Orificio en Pared Delgada

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica INGENIERIA DE EJECUCION EN

Views 86 Downloads 5 File size 717KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

UNIVERSIDAD DE SANTIAGO DE CHILE

FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica

INGENIERIA DE EJECUCION EN MINAS GUIA DE LABORATORIO

ASIGNATURAS MECANICA DE FLUIDOS EXPERIENCIA “ORIFICIO EN PARED DELGADA”

1

TITULO:

“ORIFICIO EN PARED DELGADA”

1. OBJETIVOS DEL EXPERIMENTO El objetivo general consiste en estudiar las características de la salida de un flujo por un orificio de pared delgada vertical. Para lo cual se aplican las ecuaciones (Bernoulli y continuidad) para determinar lo siguiente:

2.



Los distintos coeficientes: caudal, velocidad, area que hacen que el valor teórico varíe del real, además del número de Reynolds, la pérdida de energía.



Analizar y graficar dichos coeficientes en función del caudal y la altura de carga.



El tiempo de vaciado del estanque.

BASE CONCEPTUAL Y EXPERIMENTAL Orificio en un estanque Un orificio puede utilizarse para medir el caudal de salida de un depósito o a través de una tubería. Un orificio en un estanque puede estar ubicado en la pared o en el fondo. Es una abertura usualmente redonda, por la cual fluye un fluido, el area del orificio es el area de la abertura. En el orificio el chorro se contrae a lo largo de una corta distancia de alrededor de medio diámetro aguas debajo de la abertura. La porción del flujo que se aproxima a lo largo de la pared no puede hacer un giro de ángulo recto en la abertura y, por lo que, mantiene una componente de velocidad radial que reduce el area del chorro. El area de la sección transversal donde la contracción es máxima se conoce como la vena contracta. Las líneas de corriente en esta sección a través del chorro son paralelas y la presión es atmosférica. La altura h sobre el orificio se mide desde el centro de este hasta la superficie libre. Se supone que la cabeza se mantiene constante. La ecuación de Bernoulli desde el punto 1 en la superficie libre hasta el centro de la vena contracta, punto 2, con la presión atmosférica local como dato y el punto 2 como el dato de elevación, despreciando las pérdidas, se escribe como:

V12 P1 V2 P + + z1 = 2 + 2 + z 2 2g g 2g g reemplazando los valores dados se tiene:

V2 = 2gh = V Esta es únicamente la velocidad teórica, debido a que se han despreciado las pérdidas entre los dos puntos. La relación entre la velocidad real V0 y la teórica V se conoce como coeficiente de velocidad CV, es decir

CV =

V0 V

El caudal real Q0 del orificio es el producto de la velocidad real en la vena contracta y el area del chorro, como esta última es “difícil” de medir directamente se procede a calcular el volumen del fluido 2

respectivo y el tiempo que fluye este. La relación entre el area del chorro A 0 en la vena contracta con respecto al area del orificio A se simboliza mediante otro coeficiente, conocido como el coeficiente de contracción CA, es decir

CA =

A0 A

el area en la vena contracta está dada por A0 = CAA. Luego el caudal real

queda

Q0 = C V C A A 2gh Se acostumbra combinar los dos coeficientes en un coeficiente de descarga CQ como CQ = CVCA No hay manera de calcular las pérdidas entre los puntos 1 y 2, por ende C V se debe determinar experimentalmente. Este varía desde 0.95 hasta 0.99. El número de Reynolds está definido por

Re =

V0D n

donde

V0 = velocidad real D = diámetro del orificio n = viscosidad cinemática del fluido.

Para poder obtener n de tabla se necesita medir la temperatura del fluido (agua) la cual se debe realizar en la probeta. Se debe buscar la relación entre Re y los coeficientes Método de la trayectoria Midiendo la posición de un punto en la trayectoria del chorro libre aguas debajo de la vena contracta, es posible determinar la velocidad real V0 si se desprecia la resistencia del aire. La componente x de la velocidad no cambia, por consiguiente, V0 t = x0, en donde t es el tiempo para que una partícula de fluido viaje desde la vena contracta hasta el punto 3. El tiempo para que una partícula caiga una distancia y0 bajo la acción de la gravedad cuando no tiene velocidad inicial en esa dirección se expresa mediante la relación y0 = gt2/2. Después de eliminar t de ambas relaciones se tiene:

V0 =

g V x 0 , como se conoce V también es conocida la relación CV = 0 . 2y0 V

Tiempo real de vaciado del estanque El tiempo de vaciado del estanque consiste en determinar cuánto se demora la columna de liquido al interior del estanque en bajar de una altura superior a otra inferior, con el fin de determinar finalmente el tiempo en que dicho estanque se vaciará completamente. El procedimiento de cálculo consiste en fijar una medida inicial 1 (H, ver figura anterior) e ir variando la altura (Y) en tramos sucesivos 3

decrecientes unas 7 u 8 medidas para así obtener una serie de valores, los cuales permitirán obtener el tiempo buscado a través de la siguiente fórmula:

t real =

2A est

�H - Y � � CA A orif 2g �

donde

Aest =

area del estanque.

Aorif =

area geométrica del orificio.

CA

=

coeficiente de contracción.

H

=

altura fija inicial.

Y

=

altura variable.

El tiempo obtenido en forma experimental (cronometro) debe ser comparado con el obtenido de la fórmula.

3.

EQUIPOS E INSTRUMENTOS A UTILIZAR 

Equipo orificio en pared delgada



Cronometro



Probeta de 2 litros

4



Llave de boca auxiliar



Termómetro digital

4. PROCESAMIENTO DE DATOS Determinación de coeficientes CA, CV y CQ. Para obtener los coeficientes se deben registrar los siguientes datos y completar la tabla a continuación    

Temperatura del agua Desfase de eje x, X’ Distancia Y Diámetro orificio de salida

: ………. : ………. : ………. : ……….

(ºC) (cm) (cm) (cm)

Tabla anexa 5

Medición

h (cm)

volumen (cm3)

Xi (cm)

t (s)

1 2 … 10 con  h :  Xi :  t :

altura del nivel de agua en el estanque. distancia alcanzada por el chorro de agua desde el origen. tiempo en que se tomó la muestra de volumen de agua.

La tabla con los coeficientes y variables a considerar como cálculos posteriores se deben realizar según las indicaciones del profesor durante el desarrollo de la experiencia.

Cálculo del tiempo de vaciado del estanque. Datos necesarios:     

Diámetro orificio (d) : …… Diámetro de estanque (D) : …… Coeficiente de contracción promedio Altura de carga fija (H) : …… Altura de carga variable “i” (Yi) : ……

(cm)  (cm)  : …… (cm) (cm)

Area del orificio (Aorif) = …….. (cm2) Area del estanque (Aest) = …….. (cm2)

Tabla anexa 6

con  

treal : texp :

tiempo obtenido de fórmula. tiempo experimental, registrado con cronometro.

Se debe presentar un gráfico donde se muestre la variación del tiempo de vaciado en función de la altura de carga.

Medición

H (cm)

Yi (cm)

H - Yi (cm)

treal (s)

texp (s)

1 2 … 8

5. Preguntas *Aplique el método de la trayectoria y determine la velocidad del chorro *Desarrolle (derive) la ecuación de vaciado de estanque 6. BIBLIOGRAFIA  Victor Streeter, “Mecánica de fluidos”.  Claudio Mataix, “Mecánica de fluidos”.

7