Dependencia e Independencia Lineal en R3

Dependencia e Independencia Lineal en R3 En álgebra lineal, independiente si un ninguno conjunto de ellos de vect

Views 306 Downloads 3 File size 212KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Dependencia e Independencia Lineal en R3 En álgebra

lineal,

independiente si

un

ninguno

conjunto de

ellos

de vectores es linealmente puede

ser

escrito

con

una combinación lineal de los restantes. Por ejemplo, en R3, el conjunto de vectores (1, 0, 0), (0, 1, 0) y (0, 0, 1) es linealmente independiente, mientras que (2, −1, 1), (1, 0, 1) y (3, −1, 2) no lo es, ya que el tercero es la suma de los dos primeros números. Definición Dado un conjunto finito de vectores v1,v2,…vn, se dice que estos vectores

son linealmente

independientes si

existen

números a1,a2…an, donde la ecuación a1,v1 + a2,v2 + … + an,vn = 0 Se satisface únicamente cuando a1,a2,…an, son todos cero. En caso contrario, se dice que son linealmente dependientes. Nótese que el símbolo a la derecha del signo igual no es cero, sino que simboliza al vector nulo 0 El conjunto de vectores nulos forma la matriz nula. Si tales números no existen, entonces los vectores son linealmente independientes. La definición anterior también puede extenderse a un conjunto infinito de vectores, concretamente un conjunto cualquiera de vectores es linealmente dependiente si contiene un conjunto finito que sea linealmente dependiente.

Utilizando conceptos de espacios vectoriales podemos redefinir la independencia lineal así:

Un conjunto de vectores U de un espacio vectorial es linealmente independiente si Esta idea es importante porque los conjuntos de vectores que son linealmente independientes, generan un espacio vectorial y forman una base para dicho espacio. Entre las propiedades de los vectores linealmente dependientes e independientes encontramos: 1. Un conjunto de vectores es linealmente dependiente si y solamente si alguno de los vectores es combinación lineal de los demás. 2. Si un conjunto de vectores es linealmente independiente cualquier subconjunto suyo también lo es. 3. Si un conjunto de vectores es linealmente dependiente, también lo es todo conjunto que lo contenga. Significación geométrica Geométricamente, dos vectores son independientes si no tienen la misma dirección. Esta definición supone que el vector nulo tiene todas las direcciones, en otras palabras este debe generar un área.

Tres vectores son independientes si y solo si no están contenidos en el mismo plano vectorial, o sea si ninguno de ellos es una combinación lineal de los otros dos (en cuyo caso estaría en el plano generado por estos vectores) en otras palabras este debe generar un volumen.

El espacio generado por un sistema de vectores es el conjunto de todas las combinaciones lineales de estos vectores. Es un espacio vectorial. El espacio generado por un vector no nulo es la recta vectorial dirigido por este vector. El espacio generado por dos vectores independientes es el plano que los contiene. Resulta fácil comprobar que el espacio generado por un sistema de vectores es el menor (por la inclusión) espacio vectorial que los contiene a todos. Se le denomina vect A, donde A es el sistema de vectores. Si n vectores son independientes, el espacio generado es de dimensión n (dimensión en el sentido usual: 0 para un punto, 1 para una recta, 2 para un plano...). Ejemplo En el espacio tridimensional usual:

u y j son dependientes por tener la misma dirección. 

u y v son independientes y definen el plano P.



u, v y w son dependientes por estar los tres contenidos en el mismo plano.



u, v y k son independientes por serlo u y v entre sí y no ser k una combinación lineal de ellos o, lo que es lo mismo, por no pertenecer al plano P. Los tres vectores definen el espacio tridimensional.



Los vectores o (vector nulo, cuyas componentes son iguales a cero) y k son dependientes ya que o = 0 ·k

Ejemplo del uso de la fórmula f: ¿Son los tres vectores siguientes independientes? Buscamos tres valores x, y y z que satisfagan la ecuación: Lo que equivale al sistema de ecuaciones siguiente: Dado que la única solución es la trivial (x = y = z = 0), los tres vectores son independientes. Demostración Supongamos que a y b son dos números reales tales que: aet + be2t = 0 Para todos los valores de t. Necesitamos demostrar que a = 0 y b = 0. Para hacer esto dividimos por et (que es un número real diferente de cero, sea cual sea t) y restando obtenemos: bet = −a En otras palabras, la función bet debe ser independiente de t, lo cual ocurre únicamente cuando b = 0. Por lo tanto, a es cero.

República Bolivariana De Venezuela. Ministerio Del Poder Popular Para La Educación L.B: Luis Antonio Morales Ramirez. Cumana,Edo-Sucre.

Dependencia e independencia lineal en r3

Prof: Rosalva,Avile

Realizado Por: Wendyfer Brito. Cesar Sanchez. Cumaná,Enero Del 2018.