ETNOMATEMATICA

ÍNDICE 1. INTRODUCCIÓN…………………………………………………………………… 2. LA ARQUEOLOGÍA COMO CIENCIA SOCIAL……………………………………… 3. ETNOMATEMÁTIC

Views 198 Downloads 8 File size 140KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

ÍNDICE 1. INTRODUCCIÓN……………………………………………………………………

2. LA ARQUEOLOGÍA COMO CIENCIA SOCIAL………………………………………

3. ETNOMATEMÁTICA, MATEMÁTICA, EDUCACIÓN……………………………

4. EL TEOREMA MATEMÁTICO DE LA PUERTA DEL SOL…………………………

5. SÍMBOLOS NUMERALES……………………………………………………………

6. CIENCIA PRECOLOMBINA Y MITOLOGÍA…………………………………………

7. ALGUNOS ELEMENTOS GEOMÉTRICOS PRESENTES………………………

8. EL TRABAJO EN LÍTICA………………………………………………………………

9. EVIDENCIA DE CONOCIMIENTOS MATEMÁTICOS………………………………

10. CONCLUSIONES……………………………………………………………………

11. BIBLIOGRAFÍA………………………………………………………………………

ETNOMATEMÁTICA

INTRODUCCIÓN En esta última década la Etnomatemática se ha presentado, como una nueva corriente del saber matemático, intentando rescatar los valores que el pueblo y su cultura tienen. Esta corriente es vista por algunos con cierto escepticismo y por otros como la nueva alternativa para el aprendizaje de la Matemática. Después de leer a los más prominentes impulsores hemos llegado al convencimiento de que tienen razón, pero, nosotros consideramos que antes que la propia Etno matemática está la Etno geometría como la antesala de la primera. En el medio, sin que se perciba como excepción, el estudio de la cultura precolombina, ha estado en manos de historiadores, antropólogos, sociólogos, en fin de profesionales de las ciencias sociales; el concurso de los profesionales en las llamadas ciencias exactas ha sido exiguo. No cabe duda de que la asunción en forma interdisciplinaria, de la problemática en mención, traería consigo un abordaje integral, y se convertiría en medio eficaz para una mejor definición de nuestra identidad como pueblo latinoamericano. En el siglo XV, Europa es concebida como el centro del mundo, y como tal depositaria de todo lo bueno, lo bello, lo justo, lo santo; en otras palabras de lo humano; consecuencia inmediata de esta convicción, la constituye el hecho de que los españoles llegaron a América como portavoces de un imperio, dispuestos a imponer su gran "Cultura Española" y en su afán de imponer, perpetuar y hasta legitimar su dominio, arrasaron la cultura amerindia. La herencia de este ímpetu conquistador es abundante, a ella es atribuible el inconsciente menosprecio que muchos costarricenses de la actualidad poseen hacia lo que fuera su acontecer ancestral. El científico, en su condición de tal, no escapa a este fenómeno, se postra aunque sea inconscientemente - ante la ciencia Occidental y su método científico,

desconoce la existencia de una ciencia precolombina y soslaya involuntariamente la investigación de la misma. Es criterio del matemático colombiano Víctor Albis que "las estrechas relaciones existentes entre los orígenes del pensamiento matemático y la ornamentación artística de objetos y utensilios es algo que aún no se ha explorado en nuestras culturas aborígenes, a pesar de su riqueza y variedad artística reconocidas y del hecho de que distintos tipos de ornamentos utilizados pueden considerarse con todo derecho como una parte de las matemáticas desarrolladas por estas civilizaciones". Desde esta óptica, partiendo de la premisa de que existe ciencia precolombina y considerando que no hay historia costarricense que la rescate, se hace necesario recurrir a la evidencia arqueológica para su descubrimiento. La justificación de la existencia de un quehacer científico precolombino y una aproximación cuantitativa de su alcance, es el objeto del presente trabajo; para lo cual se pondrán de manifiesto distintos elementos geométricos no elementales, presentes en rasgos arqueológicos costarricenses.

CAPITULO I LA ARQUEOLOGÍA COMO CIENCIA SOCIAL La evolución de la arqueología no se diferencia en mucho del camino seguido en otras latitudes. Al igual que en los restantes países del Continente Americano, se inicia en un clima colonialista, en el que los primeros acercamientos se dan con el arribo del europeo en el siglo XVI. Ha pasado del estado de interpretaciones e influencias que obviaron el contexto arqueológico, el interés por el estilo y las formas, en especial de la cerámica, hasta la aprehensión de áreas de actividad. En la década 1970-1980 la Arqueología, se ve nutrida por una serie de aportes de investigadores que, interesados por nuestro legado aborigen, deciden realizar sus tesis de posgrado. La preocupación y definición de intereses se amplía, cubriendo no sólo las dimensiones espacio-culturales sino que, bajo el marco teórico de la Ecología Cultural, se incursiona en campos que hasta ese momento no se habían explorado. La relación hombre-medio físico, la utilización del método de patrones de asentamiento, la adaptación a condiciones ambientalistas y la consiguiente explotación de recursos son aspectos a cubrir. Es en esta década de los setenta cuando el interés por los materiales culturales cede el paso al interés en sus hacedores, es decir en el hombre mismo; esto se ha consolidado teóricamente en la Arqueología ambiental de los años 1975-1990 y en la Arqueología social a partir de 1983. En esta nueva dimensión ya no interesa el "objeto por el objeto mismo" o el objeto incluido en una secuencia cronológica, sino visto como un mediador entre el ambiente físico y el grupo humano, con sus contradicciones internas, con su

cosmovisión; en fin, interesa hacer Arqueología social con los datos arqueológicos, estudiar sociedades, no artefactos, estudiar hombres, no cosas. Ante este replanteamiento de la Arqueología como ciencia social, surge muy naturalmente la pregunta sobre el rol que desempeñarán las ciencias "exactas" ante el nuevo reto. La redefinición del quehacer arqueológico trae consigo la necesidad de un abordaje multi e interdisciplinario, el cual exige la idónea simbiosis ciencia "exacta"-ciencia social. La contemporaneidad del fenómeno nos obliga a ser pioneros en este campo, aprovechando desde luego las enriquecedoras -aunque pocas- experiencias que en nuestro ámbito se han dado.

¿QUÉ ES ETNOMATEMÁTICA? En el intento de situarnos con el tema mismo de lo que trata la Ethnogeometría, consideramos que debemos ver, qué es Etnomatemática. Aunque hay una lista larga de autores que intentan dar una definición exacta. "Las diferentes formas de matemática que son propias de los grupos culturales, las llamamos de Etnomatemática".1 Este es un juicio a fortriori, o actual, pues, los grupos culturales existen y se encuentran por toda la faz de la Tierra. Luego todos los MODOS de MATEMATIZACIÓN que realicen esos grupos culturales para solucionar sus problemas cotidianos, se las puede denominar de ETNOMATEMÁTICA. "La ETNOMATEMÁTICA en mi concepción es

Etno + matematica, 1 Prof. D'Ambrosio según el resumen analítico del Prof. neozelandés Bill Barton

Eso es, SU ENTORNO NATURAL y CULTURAL ETNO = EXPLICAR, ENSEÑAR, COMPRENDER, MANEJAR, LIDIAR 2 MATEMA = LAS ARTES, TÉCNICAS, MANERAS, ESTILOS TICAS = Nos dice en este concepto creado por Ubiratan D'Ambrosio. Según esta explicación, "ETNO" es el "ENTORNO NATURAL y CULTURAL" del hombre en una forma atemporal, es decir, no se refiere al hombre primitivo en su condición de cazador o recolector, se refiere al hombre de todas las épocas hasta llegar a la actual, en su diario accionar en su contexto circundante y circunstancial. Si, "MATEMA" está homologada con "LAS ARTES, TÉCNICAS, MANERAS, ESTILOS "To cope with" (para cubrir con o abarcar), sí débrouiller" (manejar o dirigir). Significa que es importante referirse, a todas las formas de expresión o exultación mental y espiritual hechas realidad, abarcando de un modo poético, gráfico, pictórico, petroglífico o folklórico con sus propias modalidades. "TICAS" es una referencia clara a la metodología, es el cómo trasmitir o compartir, cualquier experiencia (inclusive el MATEMA), con otra(s) persona(s) para que esa(s) persona(s) tenga(n) acceso a un nuevo conocimiento. En el entendido que ese nuevo conocimiento le permitirá solucionar sus tribulaciones o le causará el placer de lograr sus metas, pese a los factores socio-culturales que puedan influenciarlo positiva o negativamente. El mismo creador del concepto antes interpretado dirá que la Matemática es una parte de la Etnomatemática colocada así:

2 , "To cope with", "se débrouiller"

2.- ETNOMATEMÁTICA - MATEMÁTICA - EDUCACIÓN Donde, dentro de la Educación, "la Matemática se constituiría en una parte de la Etnomatemática", por tanto para aprender Matemática invariablemente se debe pasar por Etnomatemática. Al parecer, se preocupa más con esto último, después de estudiar a los autores citados en su trabajo, aunque observa que D'Ambrosio se ubica más en la dimensión socio-antropológica, considera que son cuatro, los términos críticos para la definición: Matemática, Matemático, Nosotros y Cultura. 3 "La Matemática son los conceptos y las prácticas en el trabajo de esa gente quiénes se llaman a sí mismos matemáticos." "El Matemático se refiere a esos conceptos y a las prácticas, que se identifican como si estuvieran relacionadas en alguna manera a la Matemática". "El matemático y la Matemática ambos son culturalmente específicos porque sus referentes dependen de quiénes usan los términos. Es posible, que por ejemplo, que algunos matemáticos disientan sobre lo que es legítimamente Matemática." "En el "nosotros", usamos la definición como un grupo, quienes comparten una comprensión de Matemática y quienes están interesados en Etnomatemática. Que el grupo incluirá comúnmente matemáticos, quienes toman su propia definición, pero incluirán también a otros, quienes han experimentado Matemática como una categoría en su educación propia. Cuando una Cultura étnica diferente, anda implicada con el "nosotros", nos referimos a los miembros de una cultura, que contiene la categoría de matemáticos. El uso puntual del pronombre hace que el etnomatemático tenga un punto de vista particular". "Cultura se toma para tener el significado, que se refiere al grupo de gente quien "desarrolló prácticas, conocimiento, y, en particular, jergas y códigos, que

3 Bill Barton – 1972.

claramente comprende la manera como ellos matematizan, es decir: es la manera que ellos cuentan, miden, relacionan y clasifican, e infieren" 4 Tal grupo puede ser un grupo étnico, un grupo nacional, un grupo histórico, o un grupo social dentro de una cultura más amplia. La Cultura refiere al conjunto compartido identificable de comunicaciones, comprensión y prácticas. No es necesaria la definición de Etnomatemática si el conjunto es descriptible con exactitud." Habiendo definido los términos, hay cuatro de implicaciones de la definición: a) Etnomatemática no es un estudio matemático; es más como la antropología o historia; b) La definición en sí misma depende de quien lo afirma, y culturalmente es específico; c) La práctica que describe es también culturalmente específica; d) Etnomatemática implica alguna forma de relativismo para la Matemática". Ya no analizamos estas cuatro implicaciones, pues, ello equivaldría a elaborar un tratamiento específico sólo de la Etnomatemática y ese no es nuestro objetivo por ahora. "En la Etnomatemática, los etnomatemáticos intentan describir el mundo matemático, como los otros lo ven. "... la Etnomatemática crea un puente entre la Matemática y las ideas (conceptos y prácticas) de otras Culturas. La parte de un estudio etnomatemático elucidará, por qué esas otras ideas se observan como matemáticas, y por lo tanto por qué ellas podrían ser de interés a los matemáticos. Tal estudio crea la posibilidad de ambas Matemáticas que provean una nueva perspectiva sobre los conceptos o prácticas para ellas dentro de la otra cultura, y 4 usado por D'Ambrosio(D'Ambrosio 1984).

de los matemáticos que ganan una nueva perspectiva sobre (y posiblemente nuevo material), su propio tema...". Consideramos que, aquí cabe como una síntesis del párrafo anterior lo que manifiesta: el carpintero definitivamente trabaja con una idea Matemática; los matemáticos quienes [arbitrariamente deciden trisecar un ángulo usando únicamente la regla y el compás] tratan con una idea. Para ambos es importante, y aunque ellos son diferentes, ellos se vinculan por una idea".5 Haciendo un pequeño anticipo al siguiente capítulo, queremos ampliar lo anterior y decir: antes que la idea matemática, está la idea de la forma y es esta forma la que obliga a buscar una "unidad de medida" que luego permitirá realizar cálculos en el caso del carpintero y en el del geómetra de igual modo primero concibe la idea de la abertura angular del ángulo original que debe ser trisecado o triseccionado, luego determina la abertura del compás (usará una medida) que le permitirá de realizar el trazado respectivo. Sólo ahora podemos decir que realizan distintos trabajos, pero vinculados por una misma idea. Desde nuestra visión. "Etnomatemática es el conjunto de conocimientos matemáticos, prácticos y teóricos, producidos o asimilados y vigentes en su respectivo contexto sociocultural, que supone los procesos de: contar, clasificar, ordenar, calcular, medir, organizar el espacio y el tiempo, estimar e inferir.". "El conjunto de los conocimientos matemáticos de la comunidad del aprendiz, relacionados con su cosmovisión e historia, fundamentalmente comprende: - El sistema de numeración propio. - Las formas geométricas que se usan en la comunidad. - Unidades o sistemas de medida utilizadas local o regionalmente (tiempo, capacidad, longitud, superficie, volumen). 5 el mismo profesor Ubiratan D’Ambrosio: ".

- Instrumentos y técnicas de cálculo, medición y estimación; procedimientos de inferencia; otros conceptos, técnicas e instrumentos matemáticos usuales. - Las expresiones lingüísticas y simbólicas correspondientes a los conceptos, técnicas, e instrumentos matemáticos.". Para finalizar este capítulo, queremos indicar que en todo lo visto hasta aquí, sólo hemos querido tomar lo que consideramos de mayor relevancia en la Etnomatemática, como una base para sustentar nuestra afirmación de "Primero ver Ethnogeometría para seguir con Etnomatemática", lo que intentaremos demostrar enseguida.

CAPITULO II ¿QUÉ ES LA ETHNOGEOMETRÍA? "... Al tratar de transmitir la importancia de las ideas, nosotros las elaboramos con nuestras expresiones occidentales que tenemos de ellas. Desde el principio nosotros diferenciamos, entre las matemáticas que son implícitas y las que son explícitas, y entre los conceptos occidentales que nosotros usamos para describir o explicar y esos conceptos nosotros los atribuimos a la gente de otras Culturas." 6 Ante la falta de literatura y/o de otros autores que hubieran tocado en forma particular a lo que se nos ha ocurrido llamar "Etnogeometría" y considerando que nuestra idea tiene asidero, tanto implícita como explícitamente. Hemos creído conveniente crear, el concepto semánticamente, con la conjunción de

Etno + Etnología + Geometría = Ethno geometría. Como el "Estudio y conocimiento de la Geometría bajo el aspecto cultural de los pueblos comparando sus afinidades de antropología cultural o social y de los lazos de civilización que los caracteriza".

6 Marcia Ascher – 1980.

Además tomamos el sentido semiológico del concepto. Porque los códigos que encierra la composición del nombre, se refieren al pueblo, a la gente de nuestros días, por tanto hace una práctica diaria de la aplicación geométrica en casi todos sus quehaceres. Para aclarar aún más. Diremos que, cuando se da mayor importancia al aspecto biológico y natural aunado con el psíquico sociológico, etc., estos estudios caen dentro de la Antropología. Mas, si se comprenden en ellos, todos los fenómenos histórico-culturales, además de los puramente naturales, se entra en la Etnología. Ampliando y flexibilizando nuestra visión. Por ejemplo, Etnología vendría a ser, cada reunión de los ICME , donde nos congregamos centenares de personas de diferentes razas y nacionalidades que nos sentimos afines por la Matemática o su enseñanza, lo que en otras palabras es estudiar nuestra riqueza material y espiritual con respecto de la Matemática. Mas, sin pretender reuniones tan numerosas tenemos, las de cada día en nuestras comunidades y centros educativos, a los que asisten alumnos de diferentes etnias, pero con un fin común adquirir conocimientos. Esto implica que el mundo actual tiende a hermanar a los hombres de y en todos los confines de la Tierra, y está lejano el día en que se discutió en las universidades de Europa, el problema de sí los negros de Africa o los indios del Nuevo Mundo tenían alma y si eran realmente hombres. Mientras en la Etnomatemática, los etnomatemáticos intentan describir el mundo matemático, como los otros lo ven. Ethnogeometría, no es el intento de describir, cómo, las ideas se ven a través de los otros. Muy al contrario. Fue y es la generadora no sólo de ideas que todos - etnomatemáticos o no - ven. Tiene una inmanencia permanente. Es el material que inspira a la Etnomatemática, estudiar la historia a partir de la Geometría sea esta euclidiana o no-euclidiana. La Etnogeometría da lugar a que "... la Etnomatemática...", pueda crear "... un puente entre la Matemática y las ideas (conceptos y prácticas) de otras Culturas."

La universalidad de determinadas formas básicas que son parte de una Cultura también universal. Realizar, un estudio etnogeométrico podría ser de mucho mayor interés a los etnomatemáticos, porque partirían de realidades tangibles para luego realizar abstracciones (formular conceptos, o crear teoremas p.ej. sobre equicomposición de poliedros, al observar, los muros de las ruinas incaicas) con una nueva perspectiva. Tal estudio permitiría la posibilidad de matematizar los conceptos o prácticas dentro de una Cultura y, compararla con la otra Cultura, p.ej. que tienen de semejantes la forma de las viviendas de los Uruchipayas del Departamento de Oruro en Bolivia, con la de los africanos de Mozambique; quizá a primera vista diremos la forma cónica de los techos y el material que los cubre. A partir de la Etnogeometría, el etnomatemático está obligado a elucidar o aclarar no sólo los conceptos resultantes de las prácticas etnogeométricas, sino, a tomarlos como su material de trabajo para hacer que la Etnomatemática sea el nexo real con la Matemática, porque (como ya lo dijimos), la Etnogeometría, no sólo tiene fundamentos etnológicos, socio-antropológicos, más también, socioculturales, que han sido y pueden seguir siendo aplicados, al aprendizaje de la Geometría, luego, a la práctica de la Etnomatemática y finalmente a la Matemática. Por otro lado tomemos Que, las cosas las vemos con nuestros ojos occidentalizados, o sea que estamos condicionados a ver siempre bajo esa óptica y cuando alguien lo ve desde otra, nos llama la atención y parece ser incoherente. 7 Eso es comprensible, pues, tantos siglos de academicismo nos han subyugado, que no le damos campo a nuestra mente para pensar de otro modo, sin los símbolos numéricos que representan abstracciones (eso no implica que prescindamos de ellos). Y posiblemente esa sea la razón por la cual hayan aparecido detractores de la Etnomatemática, sin intentar comprenderla, como la nueva aurora para la enseñanza de la Matemática.

7Marcia Ascher.1980.

La Ethnogeometría es parte intrínseca de la vivencia diaria del hombre y su entorno natural , pues donde quiera que dirija su atención, a las ruinas de la civilización antigua Inca, "La Puerta del Sol"; las edificaciones de las urbes citadinas (arquitectura) como, la ciudad de Sucre -Bolivia- o, Lima - Perú -, con influencia, de otra cultura, sea francesa, hispana, etc., etc. Antes que Etnomatemática o Matemática. Verá Ethnogeometría y sólo después, Geometría y Matemática; lo mismo será, cuando perciba que una persona es diferente de otra por sus formas anatómicas, complexión física, estatura o color, además su vestimenta, distinta y variada de acuerdo al lugar geográfico en el que habite, con diseños tejidos o estampados en su mayor parte realizados con moldes de hojas, pétalos o tallados matriciales en madera, así como, otras representaciones bordadas en bajorrelieve con una policromía que muestra la riqueza espiritual de los artesanos . Aleatoriamente comparemos los kimonos de los campesinos japoneses, con la túnica o el sari de los hindúes. Las polleras de la chola de las ciudades andinas, que tienen forma arrepollada con la forma de cono truncado de la minifalda de las jóvenes citadinas. En la Naturaleza misma se encuentra con expresiones geométricas, vemos flores de formas poligonales hojas cardiodes que inspiran coordenadas polares o helechos que generan fractales. En fin una riqueza espiritual y cultural (inclusive, ideológica por su aplicación), que nos hace admirar. En todas esas expresiones, no vemos ni percibimos inmediatamente ideas, símbolos ni conceptos matemáticos. Estas y éstos se presentarán después, mediante las abstracciones mentales que realicen, los interesados (matemáticos o estudiosos), es decir, se hará Etnomatemática y luego Matemática, partiendo de la Ethnogeometría. Tenemos otros ejemplos, en los que, "forma, medida y cantidad" están en una simbiosis a primera vista inseparable. Tal el caso de la actividad comercial de los mercados, en los que, las vendedoras colocan sus productos formando montoncitos semejantes a ortoedros, pirámides truncadas o conos, donde. 2

montones (pirámides) de papa por 5 Ks, cuatro montoncitos (conos) de arvejas por 10 Ks. Las vendedoras del mercado pensarían primero en medidas académicas? Sólo, después de que toman conciencia de la forma del cuerpo y de otros aspectos singulares pueden realizar conclusiones de tipo cualitativo y cuantitativo referidas a medir, pesar, contar, comparar y calcular - sí, es que, a estas actividades se les puede llamar Matemática. La vendedora del mercado cuando está formando sus "montoncitos" crea las formas que serán más atrayentes al posible comprador (etnogeometriza -si vale el término-), luego determina el valor que tendrá en la venta el montoncito, a montoncitos más grandes con mayor número de unidades (papas, arvejas, frutas, etc.), menos ganancia y, a montoncitos más pequeños menos unidades implica más ganancia según sus costos, dicho de otro modo hace Etnomatemática. No se detiene a pensar si está aplicando un conocimiento académico curricular de Razones y Proporciones o de Reparto Proporcional. Estos, son ejemplos reales y actuales. Y ¿Qué podemos decir de los hombres primitivos, que aún no conocían la simbología numeral, cuando trazaron sus pinturas rupestres, luego cuando se hicieron sedentarios y comenzaron a tener noción del derecho de propiedad y el academicismo no había nacido aun? Sin tomar en cuenta, el tiempo, pero, la semejanza entre dos culturas. ¿De dónde obtuvieron los Quechuas, el concepto de "Pachatupuy" (Geometría) cuya traducción literal es, Pacha = Tierra y, Tupuy = Medida? La tomarían de los egipcios? Pues, sabemos que ellos dan origen al nombre de "geometría" como resultado de su trabajo anual empírico, al parcelar o reparcelar las tierras aledañas al Nilo después de cada riada. Y como lo leímos, nos admira, toda esa maravilla construida con unos conocimientos básicos de Geometría y de Arquitectura y además con una unidad de medida arbitraria, como era el "codo del arquitecto". A priori podemos afirmar que, la concepción de las formas les obliga (sin ser totalmente empíricos), a crear ciertas unidades de

medida y realizar operaciones en ese trabajo y no lo hacen partiendo de hipótesis. Parten de lo que está en su entorno. Utilizan ese conocimiento y el que está, en ellos y con ellos mismos o sea la Ethnogeometría. Parecería que no teorizaron diciendo: "si la base es de n codos entonces la cúspide estará a n codos de altura". Dado que la pirámide para los egipcios no sólo es una tumba para el Faraón. Es la "luz que ilumina el camino", posiblemente dependiendo a qué Faraón iba destinada la pirámide, sería más alta y con menos o más galerías. Dicho de otro modo el ver formas y reproducir formas, está, en él y con el hombre, sin importar la época en la que vive. Por esta observación llamamos parte intrínseca de la vida del hombre. Quizá haya otras maneras de explicarlo mejor y con otras palabras, luego, creemos que, es aquí donde la crítica ayudará a mejorar o retirar esta concepción nuestra proposición. Luego, desde el punto de vista etnogeométrico. Toda percepción, sea ésta real o de abstracción, es global. ¿Quién podría pensar, en la primera contemplación, en conceptos, reglas o axiomas matemáticos al visitar las pirámides Mayas; al contemplar desde el aire, las figuras petroglíficas del Valle de Nazca en el Perú? o las figuras zoomorfas de la Puerta del Sol en Tiwanaku?

CAPITULO III EL TEOREMA MATEMÁTICO DE LA PUERTA DEL SOL: Al lado tenemos, una fracción de "La Puerta del Sol" en Tiwanaku. Y, luego la solución del teorema, presentado por Xavier Amaru Ruiz. Este es, el mejor ejemplo de lo que hasta ahora hemos estado preconizando, de que primero observamos las formas geométricas luego hacemos la matematización. Y Amaru Ruiz nos dice: "Realizando un análisis lógico a los símbolos e ideogramas grabados en La Puerta del Sol y concentrándonos en el detalle de la aureola que rodea la cabeza del personaje central, notamos, que su planteamiento es sumamente interesante, porque demuestra ser un teorema lógico matemático, en el cual los números y figuras geométricas aparecen virtualmente de manera subliminal, ya que la aureola está rodeada de 18 pares de ganchos (triángu-los)

rotando en dos direcciones opuestas (18 hacia la derecha y18 a la izquierda) y ambos convergiendo hacia el centro del cuadro, con una constante numeral de 36 (18+18)." Sin proponérselo Xavier Amaru, hace Etnogeomnetría y Etnomatemática, pues, para el análisis del diseño, ha recurrido a la observación de la forma, "números y figuras geométricas", pero, va más allá y, él indica: "La figura geométrica de la unificación es el cuadrado, cuya división geométrica da paso a la creación del rectángulo, el triángulo y el círculo. Para tener una constante de 36, sus lados son de valor 6. El área es igual a 36." "Esta es una matriz simétrica numeral en la cual interaccionan números reales y virtuales, cuyo resultado es una ecuación". fig. 2.) Es un cuadrado dividido en 8 partes con dos diagonales y dos medianas dando 8 triángulos con un ángulo central de 45¼). Al sumar consecutivamente los ocho elementos que constituyen el cuadrado: 1+2+3+4+5+6+7+8 = 36. Si se divide en dos rectángulos verticales, o sea en: "Hemisferio Izquierdo" (HI), sumando 3+4+5+6 = 18; en el "Hemisferio Derecho" (HD), también se tiene 1+2+7+8 = 18 Con dos medianas y dos diagonales ha dividido en triángulos y que partiendo en forma irradiada desde el punto de intersección a la periferia resultan 8, siendo cada uno de 45¡, luego 8 x 45¡ = 360¡. La medida del círculo perfecto. Si sumamos verticalmente cada par de los valores asignados a los triángulos: 1+8, 2+7, 3+6, 4+5. El resultado siempre es 9. También da 9 la suma de las cifras significativas de 36 y 360. Y, si borramos todos los triángulos, sólo quedaría la aureola, luego tendríamos un vacío representado por el 0. En consecuencia hemos encontrado dos números virtuales. La aproximación del valor del Pi andino o Pi matemático Para encontrar una aproximación al valor de "pi". El cuadrado mágico se ha dividido en dos partes, mediante una diagonal, tal como, lo muestran las figuras 3 y 4. Cada parte equivale a P/2 (medio "pi"), luego se han realizado estas operaciones: fig. 3.4+5+6+7=22, se divide entre 8+1+2+3=14, o sea 22/14=1.571428 y fig. 4,

1+8+7+6=22, se divide por 2+3+4+5=14, (1.571428). Si sumamos estos dos cocientes 1.571428+1.571428= 3.142856. Obtenemos el "Pi" andino o matemático con apenas 0.001256 de variación, a la aproximación geométrica de la relación constante entre el diámetro de una circunferencia y su longitud de 3,1416, que encontraron los griegos. SÍMBOLOS NUMERALES El trazado de los ocho triángulos dentro del cuadrado mágico, no sólo sirve para determinar: el cuadrado, triángulo, rectángulo, circunferencia o la aproximación de "pi". Es una matriz simétrica para otros aspectos matemáticos entre los que tomamos a los símbolos numerales. Al observar el gráfico podemos notar que: a) Todos los numerales tienen la misma matriz. b) Los numerales originales son de uno a cinco, los que siguen, son una imagen espejo. Xavier Amaru refrenda nuestra observación indicando que: "al juntar los cinco numerales en un bloque se forma dicho cuadrado". "...y es por este motivo que al sistema numeral tiawanakota se lo consideraba quinario, pero al desdoblarse, los cinco en imagen espejo se conforma la otra mitad". Por tanto los numerales son 1, 2, 3, 4, 5, 6, 7,8 (reales), 0 y 9 (virtuales). Siendo Y según el mismo autor, una situación parecida de imagen espejo, se da en el sistema arábigo, por ej. Con los numerales 2 y 5; 6 y 9. Ambas observaciones nos llevan a colegir que existe una dualidad simétrica. Podríamos abundar en más observaciones de carácter matemático, mas, ese nos es, nuestro único fin, pues queremos resaltar una vez más que, aun antes de realizar esas observaciones hemos tenido de alguna manera ver la parte geométrica, y por tanto, tomando en cuenta su esencia sociocultural a la Etnogeometría. Sin embargo, en la actualidad, la gente que trabaja en el comercio informal aplica la Etnogeometría, Etnomatemática y finalmente Matemática. Veamos este ejemplo.

La revendedora de hortalizas en el mercado, adquiere una caja de tomates por Bs. 20, luego los distribuye en 12 montones cuya forma es piramidal. Si decide vender cada montón (pirámide de tomates), a Bs. 2.- Su ganancia será apenas de Bs. 4.Se da cuenta de que tardará casi todo el día para obtener ese lucro y que no cubre sus necesidades alimenticias, pues, precisa ganar por lo menos Bs. 10.para alimentarse siquiera una vez, entonces decide ir quitando uno o dos tomates a cada montón y obtiene más montones con menos tomates. Esto para ella resulta que a menor número de tomates por montón, más montones, luego más ganancia, su deducción es empírica. Par el matemático la misma idea será un reparto inversamente proporcional. Para él la deducción será a priori. En resumen, la vendedora, geometriza al edificar cada pila de tomates, matematiza, al determinar el N¼ de tomates por cada pila y por consiguiente el dinero que recibirá, será el resultado de esa matematizacíon o aplicación matemática.

CAPITULOIV CIENCIA PRECOLOMBINA Y MITOLOGÍA Desde el punto de vista histórico, se ha afirmado que el desarrollo matemático se ha nutrido de la necesidad de resolver problemas, razón por la cual surge la inquietud de cuestionarse las motivaciones que tuvieron nuestros antepasados prehispánicos para el uso y desarrollo de su ciencia, particularmente de los conceptos matemáticos. En la cultura de los primeros habitantes de nuestro territorio encontramos gran cantidad de manifestaciones culturales y científicas, plasmadas en petroglifos, cerámica, trabajos en oro y jade, basamentos, etc. Los elementos geométricos como paralelismo, ángulos rectos, triángulos rectángulos, isósceles y equiláteros, círculos concéntricos, figuras planas inscritas en círculos, prismas y cilindros, etc., son comunes en distintas decoraciones y se convierten en sustrato para afirmar que el acto de componer fue producto de una elaborada práctica y estudio, que les permitió conocer y aprender a establecer los elementos necesarios para diseñar en forma tridimensional con destreza y maestría.

El desarrollo del quehacer plástico fue el medio que los antiguos habitantes de nuestro territorio utilizaron para comunicar su concepción de la vida y la naturaleza (lluvia, rayos, fertilidad, deidades y otros). La importancia de esta comunicación no radicó en el asunto o tema, sino en la forma de expresar el sentimiento que tal asunto suscitó en su sensibilidad. Lo que les interesó fue representar la realidad, no como tal, sino de acuerdo a su interpretación, a su percepción, a su cosmovisión general. Esta concepción de la realidad los llevó a manejar un amplio bagaje de símbolos, asentado en el mito, el cual les permitió interpretar su realidad, su existencia, ambas inmersas en la acción de fuerzas sobrenaturales. Observaban la naturaleza, conocían sus efectos, buscaban una explicación causal de los fenómenos naturales y los dioses o deidades fueron siempre la causa operante. Los fenómenos naturales como la lluvia, el viento y la fertilidad, se personificaban en espíritus demonios o deidades. Consideraban que los espíritus provocaban las tormentas y los rayos, provocaban el crecimiento de los ríos y estimulaban las serpientes a morder. La personificación de espíritus aparece representada en los metates, en los motivos de aves, felinos y reptiles entre otros. La representación del zopilote rey que sujeta en su pico una cabeza humana tiene relación con la creencia de que esta ave transporta las almas al otro mundo. La representación de estas aves está relacionada, dentro de la mitología talamanqueña, con el ave que trajo el primer hombre a la tierra. Las decoraciones de cuerpos humanos con cabeza de felino son consideradas como la máxima representación del chamán, que combina el dominio del ser humano con la agilidad y fuerza del jaguar.

Considerando que las decoraciones mencionadas son fiel reflejo del dominio de conceptos geométricos en un grado más allá de lo elemental, se establece una clara relación entre el quehacer matemático y la mitología que les caracterizó. No es ésta la única razón de ser del conocimiento matemático, su uso es palpable en las construcciones de acueductos y sitios habitacionales.

CAPITULO V ALGUNOS ELEMENTOS GEOMÉTRICOS PRESENTES La tarea de aquilatar el cuerpo de ciencia prehispánica, deberá tomar en cuenta la imposibilidad de obviar la existencia de un legado de conocimientos, muchos de ellos perdidos irremisiblemente y del cual tan solo quedan rastros borrosos en la mayoría de los casos. El manejo de técnicas sofisticadas para el trabajo del oro, la piedra y la arcilla, el logro de las altas temperaturas requeridas para la fundición de metales, la disposición de sitios habitacionales, una medicina de la cual aún hoy quedan remanentes, son fiel reflejo del conocimiento que manejaron nuestros ancestros. En este contexto, la matemática debió jugar un rol predominante: ¿cuál fue su influencia?, ¿cuáles conceptos matemáticos manejaban?, ¿qué nivel alcanzó su desarrollo?; éstas y muchas otras preguntas son nuestro reto. Los rasgos arqueológicos son abundantes en evidencia de conocimiento matemático, los elementos geométricos -particularmente- están presentes en toda la creación artística. Aunque para el matemático del siglo XX, el trazado de círculos concéntricos, triángulos isósceles, rectángulos y equiláteros, no representa dificultad alguna, se reconoce que el conocimiento de la técnica empleada en esta labor evidencia la posesión de un conjunto de conceptos e interrelaciones no triviales; el observar variadas decoraciones en cerámica, petroglifos y metales, que contienen los

elementos matemáticos mencionados, evoca nuestra admiración y taladra nuestra imaginación. Se ha analizado una serie de elementos geométricos presentes en un grupo de artefactos que actualmente se encuentran en el Museo de Jade del Instituto Nacional de Seguros. Para su estudio, solo hemos enfocado uno de los muchos posibles problemas: la subdivisión de la circunferencia en partes iguales. Con el objeto de mostrar el potencial que tal estudio contiene y de ratificar lo antes afirmado respecto del conocimiento matemático que los rasgos arqueológicos evidencian, se presenta a continuación el detalle sobre algunos rasgos arqueológicos estudiados: a) Es una mesa circular, base de pedestal, calada. La parte superior presenta decoraciones a su alrededor: se trata de trece caritas, correspondiendo a una subdivisión de la circunferencia en trece partes iguales. Temporalmente se ubica entre los 700 d.C.- 1500 d.C. su altura promedio es de 22.2 cms. Su parte superior es de forma circular, con un diámetro aproximado de 27.4 cms. Su base, también tiene el sentido siguiente: si se baja una perpendicular desde el centro del círculo superior, la misma contiene el centro del círculo de la base. Este aspecto dota a la mesa de una estabilidad total. Las partes superiores e inferiores están unidas por barras cóncavas separadas entre sí, que dan la sensación de un tronco hiperbolóidico totalmente simétrico tanto en sus contornos, como en las distancias que separan las cuatro barras. La separación inferior entre las barras es en promedio 3.72 cms y la superior de 3.57 cms. Esta diferencia es atribuible al hecho de que el ancho promedio de las barras en las bases es 8.25 cms mientras que en su parte superior es de 6.2 cms. La circunferencia de la parte superior está subdividida por trece caritas cuyo ancho promedio es 4.56 cms con una separación promedio de 1.97 cms. Aquí se utiliza con propiedad el vocablo "promedio" por cuanto las distancias entre subdivisiones sucesivas son bastante próximas, variando desde un mínimo de 1.7

cms hasta 2.4 cms. El ancho de las caritas varía desde 4.1 cms (el mínimo) hasta 5 cms (el máximo). Estas variaciones de pocos milímetros resultan insignificantes al considerar la longitud de la circunferencia (86 cms) los errores propios de cualquier medición y otros factores como la erosión. Por tanto, puede afirmarse que la mesa de piedra en cuestión evidencia que sus constructores fueron capaces de subdividir la circunferencia en trece partes iguales. La consideración del número 13 en su condición de número primo, torna más admirable aún este hecho, pues en la actualidad tal problema conjuga conceptos e interrelaciones matemáticas sofisticadas. b) Escudilla Trípode, temporalmente se ubica entre los 700 d.C. 1550 d.C. La parte superior de esta pieza es una circunferencia cuyo diámetro mide 20,8 cms. En sus puntos de contacto con la vasija, sus soportes están distanciados 8 cm, 8 cm y 7 cm. Las separaciones en los puntos de apoyo miden 18 cm, 18 cm y 16 cm. En ambos casos puede considerarse que los puntos en cuestión son los vértices de un triángulo isósceles. Al efectuarse la razón 18 a 8 se obtiene 2,25 y la razón 16 a 7 es 2,28. Tan leve diferencia entre ambas razones no imposibilita afirmar que tales triángulos isósceles son semejantes. Si se calculan los radios de los círculos circunscritos a tales triángulos se obtiene que el círculo que contiene los puntos de contacto con la parte superior tiene un diámetro de 10 cms y el círculo que contiene los puntos de apoyo tiene un diámetro de 23 cms. Los números anteriores nos muestran la presencia de tres círculos cuyos centros están sobre una misma perpendicular a un plano transversal: el superior con un diámetro de 20,8 cm, uno interior que circunscribe los puntos de contacto cuyo diámetro mide 10 cm y el círculo que circunscribe los puntos de apoyo cuyo diámetro mide 23 cm. La apreciación de los triángulos isósceles cuyos vértices son los puntos de contacto de los soportes, pasará necesariamente por considerar la dificultad que

se enfrenta al trazar tales triángulos de tal manera que los círculos a ellos circunscritos tenga un centro previamente definido. c) Escudilla Trípode, temporalmente se ubica en 700 d.C. al 1550 d.C. Esta pieza está caracterizada por su parte superior de forma circular con diámetro de unos 19 cms. Los puntos de contacto de los soportes son vértices de triángulos equiláteros. Similarmente, los puntos de los soportes sobre un plano horizontal, también son vértices de un triángulo equilátero cuyo lado es mayor que el lado del triángulo formado por los puntos de contacto de los soportes son la pieza. Esta diferencia de tamaño entre los triángulos permite mayor estabilidad a la pieza y exalta su estética. Los ejemplos recién expuestos muestran que realmente los habitantes prehispánicos del territorio que hoy es Costa Rica manejaron elementos matemáticos que trascienden lo elemental, lo eminentemente intuitivo. Por lo tanto, nuestro reconocimiento de la existencia de un acervo científico precolombino contrasta con una usual subestimación del mismo y de sus hacedores, producto de una actitud -quizás inconsciente- de legitimación del pensamiento y ciencia occidentales. Desde el punto de vista histórico, se ha afirmado que el desarrollo matemático se ha nutrido de la necesidad de resolver problemas, por lo que de inmediato surge la inquietud de cuestionarse las motivaciones que tuvieron nuestros antepasados prehispánicos para el uso y desarrollo de sus elementos matemáticos.

Tanto los elementos que con carácter de ejemplo se han mencionado como muchas otras evidencias contenidas en los trabajos en piedra y cerámica, nos muestran una clara relación entre el quehacer matemático y el mundo míticoreligioso. Sin embargo, puede afirmarse que los elementos geométricos fueron utilizados en la representación de la concepción del mundo que nuestros indígenas manejaron; variadas creaciones que patentizaron sus creencias y costumbres exhiben el uso de la geometría.

EVIDENCIA DE CONOCIMIENTOS MATEMÁTICOS Por no existir estudio alguno y sistemático de la Geometría Mesoamericana

8

se

hace necesario incursionar en tan basto campo de investigación. Al respecto, la evidencia que presentan los metates al igual que muchos otros rasgos arqueológicos es sumamente amplia. Se mencionan a continuación algunos aspectos que ponen de manifiesto la existencia de un cuerpo de ciencia, precolombina, particularmente en lo que a geometría se refiere. Un aspecto importante de analizar en los metates es el sistema de ordenamiento que presentan las formas. En general, los objetos de las tres zonas arqueológicas presentan una combinación basada en la simetría bilateral reflexiva. La misma se puede determinar a partir de un plano longitudinal perpendicular al plano del metate.

8 Garcés, (1982).

10.- CONCLUSIONES 1- Ante los ojos del hombre actual, en el advenimiento del siglo XXI, el referido conocimiento ancestral puede parecer vago e inconsistente; sin embargo, la verificación de las hipótesis que al respecto se formulen, permitirá una valoración distinta del quehacer pre-hispánico y estará contribuyendo para que la historia juzgue a estas sociedades con la requerida objetividad. 2- La aprehensión del conocimiento matemático que nuestros prehispánicos manejaron, es una tarea urgente; el éxito que en ella se alcance redundará -sin duda- en la adecuada ubicación cultural de nuestros antepasados. Así, la enseñanza de la historia tendrá su matiz ancestral, también la enseñanza de la matemática adquirirá connotaciones motivadoras, estrictamente relacionadas con nuestra identidad cultural; en la enseñanza de la geometría elementos geométricos presentes en los rasgos arqueológicos costarricenses pueden ser utilizados con gran imaginación y lucidez. 3- El análisis que de tal conocimiento se haga, particularmente desde el punto de vista matemático, deberá considerar necesariamente el contexto histórico y el recargo mítico - religioso que le caracteriza. 4- El desarrollo de las ciencias, apunta ahora más que antes, hacia la multi e interdisciplinaridad; en esta perspectiva los estudios etnomatemáticos se

convierten en una labor que integra relaciones especiales entre las ciencias sociales y las matemáticas. 5-Parangonando con la proposición diremos que dentro de la Educación, la Matemática es parte de la Etnomatemática y Etnogeometría. 9 6- Para finalizar queremos manifestar que, quizá deberíamos haber puesto énfasis, sólo en esta última parte, como la prueba irrefutable de que para ver la Etnomatemática a profundidad, no se puede ignorar a la Etnogeometría como un primer paso. Es decir, partir del valor cultural que tienen las formas geométricas, para luego ir al valor cultural de la matematización. Sin embargo como la vida continua y ella, está ligada a los problemas no sólo socio-culturales, sino, a los socio-económicos, no podemos quedarnos en el pasado, cuando la realidad del "sistema" nos golpea inmisericordemente, tal como vemos en el ejemplo de la vendedora de hortalizas.

9 Prof. Ubiratan D'Ambrisio,

11.- BIBLIOGRAFÍA Asher, Marcia and Robert. Mathematics of the Incas. Dover Publications Inc. New York 1981 Barton, Bill. Teniendo el Sentido de la Etnomatemática: La Ethnomathematics tiene Sentido. The University of Auckland. New Zealand. 1997 Gerdes, P. Lusona: Recrea›es Geométricas de Africa Divisao. Gráfica. Da Universidade Eduardo Mondlane. Maputo 1990 Marastroni, G. Hagamos Geometría. Ed. Fontanela 1980 Pacheco, R.Geommática Enseñar Matemática Partiendo de Geometría. Ed. CEPDI S.C.-Bolivia- 1993 Perero, M. Historia e Historias de Matemática Grupo Editorial Iberoamérica México. 1994 Piaget, J. Seis Estudios de Psicología Ed. Seix Barral 1964 Santaló, L. A. Geometría No-Euclidiana. Eudeba Buenos Aires Argentina 1985 Smogorzhevski, A.S. Acerca de la Geometría de Lobachevski. Ed. Mir Moscú 1984

Smogorzhevski, A.S. La Regla en Construcciones Geométricas. Ed. Mir Moscú 1967 Wyllie, C. R. Jr. Foundations Geometry. McGraw-Hill New York. 1985 Aguilar, C. Religión y magia entre los indios de Costa Rica de origen sureño. San José, Costa Rica. Universidad de Costa Rica, 1965. Arias Quirós, Ana cecilia. "La Arqueología en Costa Rica: un acercamiento crítico". Ponencia presentada en el 47avo congreso internacional de Arqueología. Universidad de Tulane, New Orleans. Louisiana, E.U., 1991. Arias Quirós, Ana Cecilia y Chávez, Sergio. "El modo de vida tribal-cacical: el caso de Costa Rica". En: Etnoarqueología, primer coloquio Pedro Bosch-Gimpera. UNAM. Arias, Ana Cecilia; Murillo, Mario y Rodríguez, Pedro. "La conjunción de las ciencias exactas y sociales: una alternativa en los estudios Arqueológicos". Ponencia presentada en la Sexta reunión Centroamericana y del Caribe sobre formación de profesores e investigación en Matemática educativa. Universidad Autónoma de Morelos, Cuernavaca, México. 1992. Arias, Ana Cecilia; Murillo, Mario y Rodríguez, Pedro. Primer informe del proyecto de

investigación

"Hacia

el

acervo

Científico

Matemático

Precolombino

Costarricense". Vicerrectoría de investigación, U.C.R. Abril de 1992. Arias, Ana Cecilia; Murillo, Mario y Rodríguez, Pedro. Segundo informe del proyecto investigación "Hacia el Acervo Científico Matemático Precolombino Costarricense". Vicerrectoría de Investigación, U.C.R. Noviembre de 1992. Chávez, Sergio. Guayabo de Turrialba: Pasado y Presente. Monografía. San José, Costa Rica. Oficina de Publicaciones de la Universidad de Costa Rica, 1993. Flores, Daniel y González Mirta. La identidad y conciencia Latinoamericana: La supervivencia futura. México, Plaza y Valdez Editores. 1990.

Fontana C., Amalia. Análisis iconográficos del diseño en metates pertenecientes al Museo de Jade. Lic. Marco F. Tristán, Instituto Nacional de Seguros. Monografía presentada para optar al grado de Licenciada en Artes Plásticas con énfasis en escultura. UCR. 1991. Garcés, G. Pensamiento Matemático y Astronómico en el México Precolombino. México. Instituto Politécnico Nacional. 1982. Gordon, V.O. Curso de Geometría descriptiva. Editorial MIR, Moscú. 1973. Guevara, M. "Etica del cazador y Tabús alimenticios entre los Talamancas". Vínculos, 1988, 14: 7 - 15. Hodghinson, A. Estructuras. Madrid, España. Herman Blume Ediciones, 1976. Ibarra R., Eugenia. "La cultura Aborigen de Costa Rica: Otra perspectiva". San José, Costa Rica. Revista del Colegio de licenciados y profesores en Letras, Ciencias, Filología y Letras; Vol I, # 11. 1990. León Portilla, M. Tiempo y realidad en el pensamiento maya. UNAM. México. 1986. Martín, Gustavo. Ensayo de Antropología Política. Venezuela. Editorial Tropykos 1984.