EL ACERO-PARTE- I.pdf

EL ACERO: CARACTERISTICAS GENERALES: El acero es la aleación de hierro y carbono, donde el carbono no supera el 2,1% en

Views 70 Downloads 0 File size 428KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

EL ACERO: CARACTERISTICAS GENERALES: El acero es la aleación de hierro y carbono, donde el carbono no supera el 2,1% en peso de la composición de la aleación, alcanzando normalmente porcentajes entre el 0,2% y el 0,3%. Porcentajes mayores que el 2,0% de carbono dan lugar a las fundiciones, aleaciones que al ser quebradizas y no poderse forjar a diferencia de los aceros, se moldean. El Acero es básicamente una aleación o combinación de hierro y carbono (alrededor de 0,05% hasta menos de un 2%). Algunas veces otros elementos de aleación específicos tales como el Cr (Cromo) o Ni (Níquel) se agregan con propósitos determinados. Ya que el acero es básicamente hierro altamente refinado (más de un 98%), su fabricación comienza con la reducción de hierro (producción de arrabio) el cual se convierte más tarde en acero. El hierro puro es uno de los elementos del acero, por lo tanto consiste solamente de un tipo de átomos. No se encuentra libre en la naturaleza ya que químicamente reacciona con facilidad con el oxígeno del aire para formar óxido de hierro herrumbre. El óxido se encuentra en cantidades significativas en el mineral de hierro, el cual es una concentración de óxido de hierro con impurezas y materiales térreos. El acero se obtiene eliminando las impurezas del arrabio, producto de fundición de los altos hornos, y añadiendo después las cantidades adecuadas de carbono y otros elementos. La principal dificultad para la fabricación del acero es su elevado punto de fusión, 1.400 ºC, que impide utilizar combustibles y hornos convencionales. En 1855, Henry Bessemer desarrolló el horno o convertidor que lleva su nombre y en el que el proceso de refinado del arrabio se lleva a cabo mediante chorros de aire a presión que se inyectan a través del metal fundido. En el proceso Siemens-Martin, o de crisol abierto, se calientan previamente el gas combustible y el aire por un procedimiento regenerativo que permite alcanzar temperaturas de hasta 1.650 ºC. Las Características generales del acero son: 

Es un material muy tenaz, especialmente en alguna de las aleaciones usadas para fabricar herramientas.



Relativamente dúctil. Con él se obtienen hilos delgados llamados alambres.



Es maleable. Se pueden obtener láminas delgadas llamadas hojalata. La hojalata es una lamina de acero, de entre 0,5 y 0,12 mm de espesor, recubierta, generalmente de forma electrolítica, por estaño.



Permite una buena mecanización en máquinas herramientas antes de recibir un tratamiento térmico.



Algunas composiciones y formas del acero mantienen mayor memoria, y se deforman al sobrepasar su límite elástico.



La dureza de los aceros varía entre la del hierro y la que se puede lograr mediante su aleación u otros procedimientos térmicos o químicos entre los cuales quizá el más conocido sea el templado del acero, aplicable a aceros con alto contenido en carbono, que permite, cuando es superficial, conservar un núcleo tenaz en la pieza que evite fracturas frágiles. Aceros típicos con un alto grado de dureza superficial son los que se emplean en las herramientas de mecanizado, denominados aceros rápidos que contienen cantidades significativas de cromo, wolframio, molibdeno y vanadio. Los ensayos tecnológicos para medir la dureza son Brinell, Vickers y Rockwell, entre otros.



Se puede soldar con facilidad.



La corrosión es la mayor desventaja de los aceros ya que el hierro se oxida con suma facilidad incrementando su volumen y provocando grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. Tradicionalmente los aceros se han venido protegiendo mediante tratamientos superficiales diversos. Si bien existen aleaciones con resistencia a la corrosión mejorada como los aceros de construcción «corten» aptos para intemperie (en ciertos ambientes) o los aceros inoxidables.



Posee una alta conductividad eléctrica. Aunque depende de su composición es aproximadamente de19 3 · 106 S/m.



En las líneas aéreas de alta tensión se utilizan con frecuencia conductores de aluminio con alma de acero proporcionando éste último la resistencia mecánica necesaria para incrementar los vanos entre la torres y optimizar el coste de la instalación.



Se utiliza para la fabricación de imanes permanentes artificiales, ya que una pieza de acero imantada no pierde su imantación si no se la calienta hasta cierta temperatura.

1



La magnetización artificial se hace por contacto, inducción o mediante procedimientos eléctricos. En lo que respecta al acero inoxidable, al acero inoxidable ferrítico sí se le pega el imán, pero al acero inoxidable austenítico no se le pega el imán ya que la fase del hierro conocida como austenita no es atraída por los imanes. Los aceros inoxidables contienen principalmente níquel y cromo en porcentajes del orden del 10% además de algunos aleantes en menor proporción.



El acero se dilata y se contrae según un coeficiente de dilatación similar al coeficiente de dilatación del hormigón, por lo que resulta muy útil su uso simultáneo en la construcción, formando un material compuesto que se denomina hormigón armado.



El acero da una falsa sensación de seguridad al ser incombustible, pero sus propiedades mecánicas fundamentales se ven gravemente afectadas por las altas temperaturas que pueden alcanzar los perfiles en el transcurso de un incendio.

Clasificación del Acero: Los diferentes tipos de acero se clasifican de acuerdo a los elementos de aleación que producen distintos efectos en el Acero: Aceros Al Carbono: Más del 90% de todos los aceros son aceros al carbono. Estos aceros contienen diversas cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de silicio y el 0,60% de cobre. Entre los productos fabricados con aceros al carbono figuran máquinas, carrocerías de automóvil, la mayor parte de las estructuras de construcción de acero, cascos de buques, somieres y horquillas. Aceros Aleados: Estos aceros contienen una proporción determinada de vanadio, molibdeno y otros elementos, además de cantidades mayores de manganeso, silicio y cobre que los aceros al carbono normales. Estos aceros de aleación se pueden subclasificar en: Estructurales: Son aquellos aceros que se emplean para diversas partes de máquinas, tales como engranajes, ejes y palancas. Además se utilizan en las estructuras de edificios, construcción de chasis de automóviles, puentes, barcos y semejantes. El contenido de la aleación varía desde 0,25% a un 6%. Para Herramientas: Aceros de alta calidad que se emplean en herramientas para cortar y modelar metales y no-metales. Por lo tanto, son materiales empleados para cortar y construir herramientas tales como taladros, escariadores, fresas, terrajas y machos de roscar.

2

Especiales: Los Aceros de Aleación especiales son los aceros inoxidables y aquellos con un contenido de cromo generalmente superior al 12%. Estos aceros de gran dureza y alta resistencia a las altas temperaturas y a la corrosión, se emplean en turbinas de vapor, engranajes, ejes y rodamientos.

Aceros De Baja Aleación Ultra Resistentes: Esta familia es la más reciente de las cuatro grandes clases de acero. Los aceros de baja aleación son más baratos que los aceros aleados convencionales ya que contienen cantidades menores de los costosos elementos de aleación. Sin embargo, reciben un tratamiento especial que les da una resistencia mucho mayor que la del acero al carbono. Por ejemplo, los vagones de mercancías fabricados con aceros de baja aleación pueden transportar cargas más grandes porque sus paredes son más delgadas que lo que sería necesario en caso de emplear acero al carbono. Además, como los vagones de acero de baja aleación pesan menos, las cargas pueden ser más pesadas. En la actualidad se construyen muchos edificios con estructuras de aceros de baja aleación. Las vigas pueden ser más delgadas sin disminuir su resistencia, logrando un mayor espacio interior en los edificios. Aceros Inoxidables: Los aceros inoxidables contienen cromo, níquel y otros elementos de aleación, que los mantienen brillantes y resistentes a la herrumbre y oxidación a pesar de la acción de la humedad o de ácidos y gases corrosivos. Algunos aceros inoxidables son muy duros; otros son muy resistentes y mantienen esa resistencia durante largos periodos a temperaturas extremas. Debido a sus superficies brillantes, en arquitectura se emplean muchas veces con fines decorativos. El acero inoxidable se utiliza para las tuberías y tanques de refinerías de petróleo o plantas químicas, para los fuselajes de los aviones o para cápsulas espaciales. También se usa para fabricar instrumentos y equipos quirúrgicos, o para fijar o sustituir huesos rotos, ya que resiste a la acción de los fluidos corporales. En cocinas y zonas de

3

preparación de alimentos los utensilios son a menudo de acero inoxidable, ya que no oscurece los alimentos y pueden limpiarse con facilidad. PROPIEDADES FISICAS Y QUIMICAS: Clasificación del acero por su composición química: -

Acero al carbono Se trata del tipo básico de acero que contiene menos del 3% de elementos que no son hierro ni carbono. Acero de alto carbono El Acero al carbono que contiene mas de 0.5% de carbono. Acero de bajo carbono Acero al carbono que contiene menos de 0.3% de carbono. Acero de mediano carbono Acero al carbono que contiene entre 0.3 y 0.5% de carbono. Acero de aleación Acero que contiene otro metal que fue añadido intencionalmente con el fin de mejorar ciertas propiedades del metal. Acero inoxidable Tipo de acero que contiene más del 15% de cromo y demuestra excelente resistencia a la corrosión.

Clasificación del acero por su contenido de Carbono: -

Aceros Extrasuaves: el contenido de carbono varia entre el 0.1 y el 0.2 % Aceros Suaves: El contenido de carbono esta entre el 0.2 y 0.3 % Aceros Semisuaves: El contenido de carbono oscila entre 0.3 y el 0.4 % Aceros Semiduros: El carbono esta presente entre 0.4 y 0.5 % Aceros Duros: la presencia de carbono varia entre 0.5 y 0.6 % Aceros Extraduros: El contenido de carbono que presentan esta entre el 0.6 y el 07 %

Clasificación del Acero por sus propiedades: -

Aceros especiales Aceros inoxidables. Aceros inoxidables ferríticos. Aceros Inoxidables austeníticos. Aceros inoxidables martensíticos Aceros de Baja Aleación Ultrarresistentes. Acero Galvanizado (Laminas de acero revestidas con Zinc)

Clasificación del Acero en función de su uso: Acero para herramientas: acero diseñado para alta resistencia al desgaste, tenacidad y fuerza, en general el contenido de carbono debe ser superior a 0.30%, pero en ocasiones también se usan para la fabricación de ciertas herramientas, 4

aceros con un contenido de carbono más bajo (0.1 a 0.30%); como ejemplo para fabricar una buena herramienta de talla el contenido de carbono en el acero debe ser de 0.75%, y la composición del acero en general para este tipo de herramientas debe ser: carbono 0.75 %, silicio 0.25 %, manganeso 0.42 %, potasio 0.025 %, sulfuro 0.011 %, cromo 0.03 %, níquel 2.60 %. Acero para la construcción el acero que se emplea en la industria de la construcción, bien puede ser el acero de refuerzo en las armaduras para estructuras de hormigón, el acero estructural para estructuras metálicas, pero también se usa en cerramientos de cahapa de acero o elementos de carpintería de acero. Acero Estructural o de refuerzo: De acuerdo a las normas técnicas de cada país o región tendrá su propia denominación y nomenclatura, pero a nivel general se clasifican en: Barras de acero para refuerzo del hormigón: Se utilizan principalmente como barras de acero de refuerzo en estructuras de hormigón armado. A su vez poseen su propia clasificación generalmente. Dada por su diámetro, por su forma, por su uso: -

Barra de acero liso Barra de acero corrugado. Barra de acero helicoidal se utiliza para la fortificación y el reforzar rocas, taludes y suelos a manera de perno de fijación. Malla de acero electrosoldada o mallazo Perfiles de Acero estructural laminado en caliente Ángulos de acero estructural en L Perfiles de acero estructural tubular: a su vez pueden ser en forma rectangular, cuadrada y redonda. Perfiles de acero Liviano Galvanizado: Estos a su vez se clasifican según su uso, para techos, para tabiques, etc. Composición química del Acero Galvanizado: 0.15% Carbono, 0.60% Manganeso, 0.03% Potasio, 0.035% Azufre. Composición del Acero Inoxidable: es un acero aleado que debe contener al menos un 12% de Cromo y dependiendo de los agentes exteriores corrosivos a los que va ha estar expuesto debe contener otros elementos como el níquel y el molibdeno.

5

6

Propiedades físicas: Extensión, impenetrabilidad, gravidez, calor específico, calor latente de fusión, conductividad calórica, dilatación, conductividad eléctrica. Propiedades químicas Oxidación corrosión = uniforme localizada. Tecnológicas Maquinibilidad, colabilidad, soldabilidad, ductibilidad, maleabilidad, templabilidad, fusibilidad. Mecánicas Resistencia, dureza, elasticidad, plasticidad, tenacidad.

7

8

ORIGEN DE DONDE VIENEN Y COMO SE OBTIENEN: No se conoce con exactitud la fecha en que se descubrió la técnica de fundir mineral de hierro para producir un metal susceptible de ser utilizado. Los primeros utensilios de hierro descubiertos por los arqueólogos en Egipto datan del año 3.000 a.C., y se sabe que antes de esa época se empleaban adornos de hierro. Los griegos ya conocían hacia el 1.000 a.C. la técnica, de cierta complejidad, para endurecer armas de hierro mediante tratamiento térmico. En realidad conseguían una especie de acero: el hierro absorbía carbono de las brasas y se formaba una "piel" de acero en la superficie. "200 A.C.: los indios, fabricantes de acero". Hacia el 200 A.C., los artesanos de la India dominaban ya un método mejor para producir acero. Colocaban trozos de hierro carbonado o con "piel" de acero en un recipiente de arcilla cerrado, o crisol, y lo calentaban intensamente en un horno. El carbono se distribuía gradualmente a través del hierro y producía una forma de acero mucho más uniforme. Las aleaciones producidas por los primeros artesanos del hierro (y, de hecho, todas las aleaciones de hierro fabricadas hasta el siglo XIV d.C.) se clasificarían en la actualidad como hierro forjado. Para producir esas aleaciones se calentaba una masa de mineral de hierro y carbón vegetal en un horno o forja con tiro forzado. Ese tratamiento reducía el mineral a una masa esponjosa de hierro metálico llena de una escoria formada por impurezas metálicas y cenizas de carbón vegetal. Esta esponja de hierro se retiraba mientras permanecía incandescente y se golpeaba con pesados martillos para expulsar la escoria y soldar y consolidar el hierro. El hierro producido en esas condiciones solía contener un 3% de partículas de escoria y un 0,1% de otras impurezas. En ocasiones esta técnica de fabricación producía accidentalmente auténtico acero en lugar de hierro forjado. Los artesanos del hierro aprendieron a fabricar acero calentando hierro forjado y carbón vegetal en recipientes de arcilla durante varios días, con lo que el hierro absorbía suficiente carbono para convertirse en acero auténtico. Después del siglo XIV se aumentó el tamaño de los hornos utilizados para la fundición y se incrementó el tiro para forzar el paso de los gases de combustión por la carga o mezcla de materias primas. En estos hornos de mayor tamaño el mineral de hierro de la parte superior del horno se reducía a hierro metálico y a continuación absorbía más carbono como resultado de los gases que lo atravesaban. El producto de estos hornos era el llamado arrabio, una aleación que funde a una temperatura menor que el acero o el hierro forjado. El arrabio se refinaba después para fabricar acero. "1740: redescubrimiento del acero al crisol". En 1740, el inglés Benjamin Huntsman redescubrió el procedimiento indio por casualidad, al calentar una mezcla de hierro y una cantidad cuidadosamente medida de carbón vegetal en un crisol. Pese a la invención de otros procedimientos, siguió prefiriéndose el método

9

del crisol para obtener acero de alta calidad, hasta que en 1902 se inventó el horno eléctrico. "1856: convertidor Bessemer" En 1856, el inventor inglés Henry Bessemer patentó un método más barato para fabricar acero en gran escala. Un chorro de aire atravesaba el hierro fundido y quemaba todo el carbono necesario para obtener el acero. Bessemer construyó un recipiente cónico de acero forrado de ladrillos refractarios que se llamó convertidor y que se podía inclinar para vaciarlo. El hierro fundido se vertía en el convertidor situado en posición vertical, y se hacía pasar aire a través de orificios abiertos en la base. El "soplado", que duraba unos veinte minutos, resultaba espectacular. El primer acero fabricado por este método era quebradizo por culpa del oxígeno absorbido. "1864: horno de solera abierta" El mismo año en que Bessemer presentó su procedimiento, los hermanos de origen alemán William y Friedrich Siemens estaban desarrollando un método para precalentar el aire inyectado a los hornos. A cada extremo del horno colocaron cámaras de ladrillos entrecruzados que se calentaban con los gases de la combustión y caldeaban después el aire que se inyectaba en el horno. Dos años más tarde, los hermanos Siemens patentaron un horno de solera para acero que incorporaba sus pre calentadores o "regeneradores". Pero no tuvo éxito hasta que lo mejoraron dos hermanos franceses, Pierre y Emile Martín, en 1864. "1902: acero por arco eléctrico" William Siemens había experimentado en 1878 con la electricidad para calentar los hornos de acero. Pero fue el metalúrgico francés Paul Héroult (coinventor del método moderno para fundir aluminio) quien inició en 1902 la producción comercial del acero en horno eléctrico. Se introduce en el horno chatarra de acero de composición conocida y se hace saltar un arco eléctrico entre la chatarra y grandes electrodos de carbono situados en el techo del horno. El calor desarrollado por el arco funde la chatarra y produce un acero más puro que el que ha estado en contacto con los gases de combustión. Se puede añadir mineral de acero para alterar la composición del acero, y cal o espato flúor para absorber cualquier impureza. "1948: proceso del oxígeno básico" Tras la segunda guerra mundial se iniciaron experimentos en varios países con oxígeno puro en lugar de aire para los procesos de refinado del acero. El éxito se logró en Austria en 1948, cuando una fábrica de acero situada cerca de la ciudad de Linz y de Donawitz desarrolló el proceso del oxígeno básico o L-D.

10

"1950: fundición continua" En el método tradicional de moldeo, el acero fundido del horno se vierte en moldes o lingotes y se deja enfriar. Luego se vuelven al calentar los lingotes hasta que se ablandan y pasan a trenes de laminado, donde se reducen a planchas de menor tamaño para tratamientos posteriores.

11