POTENCIAS

Capítulo 11 494 Análisis de potencia de ca 11.29 Calcule el valor eficaz de la onda de corriente de la figura 11.60 y

Views 697 Downloads 5 File size 115KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Capítulo 11

494

Análisis de potencia de ca

11.29 Calcule el valor eficaz de la onda de corriente de la figura 11.60 y la potencia promedio suministrada a un resistor de 12- cuando esa corriente circula por el resistor.

11.33 Determine el valor rms de la señal de la figura 11.64. i(t) 5

i(t) 10 0 0

5

10

15

20

25

30

t

−10

1

2

3

4

5

6

7

8

t

9 10

Figura 11.64 Para el problema 11.33. 11.34 Halle el valor eficaz de f(t) definida en la figura 11.65.

Figura 11.60 Para el problema 11.29.

f (t) 6

11.30 Calcule el valor rms de la onda que se presenta en la figura 11.61.

–1

0

1

2

3

4

t

5

Figura 11.65 Para el problema 11.34.

v (t) 2 0 −1

2

4

6

8

10

t

11.35 Un ciclo de la onda periódica de tensión se representa gráficamente en la figura 11.66. Halle el valor eficaz de la tensión. Note que el ciclo empieza en t  0 y termina en t  6 s.

Figura 11.61 Para el problema 11.30.

v (t) 30

11.31 Halle el valor rms de la señal que aparece en la figura 11.62.

20 v (t) 2

10

0

1

2

3

4

5

t 0

1

2

3

4

5

6

t

Figura 11.66 Para el problema 11.35.

–4

Figura 11.62 Para el problema 11.31.

11.36 Calcule el valor rms de cada una de las siguientes funciones:

11.32 Obtenga el valor rms de la onda de corriente que se muestra en la figura 11.63.

a) i(t)  10 A

b) v(t)  4  3 cos 5t V

c) i(t)  8  6 sen 2t A d) v(t)  5 sen t  4 cos t V 11.37 Calcule el valor rms de la suma de estas tres corrientes:

i(t) 10t 2

i1  8,

i2  4 sen(t  10°),

i3  6 cos(2t  30°) A

10

Sección 11.5 Potencia aparente y factor de potencia 0

1

Figura 11.63 Para el problema 11.32.

2

3

4

5

t

11.38 En relación con el sistema de potencia de la figura 11.67, halle: a) la potencia promedio, b) la potencia reactiva, c) el factor de potencia. Tome en cuenta que 220 V es un valor rms.

Problemas

495

11.43 La tensión aplicada a un resistor de 10- es

+ 220 V, 60 Hz −

v(t)  5  3 cos(t  10)  cos(2t  30) V 124 0° Ω

a) Calcule el valor rms de la tensión.

20 − j25 Ω

b) Determine la potencia promedio disipada en el resistor.

90 + j80 Ω

11.44 Halle la potencia compleja provista por vs a la red de la figura 11.69. Sea vs  100 cos 2 000t V.

Figura 11.67 Para el problema 11.38. 30 Ω

11.39 Un motor de ca con impedancia ZL  4.2  j3.6  se alimenta con una fuente de 220 V a 60 Hz. a) Halle fp, P y Q. b) Determine el capacitor requerido para conectarse en paralelo con el motor de manera que el factor de potencia se corrija y se iguale a la unidad. 11.40 Una carga que consta de motores de inducción toma 80 kW de una línea de potencia de 220 V a 60 Hz con fp atrasado de 0.72. Halle el valor del capacitor requerido para elevar el fp a 0.92. 11.41 Obtenga el factor de potencia de cada uno de los circuitos de la figura 11.68. Especifique si cada factor de potencia está adelantado o atrasado.

40 F

20 Ω ix

vs

+ −

60 mH

+ −

4ix

Figura 11.69 Para el problema 11.44.

11.45 La tensión entre los extremos de una carga y la corriente a través de ella están dadas por v(t)  20  60 cos 100t V i(t)  1  0.5 sen 100t A Halle:



j5 Ω

a) los valores rms de la tensión y de la corriente b) la potencia promedio disipada en la carga

− j2 Ω

− j2 Ω

a) − j1 Ω

a) V  220l30 V rms, I  0.5l60 A rms





j2 Ω

11.46 En relación con los siguientes fasores de tensión y corriente, calcule la potencia compleja, la potencia aparente, la potencia real y la potencia reactiva. Especifique si el fp está adelantado o atrasado.

j1 Ω

b) V  250l10 V rms, I  6.2l25 A rms c) V  120l0 V rms, I  2.4l15 A rms d) V  160l45 V rms, I  8.5l90 A rms

b)

Figura 11.68 Para el problema 11.41.

11.47 En cada uno de los siguientes casos, halle la potencia compleja, la potencia promedio y la potencia reactiva: a) v(t)  112 cos(t  10) V, i(t)  4 cos(t  50) A

Sección 11.6 Potencia compleja 11.42 Una fuente de 110 V (rms) a 60 Hz se aplica a una impedancia de carga Z. La potencia aparente que entra a la carga es de 120 VA con factor de potencia atrasado de 0.707.

b) v(t)  160 cos 377t V, i(t)  4 cos(377t  45) A c) V  80l60 V rms, Z  50l30  d) I  10l60 A rms, Z  100l45  11.48 Determine la potencia compleja en los siguientes casos:

a) Calcule la potencia compleja.

a) P  269 W, Q  150 VAR (capacitiva)

b) Encontrar la corriente rms suministrada a la carga.

b) Q  2 000 VAR, fp  0.9 (adelantado)

c) Determine Z.

c) S  600 VA, Q  450 VAR (inductiva)

d) Suponiendo que Z  R  jL halle los valores de R y L.

d) Vrms  220 V, P  1 kW, 0Z 0  40  (inductiva)

Capítulo 11

496

Análisis de potencia de ca

11.49 Halle la potencia compleja en los siguientes casos:

I

a) P  4 kW, fp  0.86 (atrasado)

A

+

b) S  2 kVA, P  1.6 kW (capacitiva) c) Vrms  208l20 V, Irms  6.5l50 A

120 30° V

a) P  1 000 W, fp  0.8 (adelantado), Vrms  220 V b) P  1 500 W, Q  2 000 VAR (inductiva), Irms  12 A S 44500 500 l60 VA, V  120l45 V c) S 

C



d) Vrms  120l30 V, Z  40  j60  11.50 Obtenga la impedancia total en los siguientes casos:

B

Figura 11.72 Para el problema 11.53.

Sección 11.7 Conservación de la potencia de ca 11.54 En la red de la figura 11.73 halle la potencia compleja absorbida por cada elemento.

11.51 Para el circuito completo de la figura 11.70, calcule: − j3 Ω

a) el factor de potencia b) la potencia promedio provista por la fuente

+ −

8 −20° V

j5 Ω



c) la potencia reactiva d) la potencia aparente

Figura 11.73 Para el problema 11.54.

e) la potencia compleja

11.55 Halle la potencia compleja absorbida por cada uno de los cinco elementos del circuito de la figura 11.74.

2Ω − j5 Ω 16 45° V

+ −

j6 Ω

10 Ω



Figura 11.70 Para el problema 11.51.

− j20 Ω

40 0° V rms

+ −

20 Ω

+ −

50 90° V rms

Figura 11.74 Para el problema 11.55.

11.52 En el circuito de la figura 11.71, el dispositivo A recibe 2 kW con fp atrasado de 0.8, el dispositivo B recibe 3 kVA con fp adelantado de 0.4, mientras que el dispositivo C es inductivo y consume 1 kW y recibe 500 VAR.

11.56 Obtenga la potencia compleja provista por la fuente del circuito de la figura 11.75.



2 30° Α I

A

− j2 Ω



Figura 11.75 Para el problema 11.56.

+ B

j4 Ω



a) Determine el factor de potencia del sistema completo. b) Halle I dado que Vs  120l45 V rms.

Vs

j10 Ω

C



Figura 11.71 Para el problema 11.52.

11.57 En el circuito de la figura 11.76 halle las potencias promedio, reactiva y compleja suministradas por la fuente dependiente de corriente. 4Ω

11.53 En el circuito de la figura 11.72, la carga A recibe 4 kVA con fp adelantado de 0.8. La carga B recibe 2.4 kVA con fp atrasado de 0.6. El bloque C es una carga inductiva que consume 1 kW y recibe 500 VAR. a) Determine I. b) Calcule el factor de potencia de la combinación.

24 0° V

+ −



Figura 11.76 Para el problema 11.57.

− j1 Ω + Vo −



j2 Ω

2Vo

Problemas

497

11.58 Obtenga la potencia compleja suministrada a la resistencia de 10 k en la figura 11.77, abajo.

500 Ω

− j3 kΩ

Io

+ −

0.2 0° V rms

20Io

j1 kΩ

4 kΩ

10 kΩ

Figura 11.77 Para el problema 11.58.

11.59 Calcule la potencia reactiva en el inductor y el capacitor del circuito de la figura 11.78.

11.61 Dado el circuito de la figura 11.80 halle Io y la potencia compleja total suministrada.

Io j30 Ω

50 Ω

100 90° V 240 0° V

1.2 kW 0.8 kVAR (cap)

+ −

− j20 Ω

+ −

2 kVA

4 kW

fp adelantado 0.707

fp atrasado 0.9

40 Ω

4 0° A

Figura 11.80 Para el problema 11.61.

Figura 11.78 Para el problema 11.59.

11.62 En relación con el circuito de la figura 11.81 halle Vs. 11.60 En alusión al circuito de la figura 11.79 halle Vo y el factor de potencia de entrada.

0.2 Ω

j0.04 Ω

0.3 Ω

j0.15 Ω +

Vs + 6 0° A rms

20 kW fp atrasado 0.8

16 kW fp atrasado 0.9

Vo −

+ −

10 W

15 W

fp atrasado 0.9

fp adelantado 0.8



Figura 11.81 Para el problema 11.62.

Figura 11.79 Para el problema 11.60. 11.63 Halle Io en el circuito de la figura 11.82.

Io

220 0° V

+ −

12 kW

16 kW

20 kVAR

fp adelantado 0.866

fp atrasado 0.85

fp atrasado 0.6

Figura 11.82 Para el problema 11.63.

120 V rms

Capítulo 11

498

Análisis de potencia de ca

11.64 Determine Is en el circuito de la figura 11.83 si la fuente de tensión suministra 2.5 kW y 0.4 kVAR (adelantada).

11.68 Calcule la potencia compleja suministrada por la fuente de corriente en el circuito RLC en serie de la figura 11.87.

R 8Ω + −

Is

Io cos t

120 0° V

j12 Ω

Sección 11.8 Corrección del factor de potencia

11.65 En el circuito de amplificador operacional de la figura 11.84, vs  4 cos 104t V. Halle la potencia promedio suministrada al resistor de 50 k. 100 kΩ

a) ¿Cuál es el factor de potencia? b) ¿Cuál es la potencia promedio disipada?

50 kΩ

1 nF

120 V rms 60 Hz

Figura 11.84 Para el problema 11.65. 11.66 Obtenga la potencia promedio absorbida por el resistor de 6 k en el circuito del amplificador operacional de la figura 11.85. 2 kΩ 4 kΩ

11.69 En el circuito de la figura 11.88.

c) ¿Cuál es el valor de la capacitancia que dará por resultado un factor de potencia unitario al conectarse a la carga?

+ −

+ −

C

Figura 11.87 Para el problema 11.68.

Figura 11.83 Para el problema 11.64.

vs

L

j4 kΩ

+ −

C

Z = 10 + j12 Ω

Figura 11.88 Para el problema 11.69. 11.70 Una carga de 880 VA a 220 V y 50 Hz tiene un factor de potencia atrasado de 0.8. ¿Qué valor de capacitancia en paralelo corregirá el factor de potencia de la carga para acercarlo a la unidad?

j3 kΩ − +

4 45° V + −

6 kΩ − j2 kΩ

Figura 11.85 Para el problema 11.66. 11.67 En relación con el circuito de amplificador operacional de la figura 11.86, calcule: a) la potencia compleja provista por la fuente de tensión b) la potencia promedio en el resistor de 12  10 Ω



0.6 sen(2t + 20°) V + −

Figura 11.86 Para el problema 11.67.

11.72 Dos cargas conectadas en paralelo toman un total de 2.4 kW, con fp atrasado de 0.8, de una línea a 120 V rms y 60 Hz. Una de las cargas absorbe 1.5 kW con fp atrasado de 0.707. Determine: a) el fp de la segunda carga, b) el elemento en paralelo requerido para corregir el fp de las dos cargas y convertirlo en atrasado de 0.9. 11.73 Una alimentación de 240 V rms a 60 Hz abastece a una carga de 10 kW (resistiva), 15 kVAR (capacitiva) y 22 kVAR (inductiva). Halle:

0.1 F 3H

11.71 Tres cargas se conectan en paralelo con una fuente 120l0 V rms. La carga 1 absorbe 60 kVAR con fp atrasado = 0.85, la carga 2 absorbe 90 kW y 50 kVAR adelantada y la carga 3 absorbe 100 kW con fp = 1. a) Halle la impedancia equivalente. b) Calcule el factor de potencia de la combinación en paralelo. c) Determine la corriente suministrada por la fuente.

− +

a) la potencia aparente b) la corriente tomada de la alimentación 12 Ω

c) la capacidad nominal de kVAR y la capacitancia requeridas para mejorar el factor de potencia a atrasado de 0.96 d) la corriente tomada de la alimentación en las nuevas condiciones de factor de potencia

Problemas

11.74 Una fuente de 120 V rms a 60 Hz alimenta a dos cargas conectadas en paralelo, como se observa en la figura 11.89.

499

11.77 ¿Cuál es la lectura del wattímetro en la red de la figura 11.92?

a) Halle el factor de potencia de la combinación en paralelo.



4H

±

b) Calcule el valor de la capacitancia conectada en paralelo que elevará el factor de potencia a la unidad.

± 120 cos 2t V + −

Carga 1 24 kW fp atrasado = 0.8

0.1 F

15 Ω

Figura 11.92 Para el problema 11.77.

Carga 2 40 kW fp atrasado = 0.95

11.78 Halle la lectura del wattímetro del circuito que aparece en la figura 11.93.

Figura 11.89 Para el problema 11.74. 10 Ω



±

1H

±

11.75 Considere el sistema de potencia que se muestra en la figura 11.90. Calcule: a) la potencia compleja total

20 cos 4t V + −

1 12



Figura 11.93 Para el problema 11.78.

b) el factor de potencia

11.79 Determine la lectura del wattímetro del circuito de la figura 11.94.

+ 240 V rms, 50 Hz −

20 Ω i

80 − j50 Ω 40 Ω

120 + j70 Ω

10 mH

± ±

60 + j0 10 cos100t

Figura 11.90 Para el problema 11.75.

+ −

2 i

500 F

Figura 11.94 Para el problema 11.79.

Sección 11.9 Aplicaciones

11.80 El circuito de la figura 11.95 representa un wattímetro conectado a una red de ca.

11.76 Obtenga la lectura del wattímetro del circuito de la figura 11.91.

a) Halle la corriente de carga. b) Calcule la lectura del wattímetro.

4 Ω − j3 Ω

±

WM

± 12 0° V + −

j2 Ω

Figura 11.91 Para el problema 11.76.

F



3 30° A

110 V

+ −

Figura 11.95 Para el problema 11.80.

Z L = 6.4 Ω fp = 0.825