solucionario procesos industriales

ejercicios de la cengel capitulos 9,10 y 11Descripción completa

Views 231 Downloads 78 File size 904KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

10-41 Una planta termoeléctrica de vapor de agua operaen el ciclo Rankine con recalentamiento. El vapor entra a la turbina de alta presión a 12.5 MPa y 550 °C, a razón de 7.7kg/s y sale a 2 MPa. El vapor luego se recalienta a presión constante a 450 °C antes de expandirse en la turbina de baja presión. Las eficiencias isentrópicas de la turbina y la bomba son 85 por ciento y 90 por ciento, respectivamente. El vapor sale del condensador como líquido saturado. Si el contenido de humedad del vapor a la salida de la turbina no debe exceder 5 por ciento, determine a) la presión de condensador, b) la producción neta de potencia y c) la eficiencia térmica. Respuestas: a) 9.73 kPa, b) 10.2 MW, c) 36.9 por ciento

9-94 Considere un ciclo Brayton simple que usa aire como fluido de trabajo, tiene una relación de presiones de 12, una temperatura máxima de ciclo de 600 °C, y la entrada al compresor opera a 90 kPa y 15 °C. ¿Qué tendrá mayor impacto en la relación de trabajo de retroceso: una eficiencia isentrópica de compresor de 90 por ciento o una eficiencia isentrópica deturbina de 90 por ciento? Use calores específicos constantes a temperatura ambiente.

11-61 Un sistema de refrigeración por compresión de dos evaporadores como se muestra en la figura P11-61 utiliza refrigerante 134a como fluido de trabajo. El sistema opera el evaporador 1 a 0 °C, el evaporador 2 a _26.4 °C y el condensador a 800 kPa. El refrigerante se circula por el compresor a razón de 0.1 kg/s, y el evaporador de baja temperatura sirve para una carga de enfriamiento de 8 kW. Determine la tasa de enfriamiento del evaporador de alta temperatura, la potencia necesaria para el compresor y el COP del sistema. El refrigerante es líquido saturado a la salida del condensador, y vapor saturado a la salida de cada evaporador, y el compresor es isentrópico. Respuestas: 6.58 kW, 4.50 kW, 3.24

EJEMPLO 10-4 El ciclo Rankine ideal con recalentamiento Considere una central eléctrica de vapor que opera en el ciclo Rankine ideal con recalentamiento. El vapor entra a la turbina de alta presión a 15 MPa y 600 °C y se condensa a una presión de 10 kPa. Si el con te ni do de humedad del vapor a la salida de la turbina de baja presión no excede 10.4 por ciento, de termine a) la presión a la que el vapor se debe recalentar y b) la eficiencia térmica del ciclo. Su ponga que el vapor se re calienta hasta la temperatura de entrada de la turbina de alta presión.

EJEMPLO 10-5 El ciclo Rankine ideal regenerativo Considere una central eléctrica de vapor que opera en un ciclo Rankine ideal regenerativo con un calentador abierto de agua de alimentación. El vapor entra a la turbina a 15 MPa y 600 °C, y se condensa en el condensador a una presión de 10 kPa. Una parte de vapor sale de la turbina a una presión de 1.2 MPa y entra al calentador abierto de agua de alimentación. Determine la fracción de vapor extraído de la turbina y la eficiencia térmica del ciclo.

10-16 Un ciclo Rankine ideal simple que usa agua como fluido de trabajo opera su condensador a 40 °C y su caldera a 300 °C. Calcule el trabajo que produce la turbina, el calor que se suministra en la caldera, y la eficiencia térmica de este ciclo cuando el vapor entra a la turbina sin ningún sobrecalentamiento.

10-74 El vapor de agua entra a la turbina de una planta de cogeneración a 7 MPa y 500 °C. Una cuarta parte del vapor se extrae de la turbina a una presión de 600 kPa para calentamiento de proceso. El vapor restante sigue expandiéndose hasta 10 kPa. El vapor extraído se condensa luego y se mezcla con el agua de alimentación a presión constante, y la mezcla se bombea a la presión de la caldera de 7 MPa. El flujo másico de vapor a través de la caldera es 30 kg/s. Despreciando cualquier caída de presión y cualquier pérdida de calor en la tubería, y suponiendo que la turbina y la bomba son isentrópicas, determine la producción neta de potencia y el factor de utilización de la planta.

10-107 Una planta textil necesita 4 kg/s de vapor de agua saturado a 2 MPa, que se extrae de la turbina de una planta de cogeneración. El vapor entra a la turbina a 8 MPa y 500 °C a razón de 11 kg/s, y sale a 20 kPa. El vapor extraído sale del calentador de proceso como líquido saturado, y se mezcla con el agua de alimentación a presión constante. La mezcla se bombea a la presión de la caldera. Suponiendo una eficiencia isentrópica de 88 por ciento tanto para la turbina como para las bombas, determine a) la tasa de suministro de calor de proceso, b) la producción neta de potencia y c) el factor de utilización de la planta.

11-60 Considere un sistema de refrigeración en cascada de dos etapas que opera entre los límites de presión de 1.2 MPa y 200 kPa con refrigerante 134a como fluido de trabajo. El rechazo de calor del ciclo inferior al superior tiene lugar en un intercambiador de calor adiabático a contracorriente en donde las presiones en los ciclos superior e inferior son 0.4 y 0.5 MPa, respectivamente. En ambos ciclos el refrigerante es un líquido saturado a la salida del condensador y un vapor saturado a la entrada del compresor, y la eficiencia isentrópica del compresor es de 80 por ciento. Si el flujo másico del refrigerante en el ciclo inferior es de 0.15 kg/s, determine a) el flujo másico del refrigerante a través del ciclo superior, b) la tasa de remoción del espacio refrigerado y c) el COP de este refrigerador. Respuestas: a) 0.212 kg/s, b) 25.7 kW, c) 2.68

11-64 Un sistema de refrigeración en cascada de dos etapas debe dar enfriamiento a 40 °C operando el condensador de alta temperatura a 1.6 MPa. Cada etapa opera en el ciclo ideal de refrigeración por compresión de vapor. El sistema superior de refrigeración por compresión de vapor (VCRS, por sus siglas en inglés) usa agua como fluido de trabajo, y opera su evaporador a 5 °C. El ciclo inferior usa refrigerante 134a como fluido de trabajo y opera su condensador a 400 kPa. Este sistema produce un efecto de enfriamiento de 20 kJ/s. Determine los flujos másicos de R-134a y agua en sus ciclos respectivos, y el COP total de este sistema en cascada.

11-66 Considere un ciclo de dos etapas de refrigeración en cascada con una cámara de evaporación instantánea como la que se muestra en la figura P11-66, con refrigerante 134a como fluido de trabajo. La temperatura del evaporador es de –10 °C, y la presión del condensador es de 1 600 kPa. El refrigerante sale del condensador como líquido saturado, y se regula a una cámara de evaporación instantánea que opera a 0.45 MPa. Parte del refrigerante se evapora durante este proceso de evaporación instantánea, y este vapor se mezcla con el refrigerante que sale del compresor de baja presión. La mezcla se comprime luego hasta la presión del condensador, mediante el compresor de alta presión. El líquido en la cámara de evaporación instantánea se estrangula hasta la presión del evaporador y enfría el espacio refrigerado al vaporizarse en el evaporador. El flujo másico del refrigerante a través del compresor de baja presión es de 0.11 kg/s. Suponiendo que el refrigerante sale del evaporador como vapor saturado, y que la eficiencia isentrópica es de 86 por ciento para ambos compresores, determine a) el flujo másico del refrigerante a través del compresor de alta presión, b) la tasa de refrigeración suministrada por el sistema, y c) el COP de este refrigerador. También determine d) la tasa de refrigeración y el COP si este refrigerador operase en un ciclo por compresión de vapor de una sola etapa entre la misma temperatura de evaporación y la

misma presión del condensador, con la misma eficiencia del compresor y el mismo flujo másico que el calculado en el inciso a).

11-80 Un sistema de refrigeración de gas que usa aire como fluido de trabajo tiene una relación de presiones de 5. El aire entra al compresor a 0 °C. El aire de alta presión se enfría a 35 °C rechazando calor al entorno. El aire sale de la turbina a 80 °C y luego absorbe calor del espacio refrigerado antes de entrar al regenerador. El flujo másico de aire es de 0.4 kg/s. Suponiendo eficiencias isentrópicas de 80 por ciento para el compresor y 85 por ciento para la turbina y usando calores específicos constantes a temperatura ambiente, determine a) la efectividad del regenerador, b) la tasa de remoción de calor del espacio refrigerado y c) el COP del ciclo. También determine d) la carga de refrigeración y el COP si este sistema operase en el ciclo simple de refrigeración de gas. Use la misma temperatura dada de entrada al compresor, la temperatura de entrada a la turbina como se calculó y las mismas eficiencias de compresor y de turbina.

11-129 El sistema de refrigeración de la figura P11-129 es otra variación del sistema básico de refrigeración por compresión de vapor que intenta reducir el trabajo de compresión. En este sistema se usa un intercambiador de calor para sobrecalentar el vapor que entra al compresor al mismo tiempo que se subenfría el líquido que sale del condensador. Considere un sistema de este tipo que usa refrigerante 134a como su fluido refrigerante y opera el evaporador a 10.1 °C, y el condensador a 800 kPa. Determine el COP del sistema cuando el intercambiador de calor da un subenfriamiento de 11.3 °C a la entrada de la válvula de estrangulación. Suponga que el refrigerante sale del evaporador como vapor saturado y que el compresor es isentrópico. Respuesta: 5.23