑒𝑠 ∗ 31 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

395𝐿 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 94,8 𝑚3

395𝐿 𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 97,96 𝑚3

Determinación demanda mensuales carros pequeños

𝐷𝑒𝑛𝑒𝑟𝑜_pequeños =

𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 95,48 𝑚3

1000𝐿/𝑚3

𝐷𝑓𝑒𝑏𝑟𝑒𝑟𝑜_pequeños =

𝐷𝑚𝑎𝑟𝑧𝑜_pequeños =

𝐷𝑎𝑏𝑟𝑖𝑙_pequeños =

14 𝑐𝑎𝑟𝑟𝑜𝑠 pequeños ∗ 28 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3 14 𝑐𝑎𝑟𝑟𝑜𝑠 pequeños ∗ 31 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3 14 𝑐𝑎𝑟𝑟𝑜𝑠 pequeños ∗ 30 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

14 𝑐𝑎𝑟𝑟𝑜𝑠 pequeños ∗ 30 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

14 𝑐𝑎𝑟𝑟𝑜𝑠 pequeños ∗ 31 𝑑í𝑎𝑠 ∗

𝐷𝑎𝑔𝑜𝑠𝑡𝑜_pequeños =

1000𝐿/𝑚3

𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 95,48 𝑚3 220 lts

𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 92,4 𝑚3

220 lts

𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 92,4 𝑚3 220 lts

𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 95,48 𝑚3

14 𝑐𝑎𝑟𝑟𝑜𝑠 pequeños ∗ 31 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

220 lts

𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 95,48 𝑚3

1000𝐿/𝑚3

𝐷𝑗𝑢𝑛𝑖𝑜_pequeños =

220 lts

𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 86,24 𝑚3

220 lts

14 𝑐𝑎𝑟𝑟𝑜𝑠 pequeños ∗ 31 𝑑í𝑎𝑠 ∗

𝐷𝑚𝑎𝑦𝑜_pequeños =

𝐷𝑗𝑢𝑙𝑖𝑜_pequeños =

220 lts

14 𝑐𝑎𝑟𝑟𝑜𝑠 pequeños ∗ 31 𝑑í𝑎𝑠 ∗

220 lts

𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 95,48 𝑚3

𝐷𝑠𝑒𝑝𝑡𝑖𝑒𝑚𝑏𝑟𝑒_pequeños = 𝐷𝑜𝑐𝑡𝑢𝑏𝑟𝑒_pequeños =

14 𝑐𝑎𝑟𝑟𝑜𝑠 pequeños ∗ 30 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

14 𝑐𝑎𝑟𝑟𝑜𝑠 pequeños ∗ 31 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

𝐷𝑛𝑜𝑣𝑖𝑒𝑚𝑏𝑟𝑒_pequeños =

𝐷𝑑𝑖𝑐𝑖𝑒𝑚𝑏𝑟𝑒_pequeños =

220 lts

𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 92,4 𝑚3 220 lts

𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 95,48 𝑚3

14 𝑐𝑎𝑟𝑟𝑜𝑠 pequeños ∗ 30 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

14 𝑐𝑎𝑟𝑟𝑜𝑠 pequeños ∗ 31 𝑑í𝑎𝑠 ∗ 1000𝐿/𝑚3

220 lts

𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 92,4 𝑚3 220 lts

𝑐𝑎𝑟𝑟𝑜𝑠 ∗ 𝑑í𝑎 = 95,48 𝑚3

Determinación de abastecimiento para cada mes

𝐴𝑖 =

𝑃𝑝𝑖 ∗ 𝐶𝑒 ∗ 𝐴𝑐 1000

Donde, Ppi: precipitación promedio mensual en L/m2 Ce: coeficiente de escorrentía Ac: área de captación m2 1000: Factor de conversión de mm a m Ai: Abastecimiento correspondiente al mes “i” en m3

𝐷𝑒𝑛𝑒𝑟𝑜 = 𝐷𝑓𝑒𝑏𝑟𝑒𝑟𝑜 =

𝐷𝑚𝑎𝑟𝑧𝑜 =

𝐷𝑎𝑏𝑟𝑖𝑙 =

107.8mm ∗ 0.9 ∗ 1790𝑚2

= 173,67 𝑚3

1000 mm/m 1114,1mm ∗ 0.9 ∗ 1790𝑚2 1000 mm/m 100,6 mm ∗ 0.9 ∗ 1790𝑚2 1000 mm/m 192 mm ∗ 0.9 ∗ 1790𝑚2

1000𝐿/𝑚3

= 183,81 𝑚3

= 162,51 𝑚3

= 309.31 𝑚3

𝐷𝑚𝑎𝑦𝑜 =

𝐷𝑗𝑢𝑛𝑖𝑜 =

207,8mm ∗ 0.9 ∗ 1790𝑚2 1000 mm/m

155,1mm ∗ 0.9 ∗ 1790𝑚2

𝐷𝑗𝑢𝑙𝑖𝑜 =

1000 mm/m

65,4mm ∗ 0.9 ∗ 1790𝑚2

𝐷𝑎𝑔𝑜𝑠𝑡𝑜 =

1000 mm/m

𝐷𝑠𝑒𝑝𝑡𝑖𝑒𝑚𝑏𝑟𝑒 = 𝐷𝑜𝑐𝑡𝑢𝑏𝑟𝑒 =

= 245.03 𝑚3

= 105.35 𝑚3

67,3mm ∗ 0.9 ∗ 1790𝑚2 1000 mm/m

= 334.76 𝑚3

= 108.42 𝑚3

102mm ∗ 0.9 ∗ 1790𝑚2

1000 mm/m 190,2mm ∗ 0.9 ∗ 1790𝑚2

𝐷𝑛𝑜𝑣𝑖𝑒𝑚𝑏𝑟𝑒 =

𝐷𝑑𝑖𝑐𝑖𝑒𝑚𝑏𝑟𝑒 =

1000 mm/m

= 164.32 𝑚3 = 306.41 𝑚3

224,3mm ∗ 0.9 ∗ 1790𝑚2 1000 mm/m

296,6mm ∗ 0.9 ∗ 1790𝑚2 1000 mm/m

= 361.34 𝑚3

= 477.82 𝑚3

Tabla Resumen de Resultados Datos: CALCULAR CAPTACIÓN DE AGUA LLUVIA PARA ABASTECIMIENTO Nu: 22 Ac: 1790 220 L (auto pequeño) 395 L carros grandes Ce: 0,9 Dot: Resultados: Abastecimiento (m3) Demanda (m3) Días Precipitación Parcial Diferencia Mes del Suma (mm) (m3) Parcial Acumulado Acumulado Carros Carros mes Parciales pequeños grandes Ene 31 107,8 173,67 173,67 95,48 97,96 193,96 193,96 -20,29 Feb 28 114,1 183,81 357,48 86,24 88,48 174,72 368,68 -11,2 Mar 31 100,6 162,51 519,99 95,48 97,96 193,44 562,12 -42,13 Abr 30 192 309.31 829,3 92,4 94,8 187,2 749,32 79,98 May 31 207,8 334.76 1164,06 95,48 97,96 193,44 942,76 221,3 Jun 30 155,1 245.03 1409,09 92,4 94,8 187,2 1129,96 279,13 Jul 31 65,4 105.35 1514,44 95,48 97,96 193,44 1323,4 191,04 Ago 31 67,3 108.42 1622,86 95,48 97,96 193,44 1516,84 106,02 Sep 30 102 164.32 1787,18 92,4 94,8 187,2 1704,04 83,14 Oct 31 190,2 306.41 2093,59 95,48 97,96 193,44 1897,48 196,11 Nov 30 224,3 361.34 2454,93 92,4 94,8 187,2 2084,64 370,29 Dic 31 296,6 477.82 2932,75 95,48 97,96 193,44 2278,12 654,63 Análisis de los resultados: Según los resultados obtenidos, se puede establecer que los índices de abastecimiento acumulado de aguas lluvias por cada uno de los meses, alcanzan a suplir la demanda para el lavado de carros en al menos en un 80% en algunos meses del año, igualmente para los meses de enero, febrero, marzo no alcanza el mínimo de abastecimiento; por lo cual se debe de fortalecer el sistema de abastecimiento con el uso de aguas subterráneas, superficiales o la reutilización de las aguas ya usadas en el lavadero mediante un sistema de recolección y tratamiento. Finalmente, aunque la pertinencia no es de 100%, se puede concluir que el sistema es efectivo si se combina con otras fuentes de abastecimiento, por lo que además significaría un gran ahorro de agua y de costos.

ANÁLISIS GRUPAL JUAN ORTIZ Teniendo en cuenta los resultados obtenidos, se puede concluir que el sistema de abastecimiento no cumple la demanda en algunos de los meses, especificamente (enero, febrero, marzo, agosto y septiembre) y en los meses restantes se cubre el total de la demanda; analizando la informacion podemos concluir que aunque el sistema no cubre todos lo meses del año, en la mayoria de ellos si se logra satisfacer la demanda exiguida, por tal motivo es evidente que el sistema es adecuado aunque es necesario implementar otro u otros sistemas de abastecimiento tal vez combinados que cubran la demanda requerida para los meses en los que no se logra acumular la suficiente agua para el lavado de los vehiculos. Debido a que el sistema actual no cubre la demanda en todos los meses del año, se debe optar por modificar el sistema para poder suplir la demanda requerida en los meses anteriormente nombrados, llevando a cabo talvez la combinación del sistema de abastecimiento de aguas lluvias con un sistema de aguas subterráneas, superficiales o inclusive también se podría considerar aumentar el área de captación de agua lluvia para así mismo aumentar el abastecimiento. DIEGO SALINAS Se deduce que el abastecimiento en 6 meses como enero, febrero, marzo,julio , agosto, y septiembre se necesita una fuente externa para suplir la necesidad de la demanda de agua, y que en el resto de los meses se acumuló supliendo las necesidades de la demanda para el otro mes. Concluyendo que se necesita de agua externa en la mayoria de los meses.

KATHERIN YISETH CASTRO HERMOSA La diferencia en el abastecimiento y la demanda durante los meses de enero a noviembre requiere de una fuente externa para suplir la necesidad debido a que sus valores son negativos, especialmente en el mes septiembre (-541,54). el único mes que acumula un abastecimiento según su demanda es el mes de diciembre (49,97) por ser un valor positivo, sin embargo no representa lo necesario para la demanda del mes siguiente, es decir, no se logra una efectividad de demanda a cumplir mes a mes.

OSCAR HERNANDO GUTIÉRREZ SAAVEDRA Según los resultados obtenidos, se puede establecer que los índices de abastecimiento acumulado de aguas lluvias por cada uno de los meses, alcanzan a suplir la demanda para el lavado de carros en al menos en un 80% en algunos meses del año, igualmente para los meses de enero, febrero, marzo no alcanza el mínimo de abastecimiento; por lo cual se debe de fortalecer el sistema de abastecimiento con el uso de aguas subterráneas, superficiales o la reutilización de las aguas ya usadas en el lavadero mediante un sistema de recolección y tratamiento. Finalmente, aunque la pertinencia no es de 100%, se puede concluir que el sistema es efectivo si se combina con otras fuentes de abastecimiento, por lo que además significaría un gran ahorro de agua y de costos.

BIBLIOGRAFÍA

Caballero, T. (2010). Captación de agua de lluvia y almacenamiento en tanques de ferrocemento: manual técnico. Recuperado de: http://bibliotecavirtual.unad.edu.co:2077/lib/unadsp/reader.action?ppg=43&docID=10366024&tm =1479858918884 Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente. (2003). Guía de diseño para captación del agua de lluvia. Recuperado de: http://www.bvsde.paho.org/bvsacd/cosude/i.pdf