Algebra Lineal - Friedberg

1 Espacios Vectoriales Problema 1.-Determinar si las siguientes expresiones son falsas o verdaderas. a) Todo espacio v

Views 141 Downloads 3 File size 203KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

1

Espacios Vectoriales

Problema 1.-Determinar si las siguientes expresiones son falsas o verdaderas. a) Todo espacio vectorial contiene un vector cero. Respuesta: Verdadera segun el axioma, existe un elemento en V llamado 0 tal que x + 0 = x para toda x en V . b) Un espacio vectorial puede tener más de un vector cero. Respuesta: Falsa ya que si existen dos elementos x; y donde ambos son ceros, dado el axioma del vector cero dado anteriormente x = x + y = y lo que indica que el vector cero es unico. c) En cualquier espacio vectorial ax = bx implica que a = b. Respuesta: Falso ya que si x es un vector cero a puede ser diferente de b. d) En cualquier espacio vectorial ax = ay implica que x = y. Respuesta: Falso ya que a puede ser igual a cero. e) Un elemento F n puede ser considerado como un elemento Mn

1

(F ).

Respuesta: Si ya que F n se puede pensar como el vector renglon de la matriz M de n elementos. f) Una matriz de m

n tiene m columnas y n renglones.

Respuesta: Falso ya que m son los renglones y n son las columnas. g) En P (F ) sólo se pueden sumar polinomios del mismo grado. Respuesta: No ya que si tienen que si tienen grados diferentes la suma seria un polinomio del grado mayor "la suma de dos polinomios de grado diferente es un espacio vectorial que cumple con lo aximas de espacios vectoriales h) Si f y g son polinomios de grado n, entonces f + g es un polinomio de grado n.

Respuesta: Falso ya que las dentro de la operacion suma esta el elemento neutro aditivo P n (F ) + ( P n (F )) = 0 i) Si f es un polinomio de grado n y c es un escalar no nulo, entonces cf es un polinomio de grado n. Respuesta: Si j) Un elemento no nulo de F puede considerarse como un elemento de P (F ) de grado 0. Respuesta: Si debido a 0x + 0x2 + 0x3 + ::: + 0xn = P (F ) k) Dos funciones en F (S; F ) son iguales si y sólo si toman los mismos valores en cada punto de S. Respuesta: Verdadero debido a la de…nición F :F !S

Problema 2.- Escribir el vector nulo de M3 4 (F). Respuesta: M3 4 (0) = (0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0) 0 1 0 0 0 0 B C B C M3 4 (0) = B 0 0 0 0 C @ A 0 0 0 0

Problema 3.- Si

¿Cuáles son M13 ; M21 y M22 ?

0

Mij = @

1 2 3 4 5 6

Respuesta: M13 = 3 M21 = 4 M22 = 5

1 A

Problema 4.- Realizar las operaciones indicadas. a)

b)

c)

d)

0 @

2 5

3

1 0

7

0

6 B B B3 @ 1 0

4@

1

0

1 2 3

A+@ 4

1

4 5 6

1 0 0

6 B B 5B 3 @ 1

3 7

0

A=@

0

1 0 5 1 C B C B 3C = B3 A @ 0 3

1

0

7 C B C B 2C + B0 A @ 8 2

2 5

1

A=@ 1

0

8 20 4

0

30 C B C B 2C = B 15 A @ 5 8

4

3 7

0

5 5 13 1 1 C C 5C A 8 12 28

1 20 C C 10 C A 40

1 A

1 A

Problema 5.- Richard Gard (Efectos de los castores en las truchas en Sagehen Creek, California. J. Wildlife Management, 25, 221-242) reporta el siguiente número de truchas que atravesaron las represas de castores en Sagehen Creek: Cruces a contracorriente Otoño Primavera Verano Trucha de arroyo

8

3

1

Trucha arcoiris

3

0

0

Trucha café

3

0

0

Cruces a favor de la corriente Otoño Primavera Verano Trucha de arroyo

9

1

4

Trucha arcoiris

3

0

0

Trucha café

1

1

0

Registrar los cruces a contracorriente y a favor de la corriente como datos en dos matrices de 3

3 y veri…car que la suma de las dos matrices da .el número total de cruces (a contracorriente

y a favor) categorizada por especie de trucha y por estación. Respuesta.-

0 1 0 1 0 1 8 3 1 9 1 4 17 4 5 B C B C B C B C B C B C B3 0 0C + B3 0 0C = B 6 0 0C @ A @ A @ A 3 0 0 1 1 0 4 1 0

Por lo que el total de cruces quedaria como

Cruces totales de las truchas Otoño Primavera Verano Trucha de arroyo

17

4

5

Trucha arcoiris

6

0

0

Trucha café

4

1

0

Problema 6.- Al …nal de mayo, un almacén de muebles tenía el siguiente inventario Americano tradicional

Español

Mediterráneo

Danés

Conjunto de sala

4

2

1

3

Conjunto de alcoba

5

1

1

4

Conjunto de comedor

3

1

2

6

Registrar estos datos como una matriz M3 4 . Con el …n de prepararse para su venta de junio, el almacen decidió duplicar su inventario de cada uno de los rubros anteriores. Suponiendo que nada de la mercancía en inventario se vende hasta que los pedidos de muebles adicionales lleguen, se veri…ca que el inventario disponible después de recibir el pedido estara dado por la matriz 2M . Si el inventario al …nal de junio queda dado por 0 5 B B A = B6 @ 1 interpretar 2M

la matriz 1 3 1 2 C C 2 1 5C A 0 3 3

A. ¿Cuántos conjuntos se vendieron durante la venta de junio?

Respuesta: la matriz de representación es 0 1 4 2 1 3 B C B C M = B5 1 1 4C @ A 3 1 2 6

la cual al multiplicarle en escalar 0 4 B B cM = 2 B5 @ 3

c = 2 quedaria 1 0 1 2 1 3 8 4 2 6 C B C C B C 1 1 4C = B10 2 2 8 C A @ A 1 2 6 6 2 4 12

por lo que

2M

2M

2M

la matriz 2M

0

1 4 2 1 3 B C B C A = 2 B5 1 1 4C @ A 3 1 2 6 0 1 8 4 2 6 B C B C A = B10 2 2 8 C @ A 6 2 4 12 0 1 3 1 1 4 B C B C A = B4 0 1 3C @ A 5 2 1 9

0

5 B B B6 @ 1 0 5 B B B6 @ 1

3 1 2 1 0 3 3 1 2 1 0 3

1 2 C C 5C A 3 1 2 C C 5C A 3

A es el inventario de ventas

Americano tradicional

Español

Mediterráneo

Danés

Conjunto de sala

3

1

1

4

Conjunto de alcoba

4

0

1

3

Conjunto de comedor

5

2

1

9

por lo que las ventas fueron de 34 conjuntos

Problema 7.- Sea S = f0; 1g y F = R, el campo de los números reales. En F(S; F), demostrar que f = g y f + g = h donde f (x) = 2x + 1, g(x) = 1 + 4x

2x2 y h(x) = 5x + 1.

Respuesta: Si S = f0; 1g entonces f (x) = 2x + 1

g(x) = 1 + 4x

2x2

h(x) = 5x + 1

Mostramos que f =g para x = 0 f (x) = 2x + 1 f (0) = 2 (0) + 1

g(x) = 1 + 4x g(0) = 1 + 4 (0)

f (0) = 1

2x2 2 (0)2

g(0) = 1

para x = 1 f (x) = 2x + 1 f (1) = 2 (1) + 1

g(x) = 1 + 4x g(1) = 1 + 4 (1)

f (1) = 2 + 1

g(1) = 1 + 4

f (1) = 3

2x2 2 (1)2 2 (1)

g(1) = 3

como f (0) = g (0) f (1) = g (1) se concluye que f =g mostramos que f +g =h f (x) + g(x) = h (x) f (x) + g(x) = h (x) (2x + 1) + 1 + 4x

2x2 = 5x + 1

2x + 1 + 1 + 4x 6x

2x2 = 5x + 1

2x2 + 2 = 5x + 1

para x = 0 la igualdad queda 6 (0)

2 (0)2 + 2 = 5(0) + 1 2=2

para x = 1 la igualdad queda 6 (1)

2 (1)2 + 2 = 5(1) + 1 6=6

por lo tanto se demuestra que para el conjunto dado se cumple la igualdad de funciones.

Problema 8.- Demostrar que en cualquier espacio vectorial V , (a+b)(x+y) = ax+ay +bx+by para toda x; y 2 V y cualquier a; b 2 F. Respuesta: Tenemos que: (a + b)(x + y) = ax + ay + bx + by por condición 7 se tiene que a (x + y) + b (x + y) = (a + b) (x + y) y a su ves por la condición 1 y 8 ax + bx + ay + by = a (x + y) + b (x + y) = (a + b) (x + y) como a; b 2 F ) (a + b) 2 F y x; y 2 V ) (x + y) 2 V por lo que (a + b) (x + y) de…ne la multiplicación por un escalar en un espacio vectorial.

Problema 9.- Demostrar los Corolarios 1 y 2 del Teorema 1.1 y el Teorema 1 .2 ( c). Teorema 1.1.- (Ley de cancelación de la suma vectorial) Si ~x, ~y , y ~z son elementos de un espacio vectorial V tal que ~x + ~z = ~y + ~z, entonces ~x = ~y . Demostración.- Por la condición 4 9~v 2 V : ~z + ~v = 0 por la condición 3 ~x = ~x + 0 pero ~x + 0 = ~x + (~z + ~v ) bajo la condición 2 ~x + (~z + ~v ) = (~x + ~z) + ~v pero (~x + ~z) + ~v = (~y + ~z) + ~v de nuevo por la condición 2 (~y + ~z) + ~v = ~y + (~z + ~v ) entonces ~y + (~z + ~v ) = ~y + 0 por lo que bajo la condición 3 ~y + 0 = ~y por conclusión ~x = ~y Corolario 1 El vector 0 descrito en 3 de la de…nición de espacio vectorial es único. Demostración.- Para dos vectores cero 01 y 02 por el teorema 1.1 tenemos que 01 + ~x = ~x pero ~x = ~x + 02

sustituyendo tenemos que 01 + ~x = ~x + 02 se puede cancelar ~x lo que implica que 01 = 02 Corolario 2 El vector ~y descrito en condicion 4 de la de…nición de espacio vectorial es único. Demostración.- Para dos vectores inversos ~y1 y ~y2 por el teorema 1.1 tenemos que ~x + ~y1 = 0 pero 0 = ~x + ~y2 sustituyendo tenemos ~x + ~y1 = ~x + ~y2 se puede cancelar ~x lo que implica que ~y1 = ~y2 Teorema 1.2.- En cualquier espacio vectorial V , son verdaderos los siguientes enunciados: a) 0~x = 0 para toda ~x 2 V . b) ( a)~x =

(a~x) para toda a 2 F y toda ~x 2 V .

c) a0 = 0 para toda a 2 F . Demostración a) Partimos de 0~x = 0 entonces 0~x + 0~x = 0 tendriamos que 0~x + 0~x = 0~x si tenemos que por condición 8 0~x + 0~x = (0 + 0) ~x

entonces (0 + 0) ~x = 0~x pero por condición 3 0~x = 0 + 0~x por lo tanto 0~x + 0~x = 0 + 0~x lo que implica que 0~x = 0 b) El elemento

(a~x) es el unico elemento de V tal que a~x + [ (a~x)] = 0

lo que implicaria que a~x + [( 1) (a) ~x] = 0 si quitamos corchete y multiplicamos los escalares ( 1) y (a) obtenemos a~x + ( a) ~x = 0; el corolario 2 implicaria que ( a) ~x =

(a~x) :

Pero por condición 8 a~x + ( a) ~x = [a + ( a)] ~x por lo que [a + ( a)] ~x = 0~x pero segun a) 0~x = 0 por lo tanto ( a)~x =

(a~x)

c) Si tenemos 0a + 1a = (0 + 1) a entonces (0 + 1) a = 1a

pero por condición 3 1a = 0 + 1a por lo que 0a + 1a = 0 + 1a por despeje a0 = 0:

Problema 10.- Sea V el conjunto de todas las funciones diferenciales de valores reales de…nidas sobre la recta de los reales. Demostrar que V es un espacio vectorial bajo las operaciones de suma y multiplicación por escalares de…nidas en el ejemplo 3. (Hecho por Javier) Respuesta.- (Hecho por Javier): Debe V cumplir las condiciones siguientes

f8~x; ~y 2 V ; 9~v : ~v = (~x + ~y ) 2 V g Sea f y g un par de funciones diferenciables (f + g) (s) = f (s) + g (s) otra función diferenciable tambien se cumple f8a 2 F; 9~v : ~v = a~x 2 V g sea f una función diferenciable y a un escala perteneciente al campo F se tiene que [af ] (s) = a [f (s)] que es una función diferenciable, si por otro lado g = 0 se tiene que (f + 0) (s) = f (s) + 0 = f (s) que es una función diferenciable, al cumplirse estos tres axioman puede considerarse V como un espacio vectorial.

Problema 11.- Sea V = f0g que conste de un único vector 0 y defínase 0 + 0 = 0 y c0 = 0 para cada c de F . Demostrar que V es un espacio vectorial sobre F (V se llama espacio vectorial cero). Respuesta: El espacio vectorial cero cumple con los 10 axiomas por lo que todas las condiciones son faciles de veri…car ya que es solamente un elemento.

Problema 12.- Una función de valor real de…nida sobre la recta de los reales se llama función par si f ( x) = f (x) para todo número real x. Demostrar que el conjunto de las funciones par de…nidas en la recta de los reales, con las operaciones de suma y multiplicación por escalares de…nidas en el ejemplo 3, es un espacio vectorial. Respuesta.- (Hecho por Javier)

Problema 13.- Sea V el conjunto de pares ordenados de números reales. Si (a1 ; a2 ) y (b1 ; b2 ) son elementos de V y c es un elemento de F, se de…nen (a1 ; a2 ) + (b1 ; b2 ) = (a1 + b1 ; a2 b2 ) y c (a1 ; a2 ) = (ca1 ; a2 ) ¿Es V un espacio vectorial bajo esas operaciones? Respuesta.- Bajo la condición 0 (a1 ; a2 ) = (0; a2 ) lo que indica que el vector cero no es unico (ya que a2 es un vector arbitrario que puede ser cero) lo que es una contradicción ya que el vector cero es unico.

Problema 14.- Sea V = f(a1 ; :::; an ) : ai 2 C para i = 1; 2; :::; ng. ¿Es V un espacio vectorial sobre el campo de los números complejos bajo las operaciones de suma y multiplicación con correspondencia de elementos? Respuesta.- Veri…camos que se cumplen todas las condiciones cuando existe un elemento escalar de un campo donde fc 2 F : F ai + aj 2 V

c (ai ) 2 V ya que R

C

Rg tenemos entonces que C

C

Problema 15.- Sea V = f(a1 ; :::; an ) : ai 2 R para i = 1; 2; :::; ng. ¿Es V un espacio vectorial sobre el campo de los números complejos bajo las operaciones de suma y multiplicación con correspondencia de elementos? Respuesta.- (Hecho por Javier)

Problema 16.- Sea V = f(a1 ; a2 : a1; a2 2 R)g. Para (a1 ; a2 ), (b1 ; b2 ) 2 V y c 2 R, de…nase (a1 ; a2 ) + (b1 ; b2 ) = (a1 + b1 ; a2 + b2 ) y c (a1 ; a2 ) =

(0; 0) ca1 ; ac2

si c = 0 si c 6= 0

¿Es V un espacio vectorial bajo estas operaciones? justi…que su respuesta. Respuesta: Sea la operación de…nida bajo el axioma 8 (c + d) (a1 ; a2 ) =

(c + d) a1 ;

a2 c+d

segun esta de…nida la operación pero (c + d) (a1 ; a2 ) = c (a1 ; a2 ) + d (a1 ; a2 ) la cual bajo la de…nición del producto quedaria como (c + d) (a1 ; a2 ) = ca1 ;

a2 a2 + da1 ; c d

usando la suma de…nida anteriormente ca1 ;

a2 a2 + da1 ; c d

= ca1 + da1 ;

a2 a2 + c d

como (c + d) a1 ;

a2 c+d

6= ca1 + da1 ;

a2 a2 + c d

V no es un espacio vectorial al no cumplir la cerradura con el axioma 8.

Problema 17.-Sea V = f(a1 ; a2 : a1; a2 2 C)g. Para (a1 ; a2 ), (b1 ; b2 ) 2 V y c 2 C, de…nase (a1 ; a2 ) + (b1 ; b2 ) = (a1 + 2b1 ; a2 + 3b2 ) y c (a1 ; a2 ) = (ca1 ; ca2 ) ¿Es V un espacio vectorial bajo estas operaciones? Respuesta.- (Hecho por Javier)

Problema 18.- Sea V = f(a1 ; a2 ) : a1 ; a2 2 Fg, donde F es un campo arbitrario. De…nase la suma de los elementos de V elemento a elemento, y para c 2 F y (a1 ; a2 ) 2 V , de…nase c(a1 ; a2 ) = (a1 ; 0) ¿Es V un espacio vectorial bajo estas operaciones? Respuesta.- Tenemos que 0(a1 ; a2 ) = (a1 ; 0) es el vector cero, pero esto hará que el vector cero no sea único, (ya que a2 es un vector arbitrario que puede ser cero) por lo tanto V no puede ser un espacio vectorial.

2

Sub-Espacios Vectoriales

Problema 1.- Decir si las siguientes proposiciones son verdaderas o falsas. a) Si V es un espacio vectorial y W es subconjunto de V que es también un espacio vectorial, entonces W es un subespacio de V . Respuesta.- No. Se debe asegurar que el campo y las operaciones de V y W son las mismas, por ejemplo, V = R y W = Q respectivamente. Entonces W es un espacio vectorial sobre Q, pero no un espacio sobre R y por lo tanto no un subespacio de V . b) El conjunto vacío es un subespacio de todo espacio vectorial. Respuesta.- Para que exista un subespacio se debe de contener el cero, el vacio no contiene ningun elemento por lo que no es un subespacio vectorial c) Si V es un espacio vectorial distinto del espacio vectorial cero f0g, entonces V contiene un subespacio W tal que W 6= V . Respuesta.- Es posible elegir W = 0 por lo que no seria un subespacio vectorial al ser W = V d) La suma de dos subconjuntos cualesquiera de V es un subespacio de V . Respuesta.- Si V = R e) Una matriz diagonal n

n no puede tener más de n términos no nulos.

Respuesta.- Verdadero ya que puede ser la matriz 0 1 1 0 0 B C B C B0 1 0C B C B C B C C Mn n = B B C B C B C B C B C @ A 0 0 n

es decir la matriz con 1 en la diagonal y ceros en las otras entradas

f) La traza de una matriz cuadrada es el producto de sus términos que se encuentran sobre la diagonal. Respuesta.- Falso tr (A) =

X i;j

es decir es la suma de sus terminos.

aij para i = j

Problema 2.Respuesta.- (Hecho por Javier)

Problema 3.- Demostrar que (aA + bB)t = aAt + bB t para toda A; B 2 Mm

n

(F) y toda

a; b 2 F. Respuesta.Tenemos que M = aA + bB y N = aAt + bB t Entonce tenemos que Mij = aAij + bBij = Nji por lo tanto Mt = N El elemento aji de la matriz original A se convertirá en el elemento aij de la matriz transpuesta At .

Problema 4.- Demostrar que (At )t = A para toda A; B 2 Mm Respuesta.- (Hecho por Javier) Si (Aij )t = Aji y que (Aji )t = Aij entonces (Aij )t

t

= Aij

n

(F).

Problema 5.- Demostrar que A + At es simétrica para cualquier matriz cuadrada A.

Problema 6.- Demostrar que tr(aA + bB) = atr(A) + btr(B) para toda A; B 2 Mm

n

(F).

Problema 7.- Demostrar que las matrices diagonales son matrices simétricas.

Problema 8*.- Veri…car que los siguientes conjuntos son subespacios de R3 bajo las operaciones de suma y multiplicación por escalares de…nidas en R3 . a) W1 = f(a1 ; a2 ; a3 ) 2 R3 : a1 = 3a2

y a3 =

a2 g.

R.- Veremos si cumple con el Teorema 1.3 Teorema 1.3.- Sea V un espacio vectorial y W un subcojunto de V . Entonces, W es un subespacio de V si y sólo si se satisfacen las tres condiciones siguientes: [Condición 1] 0 2 W1 Veremos si se cumple cuando y a3 =

a1 = 3a2

a2

si a2 = 0 tenemos que a1 = 3 (0) = 0 y a3 =

(0) = 0

por lo tanto existe el vector cero (0; 0; 0) por lo tanto cumple con la primera condición [Condición 2] Si a + b 2 W1 siempre que a 2 W1 y b 2 W1 Sea b = (b1 ; b2 ; b3 ) = (3b2 ; b2 ; b2 ) a = (a1 ; a2 ; a3 ) = (3a2 ; a2 ; a2 ) a + b = [3a2 + 3b2 ; a2 + b2 ; ( a2 ) + ( b2 )] por lo que a + b = [3 (a2 + b2 ) ; a2 + b2 ;

(a2 + b2 )]

cumple con la segunda condición. [Condición 3] a 2 W1 siempre que

2 R y a 2 W1 .

a = (a1 ; a2 ; a3 ) = (3a2 ; a2 ; a2 ) a=

(3a2 ; a2 ; a2 )

a = (3 a2 ; a2 ; a = [3 ( a2 ) ; a2 ;

a2 ) ( a2 )]

por lo que se cumple la tercera condición del teorema. ) W1 es un subespacio de R3 b) W1 = f(a1 ; a2 ; a3 ) 2 R3 : 2a1 + a2 + 5a3 = 0g. R.- Veremos si cumple con el Teorema 1.3 Teorema 1.3.- Sea V un espacio vectorial y W un subcojunto de V . Entonces, W es un subespacio de V si y sólo si se satisfacen las tres condiciones siguientes: [Condición 1] 0 2 W1 Veremos si se cumple cuando a1 = 3a2

y a3 =

a2

si a2 = 0 tenemos que a1 = 3 (0) = 0 y a3 =

(0) = 0

por lo tanto existe el vector cero (0; 0; 0) por lo tanto cumple con la primera condición [Condición 2] Si a + b 2 W1 siempre que a 2 W1 y b 2 W1 Sea b = (b1 ; b2 ; b3 ) = (3b2 ; b2 ; b2 ) a = (a1 ; a2 ; a3 ) = (3a2 ; a2 ; a2 ) a + b = [3a2 + 3b2 ; a2 + b2 ; ( a2 ) + ( b2 )] por lo que a + b = [3 (a2 + b2 ) ; a2 + b2 ; cumple con la segunda condición.

(a2 + b2 )]

[Condición 3] a 2 W1 siempre que

2 R y a 2 W1 .

a = (a1 ; a2 ; a3 ) = (3a2 ; a2 ; a2 ) a=

(3a2 ; a2 ; a2 )

a = (3 a2 ; a2 ; a = [3 ( a2 ) ; a2 ;

a2 ) ( a2 )]

por lo que se cumple la tercera condición del teorema. ) W1 es un subespacio de R3 c) W1 = f(a1 ; a2 ; a3 ) 2 R3 : a1

4a2

a3 = 0g.

R.- Veremos si cumple con el Teorema 1.3 Teorema 1.3.- Sea V un espacio vectorial y W un subcojunto de V . Entonces, W es un subespacio de V si y sólo si se satisfacen las tres condiciones siguientes: [Condición 1] 0 2 W1 Veremos si se cumple cuando a1 = 3a2

y a3 =

a2

si a2 = 0 tenemos que a1 = 3 (0) = 0 y a3 =

(0) = 0

por lo tanto existe el vector cero (0; 0; 0) por lo tanto cumple con la primera condición [Condición 2] Si a + b 2 W1 siempre que a 2 W1 y b 2 W1 Sea b = (b1 ; b2 ; b3 ) = (3b2 ; b2 ; b2 ) a = (a1 ; a2 ; a3 ) = (3a2 ; a2 ; a2 ) a + b = [3a2 + 3b2 ; a2 + b2 ; ( a2 ) + ( b2 )]

por lo que a + b = [3 (a2 + b2 ) ; a2 + b2 ;

(a2 + b2 )]

cumple con la segunda condición. [Condición 3] a 2 W1 siempre que

2 R y a 2 W1 .

a = (a1 ; a2 ; a3 ) = (3a2 ; a2 ; a2 ) a=

(3a2 ; a2 ; a2 )

a = (3 a2 ; a2 ; a = [3 ( a2 ) ; a2 ;

a2 ) ( a2 )]

por lo que se cumple la tercera condición del teorema. ) W1 es un subespacio de R3

Problema 9.- Sean W1 , W2 , y W3 como en el ejercicio 8. Describir W1 \ W2 , W2 \ W3 , y W1 \ W3 y obsérvese que cada una es subespacio de R3 . Respuesta.- (Hecho por Javier)

Problema 10.-

Problema 11.-

Problema 12 .- Respuesta.- (Hecho por Javier)

Problema 13*.- Veri…car que para cualquier s0 2 S, W = ff 2 F (S; F) : f (s0 ) = 0g es un subespacio vectorial de F (S; F). Respuesta: Por teorema 1.3 Sea V un espacio vectorial y W un subcojunto de V . Entonces, W es un subespacio de V si y sólo si se satisfacen las tres condiciones siguientes: Condición 1: 0 2 W f (s0 ) = 0 trivialmente se veri…ca. Condición 2: veri…camos que f1 + f2 2 W siempre que f1 2 W e f2 2 W f1 ; f2 2 W si se cumple que f8f1 ; f2 2 W

F (S; F) ; 9f1 ; f2 : f1 (s0 ) = 0 y f2 (s0 ) = 0g

Tenemos que (f1 + f2 ) (s0 ) = f1 (s0 ) + f2 (s0 ) pero f1 (s0 ) = 0 y f2 (s0 ) = 0 por lo que f1 (s0 ) + f2 (s0 ) = 0 + 0 = 0 por condición 1 02W Condición 3.- cf 2 W siempre que c 2 F y f 2 W Al ser c un elemento arbotrario del cuerpo F podemos veri…car cf = 0 f8c : c = 0g por condición 1 02W

y al cumplirse las tres condiciónes W es un subespacio vectorial de F (S; F)

Problema 14 Respuesta.- (Hecho por Javier)

Problema 15

Problema 16*.-Demostrar que un subconjunto W de un espacio vectorial V es un subespacio de V si y sólo si W 6= f;g y a~x 2 W y ~x + ~y 2 W siempre que a 2 F y ~x; ~y 2 W . Respuesta: Un subconjunto W de V es un subespacio de V si y sólo si las siguientes cuatro condiciones se satisfacen: i) ~x + ~y 2 W siempre y cuando ~x 2 W y ~y 2 W (se de…ne en el resultado y es la condición b). ii) a~x 2 W siempre que a 2 F y ~x 2 W (condición c). iii) El vector cero de V pertenece a W (condición a) iv) El inverso aditivo de cada elemento de W pertenece a W . Por el Teorema 1.3.- Sea V un espacio vectorial y W un subcojunto de V . Entonces, W es un subespacio de V si y sólo si se satisfacen las tres condiciones siguientes: a) 0 2 W . b) ~x + ~y 2 W siempre que ~x 2 W e ~y 2 W a c) a~x 2 W siempre que a 2 F y ~x 2 W . Veri…camos si se cumple las condiciones del Teorema: Supongamos que W = f;g esto entra en contradicción con la primera condición a) del teorema ya que el 0 es un elemento de W y por lo tanto ya no es vacio y se cumple la primera condición. Las condiciónes b) y c) se veri…can ya que existe un elemento 00 2 W tal que ~x + 00 = ~x para todo ~x 2 W . Pero tambien ~x + 0 = ~x y por tanto 00 = 0 por el teorema 1.1 luego entonces se satisface la condición a).

Problema 17*.-Demostrar que un subconjunto W de un espacio vectorial V es un subespacio de V si y sólo si 0 2 W y a~x + ~y 2 W siempre que a 2 F y x; y 2 W . Respuesta.- (Hecho por Javier) Podemos comparar las condiciones aquí con las condiciones establecidas en el Teorema 1.3. Primero sea W un subespacio. Tenemos a~x estará contenida en W y también lo estara a~x + ~y si x e y son elementos de W . Segundo sea W es un subconjunto que satisface estas condiciones al escoger a = 1 o y = 0 obtenemos las condiciones del teorema 1.3.

Problema 18.- Sea W1 y W2 subespacios de un espacio vectorial V . Demostrar que W1 [ W2 es un subespacio de V si y sólo si W1

W2 o W2

W1 .

Problema 19*.- Sean F1 y F2 campos. Una función g 2 F(F1 ; F2 ) se llama función par si g( x) = g(x) para toda x 2 F1 y se llama función impar si g( x) =

g(x) para toda x 2 F1 .

Demostrar que el conjunto de todas las funciones pares de F(F1 ; F2 ) y el conjunto de todas las funciones impares en F(F1 ; F2 ) son subespacios de F(F1 ; F2 ).

Problema 20*.- Mostrar que F n es la suma directa de los subespacios 1. W1 = f(a1 ; : : : ; an ) 2 F n : an = 0g y

W1 = f(a1 ; : : : ; an ) 2 F n : a1 = : : : = an

1

= 0g

Problema 21.-

Problema 22.-

Problema 23.- Sea V el espacio vectorial formado por todas las matrices triangulares superiores n

n (como se de…nieron en el ejercicio 12), y sea W1 el subespacio de V formado de todas la

matrices diagonales. Demostrar que V = W1

W2 , donde W2 = fA 2 V : Aij = 0 cuando i < jg.

Problema 24.- Respuesta.- (Hecho por Javier)

Problema 25*.-Una matriz se llama antisimétrica si M t =

M . Evidentemente una matriz

antisimétrica es cuadrada. Demostrar que el conjunto de todas las matrices antisimétricas de n n es un subespacio W1 de Mn simétricas de n

n (R).

Sea W2 el subespacio de Mn

n. Demostrar que Mn

.

n (R)

= W1

W2

n (R)

consiste de las matrices

Problema 26*.- Sea W1 = fA 2 Mn de matrices simétricas de n Mn

n (F)

= W1

n (F)

: Aij = 0 cuando i

jg y sea W2 el conjunto

n. W1 y W2 son ambos subespacios de Mn

W2 . Compárense los ejercicios 25 y 26.

n (F).

Demostrar que

Problema 27.- Demostrar el corolario del Teorema 1.5.

Problema 28.- Completar la demostración del teorema 1.6

Problema 29*.- Sea W un subespacio de un espacio vectorial V sobre un campo F. Para toda v 2 V el conjunto fvg + W = fv + w : w 2 W g se llama co-conjunto de W que contiene a v. Es frecuente expresar este co-conjunto como v + W en vez de fvg + W . Demostrar lo siguiente: 1.

a) v + W es un subespacio de V si y sólo si v 2 W . Respuesta: Partimos del supuesto que v + W es un subespacio para w2W v+w =v con w=0 por lo que v2W y W 2V v+w 2v+W v

w 2v+W

(v + w) + (v

w) 2 v + W

2v = v + v 2 v + W Hipotesis : v + W es un subespacio. Si v 2 W =) v + W es un subespacio para demostrar Tecnica A = B Si y solo si A

B^B

v+W =W

A

(v 2 W )

W

v+W

w 2 W P.D w 2 v + W v) 2 v + W

w = v + (w donde (w 1.

b) v1 + W = v2 + W si y sólo si v1

v) 2 W v2 2 W .

La suma y el producto por elementos de F puede de…nirse en el conjunto S = fv + W : v 2 W g de todos los co.conjuntos de W como sigue: (v1 + W ) + (v2 + W ) = (v1 + v2 ) + W para toda v1 ; v2 2 V y a(v + W ) = av + W para toda v 2 V y a 2 F. Respuesta: v1 + W = v2 + W =) v1 | {z } Hipotesis

v2 2 W

v1 + W = fv1 + w : w 2 W g v2 + W = fv2 + w : w 2 W g

sea v1 + w 2 v1 + W = v2 + W | {z } Hipotesis

existe

w2 : v1 + w = v2 + w2 v1 v1 Si z v1

Hipotesis

v2 = v2 + w2 v2 = w2

w2W

}| { v2 2 W =) v1 + W = v2 + W

probemos que v1 + W

v2 + W

Sea v1 + w 2 v1 + W pódemos demostrar v1 + w 2 v2 + W v1 + w = v2 + (v1 + w = v2 + (v1

v2 )

v2 + w) 2 v2 + W

probemos ahora que v2 + W

v1 + W

sea v2 + w 2 v2 + W pd v2 + w 2 v1 + W v2 + w = v1 + (v2

v1 + w) 2 v1 + W

c) Demostrar que las operaciones anteriores están bien de…nidas; es decir, mostrar que si v1 +W = v10 + W y v2 + W = v20 + W , entonces

(v1 + W ) + (v2 + W ) = (v10 + W ) + (v20 + W ) 1. (a) y

a(v1 + W ) = a(v10 + W ) para toda a 2 F. d) Demostrar que el conjunto S es un espacio vectorial bajo las operaciones de…nidas anteriormente. Este espacio vectorial se llama espacio cociente de V módulo W y se expresa mediante V =W .

3

Combinaciones Lineales

Problema 4.- Para cada uno de los siguientes grupos de polinomios en P3 (R), determine si el primer polinomio puede o no ser expresado como una combinación lineal de los otros dos: a) x3

3x + 5; x3 + 2x2

x + 1; x3 + 3x2 1 0 1 0 1 0 x3 x3 B C B C B B 2C B 2C B B2x C B3x C B C C B B aB C + bB B C=B B xC B 0 C B @ A @ A @ 1 1 0

ax3

1

0

bx3

1

0

x3

1

x3

1

C C 0 C C C 3xC A 5

B C B C B C B C B C B C B2ax2 C B3bx2 C B 0 C B C+B C=B C B C B C B C B ax C B 0 C B 3xC @ A @ A @ A a b 5 (a + b) x3 = x3

(2a + 3b) x2 = 0 ax = a

3x

b=5

a+b=1 2a + 3b = 0 a= a

3

b=5

por lo que a = 3

b =

2

a + b = 1 ! 3 + ( 2) = 1 2a + 3b = 0 ! 6 a= a si es una combinación lineal

3!

6=0

(3) =

b=5!a

3

b=5

b) 4x3 + 2x2

6; x3

2x2 + 4x + 1; 3x3 6x2 + x + 4 0 1 0 1 0 1 3 B C B C B B C B C B B 2C B 6C B C + bB C = B aB B C B C B B4C B1C B @ A @ A @ 1 4

4

1

C C 2C C C 0C A 6

a + 3b = 4 2a

6b = 2

4a + b = 0 a + 4b =

6

para que 4a + b = 0 tanto a como b deben ser igual a 0. No se cumplen las desigualdades c)

2x3

11x2 + 3x + 2; x3

2x2 + 3x 1; 2x3 + x2 + 3x 2 0 1 0 1 1 0 2 1 2 B C B C C B B C B C C B B1C B 2C B 11C C = aB C + bB C B B C B C C B B 3 C B3C B3C @ A @ A A @ 2 1 2 a + 2b =

2

2a + b =

11

3a + 3b = 3 a

2b = 2

no puede ser expresado como una combinacion lineal ya que no se cumplen las igualdades. d) x3 + x2 + 2x + 13; 2x3 e) x3 f) 6x3

8x2 + 4x; x3

3x2 + 4x + 1; x3

2x2 + 3x

3x2 + x + 2; x3

1; x3

x2 + 2x + 3

2x + 3

x2 + 2x + 3; 2x3 + x2

3x + 1

Problema 5.- En Fn sea ej el vector cuya coordenada j-ésima es 1 y cuyas otras coordenadas son 0. Demostrar que fe1 ; e2 ; :::; en g genera a Fn . Demostración: Sea el vector (x1 ; x2 ; :::; xn ) 2 Fn podemos generar a (x1 ; x2 ; :::; xn ) de la siguiente forma (x1 ; x2 ; :::; xn ) = x1~e1 + x2~e2 + ::: + xn~en para ~e1 = (1; 0; :::::) ~e2 = (0; 1; :::::) :::: ~en = (0; 0; :::; 1) vemos entonces que el conjunto de vectores f~e1 ; ~e2 ; :::; ~en g genera cualquier vector (x1 ; x2 ; :::; xn ) que pertenecen a Fn f~e1 ; ~e2 ; :::; ~en g es conocida como la base canonica.

Problema 6.- Mostrar que Pn (F) puede generarse por f1; x; x2 ; :::; xn g. Se demuestra a travez de la base canonica 1 (1; 0; :::) + x (0; 1; :::) + x2 (0; 0; 1; :::) + ::: + xn (0; :::::; 0; 1) = 1; x; x2 ; :::; xn Sea el vector 1; x; x2 ; :::; xn 2 Pn (F) podemos generar a (x1 ; x2 ; :::; xn ) de la siguiente forma (x1 ; x2 ; :::; xn ) = x1~e1 + x2~e2 + ::: + xn~en para ~e1 = (1; 0; :::::) ~e2 = (0; 1; :::::) :::: ~en = (0; 0; :::; 1) vemos entonces que el conjunto de vectores f~e1 ; ~e2 ; :::; ~en g genera cualquier vector (x1 ; x2 ; :::; xn )

Problema 7.- Mostrar que 0 1 @ 0

generan a M2

2

(F)

las matrices 1 0 1 0 1 0 1 0 0 0 A;@ A;@ A 0 0 1 0 0

Generalizamos la respuesta 0 1 0 a b 1 @ A = a@ c d 0

y

0

1 0 0 @ A 0 1

de la siguiente forma 1 0 1 0 1 0 1 0 0 1 0 0 0 0 A + b@ A + c@ A + d@ A 0 0 0 1 0 0 1

0 1 0 1 0 1 0 1 0 1 a b a 0 0 b 0 0 0 0 @ A=@ A+@ A+@ A+@ A c d 0 0 0 0 c 0 0 d 1 0 1 0 a b a b A @ A=@ c d c d 8a; b; c; d 2 F

Problema 8.-

Problema 9.- Para cualquier elemento x en un espacio vectorial, demostrar que L (fxg) = fax : a 2 F g. Interpretar este resultado geométricamente en R3 .

4

Dependencia e Independencia Lineal

Problema 1.- Determinar si las siguientes expresiones son falsas o verdaderas. a) Si S es un conjunto linealmente dependiente, cada elemento de S es una combinación lineal de otros elementos de S. b)Cualquier conjunto que contenga al vector cero es linealmente dependiente c) El conjunto vacío es linealmente dependiente. d) Subconjuntos de conjuntos linealmente dependientes son linealmente dependientes. e) Subconjuntos de conjuntos linealmente independientes son linealmente independientes. f) Si x1 ; x2 ; :::; xn son linealmente independientes y a1 x1 + a2 x2 + ::: + an xn = 0, todos los escalares ai son iguales a cero.

Problema 6.- Demostrar que fx; yg es linealmente dependiente si y sólo si x o y es un múltiplo del otro.

Problema 11.- Sea S = fx1 ; x2 ; :::; xn g un conjunto …nito de vectores. Demostrar que S es linealmente dependiente si y sólo si x1 = 0, o xk+1 2 L (fx1 ; x2 ; :::; xk g) para alguna k < n.

5

Bases y Dimensión

Problema 2.- Determinar cuáles de los siguientes conjuntos son bases para R3 . (a) f(1; 0; 1); (2; 5; 1); (0; 4; 3)g (b) f(2; 4; 1); (0; 3; 1); (6; 0; 1)g (e) f(1; 2; 1); (1; 0; 2); (2; 1; 1)g (d) f( 1; 3; 1); (2; 4; 3); ( 3; 8; 2)g (e) f(1; 3; 2); ( 3; 1; 3); ( 2; 10; 2)g

Problema 7.- Los vectores x1 = f2; 3; 1), x2 = (1; 4; 2), x3 = ( 8; 12; 4), x4 = (1; 37; 17), y x5 = ( 3; 5; 8) generan a R3 . Encontrar un subconjunto de fx1 ; x2 ; x3 ; x4 ; x5 g que sea una base para R3 .

Problema 12.- Sean W1 y W2 subespacios de un espacio vectorial V de dimensiones m y n, respectivamente, donde m

n. Demostrar que dim(W1 \ W2 )

n y dim(W1 + W2 )

ejemplos de subespacios de R3 donde cada desigualdad se convierta en igualdad.

m + n. Dar

Problema 17.- El conjunto de todas las matrices de n subespacio W de Mn de W ?

n (F ).

n cuya traza es igual a cero es un

(Ver Ejemplo 1.1.) Encontrar una base para W . ¿Cuál es la dimensión

Problema 22.- Sea W un subespacio de un espacio vectorial dimensionalmente …nito V . Determinar la dimensión del espacio vectorial V =W , el espacio cociente de V módulo de W .

6

Transformaciones Lineales Espacios Nulos y Rangos

Problema 1.- Decir si las siguientes a…rmaciones son verdaderas o falsas. De aquí en adelante, V y W son espacios vectoriales dimensionalmente …nitos (sobre F ) y T es una función de V en W . a) Si T es lineal, entonces T conserva las sumas y productos por escalalares. b) Si T (x + y) = T (x) + T (y) entonces T es lineal. c) Tes uno- a-uno si y sólo si N (T ) = f0g. d) Todas las proyecciones deben ser lineales. e) Si T es lineal, entonces T (0v ) = 0w . f) Si T es lineal, entonces nulidad(T ) + rango(T ) = dim(W ). g) Si T es lineal, entonces lleva subconjuntos linealmente independientes de V a subconjuntos linealmente independientes de W . h) Si T; U : V ! W son lineales y concuerdan en una base de V , entonces T = U . i) Dados x1 ; x2 2 V y y1 ; y2 2 W , existe una transformación lineal T : V ! W tal que T (x1 ) = y1 y T (x2 ) = y2

Problema 6.- Demostrar que T es una transformación lineal y encontrar bases para N ( T) y R ( T). Luégo, calcular la nulidad y el rango de T y veri…car el Teorema 2.3. Finalmente, emplear los teoremas adecuados de esta sección para determinar si T es uno-a-uno o sobreyectiva para T : Mn

n

! F ; T (A) = tr(A). Recuérdese que tr (A) =

n X i=1

.

Aii :

Problema 11.- Demostrar que existe una transformación lineal T : R2 ! R3 tal que T (1; 1) = f1; 0; 2) y T (2; 3) = (1; 1; 4) . ¿Qué es T (8; 11)?

Problema 16.- Sean V y W espacios vectoriales dimensionalmente …nitos y T : V ! W lineal. (a) Demostrar que si dim(V ) < dim(W ), entonces T no puede ser sobreyectiva. (b) Demostrar que si dim(V ) > dim(W ), entonces T no puede ser unoa-uno.

Problema 21.- Sean V y W espacios vectoriales y sea T : V ! W lineal. Sea fy1 ; :::; yk g un subconjunto linealmente independiente de R(T ). Si S = fx1 ; :::; xk g se selecciona de tal manera que T (xi ) = yi para i = 1; :::; k, demostrar que S es linealmente independiente.

Problema 26.- Una función T : V ! W entre los espacios vectoriales V y W se llama aditiva si T (x + y) = T (x) + T (y) para toda x; y 2 V . Demostrar que si V y W son espacios vectoriales sobre el campo de los números racionales, entonces cualquier función aditiva de V en W es una transformación lineal.

7

REPRESENTACION MATRICIAL DE UNA TRANSFORMACION LINEAL

Problema 4.- De…nase T : M2 2 (R) ! P2 (R) mediante

Sea

y

0

T@

a b c d

1

A = (a + b) + (2d)x + bx2 :

80 19 1 0 1 0 1 0 < 1 0 0 0 = 0 0 0 1 A : A;@ A;@ A;@ @ : 0 0 0 1 ; 1 0 0 0 = 1; x; x2

Calcular [T ] :

Problema 9.- Sea V un espacio vectorial con la base ordenada

= fx1 ; :::; xn g. De…nase a

x0 = 0. De acuerdo con el Teorema 2.7 debe existir una transformación lineal T : V ! V de…nida mediante T (xj ) = xj + xj 1 , para j = 1; :::; n. Calcular [T ] .

Problema 14.- Sean V y W espacios vectoriales y sea S subconjunto de V . Defínase S 0 = fT 2 L (V; W ) : T (x) = 0 para toda x 2 Sg Demostrar (a) S 0 es un subespacio de L (V; W ). (b) Si S1 y S2 son subconjuntos de V y S1

S2 , entonces S20

S10 .

(c) Si V1 y V2 son subespacios de V , entonces (V2 + V2 )0 = V10 \ V20 .

8

INVERTIBILIDAD E ISOMORFISMOS

Problema 4.- Demostrar que si A es invertible y AB = 0, entonces B = 0.

Problema 9.- Demostrar que la transformación de…nida en el Ejemplo 28 es uno-a-uno.

Problema 14.- Sea B una matriz invertible de n (A) = B 1 AB. Demostrar que

es un isomor…smo.

n. De…nase

: Mn

n (F )

! Mn

n (F )

por

Problema 19.- Sean V y W espacios vectoriales dimensionalmente …nitos con bases ordenadas = fx1 ; :::; xn g y

= fy1 ; :::; ym g, respectivamente. Por el Teorema 2. 7 existe una transformación

lineal Tij : V ! W tal que

yi 0

Tij (xk ) = Demostrar primero que fTij : 1 E ij una matriz de m

i

m; 1

j

si k = j si k 6= j

ng es una base para L (V; W ). Entonces, sea

n con 1 en el renglón i-ésimo y la columna j-ésima y 0 en cualquier otro

lado, y demostrar que [Tij ] = E ij : De nuevo, por el Teorema 2.7 existe una transformación lineal : L (V; W ) ! Mn tal que (Tij ) = E ij : Demostrar que

es un isomor…smo.

n (F )

9

MATRIZ DE CAMBIO DE COORDENADAS

Problema 3.- Para cada uno de los siguientes pares de bases ordenadas encontrar la matriz de cambio de coordenadas que transforma las coordenadas de de . a)

y 0

0

para P2 (R),

en coordenadas

Problema 8.- Demostrar que si A y B son matrices semejantes de n tr(B). Sugerencia: Utilizar el Ejercicio 12 de la Sección 2.3.

n, entonces tr(A) =

10

OPERACIONES ELEMENTALES EN MATRICES

Problema 1.- Decir si las siguientes a…rmaciones son verdaderas o falsas.

Problema 6.- Completar la demostración del Teorema 3.1.

Problema 11.- Demostrar que cualquier operación elemental con renglones [columnas] del tipo 3 puede obtenerse restando un múltiplo de algún renglón [columna] de otro renglón [columna].

11

RANGO DE UNA MATRIZ

Problema 5.- Para cada una de las siguientes matrices calcular el rango y la inversa, si ésta existe. 1.

2.

3.

0 0

@

0 B B B1 @ 1 0

1 2 1 1

2 1 4

1 A 4

1

C C 1C A 5

1 2 1 B C B C B 1 1 2C @ A 1 0 1 1

Problema 10.- Demostrar el Teorema 3.5 para el caso en que A es una matriz de m

1.

Problema 15.- Si A y B son matrices de n renglones, demostrar que M (AjB) = (M AjM B) para cualquier matriz M de m

n.

12

SISTEMAS DE ECUACIONES LINEALES: ASPECTOS TEORICOS

Problema 4.-

Problema 9.- Demostrar o dar un contraejemplo al siguiente enunciado: Si la matriz de coe…cientes de un sistema de m ecuaciones lineales con n incógnitas tiene rango m, entonces el sistema tiene una solución.

Problema 14.-

Problema 14.-

Problema 14.-

Problema 14.-

Sea W un subespacio de un espacio vectorial dimensionalmente …nito V . Determinar la dimensión del espacio vectorial

V , W

el espacio cociente de V módulo W . Justi…que su respuesta.