EI-007 Rev. 3 - Underground

ENGINEERING STANDARD EI - 007 UNDERGROUND PIPING AND SURFACE DRAINAGE Please discard any previous issue of this Stand

Views 20 Downloads 0 File size 1019KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

ENGINEERING STANDARD

EI - 007

UNDERGROUND PIPING AND SURFACE DRAINAGE

Please discard any previous issue of this Standard.

Revision Number Log Approval

Rev.

Date

By

Pages

Remarks

0 1

11.03.97 22.3.04

PCA PCA

3, 7

HPJ HLM

ISSUED FOR APPROVAL APROVED FOR DESIGN

2

25.1.05

PCA

9, Appendix 3

HLM

REVISED AS NOTED

3

6.4.06

PCA

8, 9, Appendix 2

JIP

APPENDIX 2 REPLACED

ENAP REFINERÍAS BÍO-BÍO

ENG STD. No. PAGE No. REVISION No.

DATE

: EI - 007 : 2 : 0 : 11.03.97

UNDERGROUND PIPING AND SURFACE DRAINAGE

TABLE OF CONTENTS

I. SCOPE

3

II. REFERENCES

3

III. TYPE OF SYSTEMS

3

IV. METHOD OF DRAINAGE

4

V. QUANTITY OF WATER TO BE DRAINED

4

VI. FLOW AND SIZING

5

VII. MATERIAL

7

VIII. SURFACE ACCESS DRAINAGE DETAILS TO UNDERGROUND DRAIN SYSTEM

7

APPENDIX 1

10

APPENDIX 2

12

ENAP REFINERIAS BÍO-BÍO

ENG. STD. No. PAGE No. REVISION No.

DATE

: EI - 007 : 3 : 0 : 11.03.97

UNDERGROUND PIPING AND SURFACE DRAINAGE

I.

SCOPE A.

II.

III.

This Engineering Standard defines the criteria for the design surface drainage quantities and sizing of piping and ditches used for their removal.

REFERENCES A.

Data Book for Civil Engineering, Vol. 1, Design (Seelye)

B.

Handbook of Applied Hydraulics (Davis)

C.

ANSI/AWWA C214 Tape Coating Systems for the Exterior of Steel Water Pipelines

D.

Engineering standard EI-002, Foundation and Elevated Concrete Structures

E.

Applicable sections of ASTM, AWWA and ANSI shall be followed.

TYPE OF SYSTEMS A.

B.

C.

Storm runoff can be classified as clean (uncontaminated) storm water and oily (contaminated) storm runoff. 1.

The clean storm water sewer generally is free of gases, Hydrocarbon and other pollutants. Offsite roads, parking lots, building areas, and undeveloped areas shall be considered clean water areas.

2.

The oily storm water sewer generally contains high quantity of suspended solids and Hydrocarbons but usually no other pollutants. This system collects surface drainage from all developed areas, such as paved areas and roads within the process areas, drains from pumps, tanks, towers, exchangers and other process equipments. Drainage from this system must be collected for treatment before discharged in a clean (uncontaminated) water system.

Process waste water can be classified as clean and oily. 1.

Clean waste water contains dissolved or suspended solids in varying quantities, free of gases, Hydrocarbon, and other pollutants. Typical systems are boiler blowdown, water treatment of raw water for process plants and steam generator blowdowns.

2.

Oily waste water is process water that has been in direct contact with Hydrocarbons, or other pollutants. Major sources of oily-water wastes are from spillage, process wastes, leaky valves and flanges, pump drains, pump-out, equipment washdown, fire water and equipment drains.

Sanitary sewer system shall collect all raw sanitary wastes from onsite and offsite toilet facilities, lavatories, showers, and drinking fountains.

ENAP REFINERIAS BÍO-BÍO

ENG. STD. No. PAGE No. REVISION No.

DATE

: EI - 007 : 4 : 0 : 11.03.97

UNDERGROUND PIPING AND SURFACE DRAINAGE

IV.

V.

METHOD OF DRAINAGE A.

The capacities of the drainage systems shall be based on the greatest total quantity expected.

B.

Inside unit limits underground piping will be the normal means of conveyance of oily water.

C.

Drainage ditches shall be used in offsite areas and around the periphery of each process unit. Storm water from outside the plant may be routed around the entire plant, or through it, as determined by local conditions.

QUANTITY OF WATER TO BE DRAINED A.

Storm Runoff (Rainwater) 1.

The design flow rate of rainwater shall be based on the "Rational Formula": Q=

0.001 CIA

where: Q=

Volume of run-off from an area, cubic meters per hour

C=

Run-off coefficient, as follows:

Paved Area =

1.00

Unpaved Area = 0.50 (or coefficient supplied by Soils Consultant)

a.

A=

Area, sq. meters

I=

Intensity, mm/hour, a function of design intensity and time of concentration

Design intensity shall be the maximum rainfall expected once in ten (10) years as follows:

Rainfall Duration (Hours) 1 2 4 6 8 10 12 14 18 24

Rainfall (mm/hr) 22.7 17.7 11.1 9.2 8.2 7.4 6.8 6.4 5.7 4.8

ENAP REFINERIAS BÍO-BÍO

ENG. STD. No. PAGE No. REVISION No.

DATE

: EI - 007 : 5 : 0 : 11.03.97

UNDERGROUND PIPING AND SURFACE DRAINAGE

2.

B.

VI.

b.

Time required for concentration will be estimated from Reference II.A.

c.

The combination will be used to estimate intensity as illustrated in Reference II.A.

Add process water in case that job process water data require specific abnormal drainage capacity.

Firewater 1.

Within the unit limits of each process area, firewater flow rate shall be agreed with Petrox for each project.

2.

The design quantity of firewater will not be added to the total of other liquids. Rather, the larger of the two will determine required pipe size.

FLOW AND SIZING A.

Pipe 1.

Pipe sizes shall be determined by use of the Hazen and Williams formula, as follows: Q = 0.849 ACR0.63S0.54;

V = 0.849 CR0.63S0.54

where: Q=

volume of flow m3/sec

V=

Velocity m/sec

A=

cross sectional area of pipe, sq meter

C=

roughness coefficient

e.g.

140 for new steel pipe 130 for new ductile iron pipe

R=

hydraulic radius, meter = A/P

P=

wetted perimeter of pipe, meter

S=

slope of line, m/m of length

2.

Drainage line sizes shall be sized to have flow area not more than 80% full at design rates. Sanitary sewer lines sizes to be half full.

3.

Minimum size of lines shall be 4”. Minimum size of main lines shall be 6”.

ENAP REFINERIAS BÍO-BÍO

ENG. STD. No. PAGE No. REVISION No.

DATE

: EI - 007 : 6 : 0 : 11.03.97

UNDERGROUND PIPING AND SURFACE DRAINAGE B.

Ditches 1.

The Manning Formula expresses the relationship of ditch size to quantity of fluid: Q = A (1/N)R2/3S1/2 where:

2.

C.

Q=

volume of flow. m3/sec

A=

wetted cross section of ditch, sq meters

N=

coefficient of roughness of ditch prefabricated concrete surface. N = 0,013

R=

Hydraulic Radius, m = A/P

P=

wetted perimeter of ditch, m

S=

slope ditch, m/m of length

Ditch sizes shall be selected to have a normal height with 100 mm of freeboard with capacity flow. The selection shall be checked according Petrox drawing No. CN-6528-B included in appendix 1.

Slope and Velocity 1.

Generally, the slope of drain piping shall be as follows: a.

Outside of buildings, 1 m per 100 m (1%).

b.

Under building floors, 2 m per 100 m (2%).

2.

As a minimum, a line may slope 190 mm per 100 meters, provided that an approximate velocity of .91 m/sec is maintained.

3.

These slopes may be varied to meet the connection at the plant Unit Limit, or to obtain a more uniform gradient to an established invert elevation.

4.

Water velocities in piping shall range from .91 to 2.13 m/sec.

5.

Water velocities in unlined ditches shall not exceed 0.61 m/sec.

6.

The minimum velocity for sanitary sewer shall be 0.61 m/sec.

7.

The slope of drainage areas shall not be less than 10 mm per meter nor more than 40 mm per meter. Maximum total drop from high point paving to catch basin shall not exceed 150 mm.

ENAP REFINERIAS BÍO-BÍO

ENG. STD. No. PAGE No. REVISION No.

DATE

: EI - 007 : 7 : 0 : 11.03.97

UNDERGROUND PIPING AND SURFACE DRAINAGE

VII.

MATERIAL The pipe material shall be carbon steel pipe (CS) except when specifically required by Petrox.

VIII.

a.

Carbon steel pipe shall conform to AWWA C-200.

b.

Fittings shall conform to AWWA C-208.

c.

The material for gratings shall be flat bar steel hot dip galvanized according to ASTM A153.

d.

The material for ditches shall be prefabricated concrete, according to the standard dimensions used in Petrox as showed in drawing CN-6528-B, attached in appendix 1.

SURFACE ACCESS DRAINAGE DETAILS TO UNDERGROUND DRAIN SYSTEM A.

B.

C.

Pump and Equipment Drains 1.

Drains for pumps, vessels and other process equipment shall consist of a 4” open bell, approximately 75 mm above the high point of paving, connecting into a branch line which discharges into a catch basin. Where the drain volume exceeds 18 m3/h, 6” drain lines shall be used. A steel bar screen shall be placed in the bell.

2.

Traps are required in the oily water main boxes or manholes, a clean-out branch shall be provided in each main box or manhole.

Floor Drains 1.

Floor drains shall be provided in enclosed buildings. Floors shall be sloped to the drain. One floor drain shall be provided for each 185 square meters of surface area, as a maximum.

2.

Floor drains shall not be installed in control houses, electrical substations or switchgear sheds.

3.

Floor drains shall be made of reinforced concrete of sufficient strength to carry the normal traffic of the floor.

Area Drains 1.

For onsite areas too small to require a catch basin, area drains shall be used to collect rainfall and surface drainage. The area drains shall discharge through a feeder line to a catch basin.

2.

In offsite areas, area drains shall be used only when ditching or contouring will not provide drainage.

3.

Area drains shall be made of reinforced concrete having not less than a 6” outlet and a surface area of not less than 0.16 m2 covered with a steel flat bar grating.

ENAP REFINERIAS BÍO-BÍO

ENG. STD. No. PAGE No. REVISION No.

DATE

: EI - 007 : 8 : 1 : 6.04.06

UNDERGROUND PIPING AND SURFACE DRAINAGE

D.

E.

F.

Cleanouts 1.

Cleanouts shall be installed in drain lines when the direction changes more than 45 degrees.

2.

Cleanouts shall be installed as required in VIII.A.2.

3.

Cleanouts shall be accessible but shall not protrude above the top of paving or grade.

Catch Basins 1.

Catch basins shall be used in paved areas to collect rainfall, surface drainage, and process drains from areas in approximate squares whose sides are 23 meters long. Catch basins shall be located at the low point of paving and paving in their areas shall slope toward them.

2.

Catch basins shall discharge into manholes. Where this is impractical, one or more catch basins shall discharge to a line leading to a manhole or a main line.

3.

Catch basins shall be connected with straight runs of pipe. When straight runs are impossible, the pipe may be drifted to a maximum of 6 degrees at each joint.

4.

Unpaved process areas shall not be provided with catch basins. Surface water will be removed through ditches to the existing mains.

5.

Drainage area around heaters shall be arranged to provide dry catch basin adjacent to the heaters but not under heaters. The line from dry catch basins shall be individually sealed at a manhole.

6.

Catch basins shall not be located beneath equipment, piperack, stairways and ladders.

7.

Catch basin shall be constructed of precast or cast in site reinforced concrete.

8.

Gratings shall be steel flat grating as manufactured by Arrigoni or approved equal. Types of gratings and load capacities are shown in appendix 2.

Manholes 1.

Manholes shall be used where main lines change direction or size, at intersections or junctions of main lines, and at intervals along straight lines.

2.

Maximum manhole intervals shall be 90 meters for main lines less than 24” and 150 meters for main lines 24” and larger.

3.

Manholes shall not be located within areas confined by diking or firewall. Catch basins shall be used in these areas.

4.

Inlet connections to manholes shall be sealed to a minimum depth of 300 mm.

5.

Manholes for oily water sewers shall be vented with a 2” minimum size vent. Vent lines shall have a flame arrestor and shall terminate not less than 3 m above grade. Vents shall not terminate below equipment or piping or within 30 meters from a fired heater. A vent may terminate not closer than 15 meters from a fired heater, if the vent stack is at least 15 meters high.

ENAP REFINERIAS BÍO-BÍO

ENG. STD. No. PAGE No. REVISION No.

DATE

: : : :

EI - 007 9 1 6.04.06

UNDERGROUND PIPING AND SURFACE DRAINAGE

F.

6.

Manholes carrying storm water or other waste water carrying a large amount of sediment shall have a sump not less than 300 mm deep below the invert of the outlet or inlet, whichever is the lowest.

7.

Manholes in the sanitary sewers shall have the bottom flush with the invert of the outlet sewer.

8.

Manholes shall be constructed of cast in site reinforced concrete.

9.

Frames, covers and steps shall be steel flat bar grating backed with a steel plate 6 mm thick with a conrete fill in betweem them. The steel grating shall be as manufactured by Arrigoni. Types of gratings and load capacities are shown in appendix 2.

Impervious sealing 1.

For the reinforced concrete construction of manholes and catch basins PVC ribbons shall be used to assure impervious construction joints between the base slab and the walls. Product Cinta PVC SIKA CL is recommended.

ENAP REFINERIAS BÍO-BÍO

ENG. STD. No. PAGE No. REVISION No.

DATE UNDERGROUND PIPING AND SURFACE DRAINAGE

APPENDIX 1

STANDARD DRAWING CN-6528-B

: EI - 007 : 10 : 0 : 11.03.97

ENAP REFINERIAS BÍO-BÍO

ENG. STD. No. PAGE No. REVISION No.

DATE UNDERGROUND PIPING AND SURFACE DRAINAGE

APPENDIX 2

CATALOG FOR GRATINGS AS MANUFACTURED IN CHILE BY ARRIGONI

: EI - 007 : 11 : 0 : 11.03.97

ENAP REFINERIAS BÍO-BÍO

ENG. STD. No. PAGE No. REVISION No.

DATE UNDERGROUND PIPING AND SURFACE DRAINAGE

APPENDIX 3

CATALOG OF CINTAS SIKA CL

: EI - 007 : 12 : 0 : 11.03.97

Ficha Técnica Versión diciembre, 2003 Cintas PVC Sika CL

Cintas PVC Sika CL Definición

Construcción

General

Las Cintas PVC Sika® CL son perfiles elásticos a base de Policloruro de vinilo de gran resistencia a la tracción, gran coeficiente de alargamiento a la ruptura, impermeables, resistentes al envejecimiento y agentes químicos agresivos. Existen en varias dimensiones y secciones para las diferentes solicitaciones de uso. Las Cintas PVC Sika® CL se utilizan en el sellado estanco de los diferentes tipos de juntas que se presentan en construcciones, ya se trate de juntas de dilatación o de trabajo, con altas presiones de agua.

Usos

Juntas de dilatación y de construcción en canales, depósitos de agua, fundaciones en contacto con napas y en general en todo tipo de obra hidráulica que requiera estanqueidad.

Ventajas

■ ■ ■ ■ ■ ■

Normas

Las Cintas PVC Sika® CL están certificadas como producto no tóxico por el Instituto de Salud Pública de Chile, y con la norma de U.S. Corp. of Engineers Specification CRD - C 572 -74.

Construidas con PVC de alta calidad y durabilidad Sección con multinervadura contra el paso de agua Fácil de colocar Fácil de unir mediante termofusión Aptas para altas presiones de agua Diferentes tipos y tamaños

Datos Básicos Color

Perfiles color amarillo

Almacenamiento

En lugar fresco y bajo techo. No apoyar sobre elementos punzantes.

Presentación

■ Rollos de 15 metros de largo y fracciones por metro. ■ Piezas especiales para cruces y ángulos.

Datos Técnicos ■ ■ ■ ■ ■ ■

Aplicación Método de aplicación

Resistencia a la tracción : Alargamiento de la ruptura : Dureza Shore A : Resistencia a lo álcalis : Temperaturas límites de empleo : Temperatura de soldar :

14 N/mm2 > 300% 70 a 90 Cumple norma -35ºC a + 55ºC 200 °C aprox.

Las Cintas PVC Sika® CL, al ser elaboradas en policloruro de vinilo, deben ser soldadas para lograr piezas integrales de largos definidos o de formas especiales, que permitan el sellado de juntas en elementos de hormigón que cruzan o forman ángulos. La unión se realiza exclusivamente mediante calor aplicado a través de una plancha metálica, preferentemente de cobre. El procedimiento a seguir es el siguiente: • • •



Cortar los extremos al unir de tal forma que coincidan perfectamente en todo su ancho, la superficie de contacto a soldar debe ser pareja y uniforme. Enfrentar los extremos a soldar, dejando entre ambos un espesor algo superior al de la plancha metálica. Calentar la plancha metálica hasta la temperatura de fusión del material (verificar previamente con algún trozo) y colocarla entre los extremos a soldar; aproximar ambos extremos hasta que estén en contacto con ella, manteniendo esta posición por algunos segundos hasta notar la fusión del material. Retirar la plancha y cerrar rápidamente los dos extremos de la cinta.

Para lograr un anclaje perfecto de las aletas y evitar todo punto débil en el hormigón y lograr una solución de impermeabilidad integral, la Cintas PVC Sika®

1

Cintas PVC Sika CL

1/3

CL tipo 0 debe ubicarse a una distancia desde la superficie, igual a la mitad de su

ancho como mínimo, y fijarse a las enfierraduras mediante grapas (ver detalle).

Para lograr una junta impermeable, es necesario que la Cintas PVC Sika® CL se encuentre perfectamente embebida y adherida en el hormigón, por lo que es recomendable el uso de un aditivo plastificante, para aumentar la trabajabilidad de éste y asegurar un llenado total, con lo que se obtiene un hormigón compacto e impermeable.(Ver Nota Técnica Nº4 Diseño de Juntas). Notas sobre aplicación

La plancha metálica debe encontrarse limpia de polvo y restos de carbonización del PVC. Se debe evitar el calentamiento excesivo o insuficiente de la plancha. En casos que se requiera, se puede disponer de una “machina” o molde de madera que se adapte a la forma de la cinta a soldar, para efectuar uniones en forma más segura. En muchos casos es necesario contar con piezas para solucionar puntos singulares como cruces, ángulos rectos, etc. Estas piezas especiales se confeccionan a pedido y tienen un largo de 50 cm. desde el eje, lo que facilita la soldadura de la Cinta PVC Sika® CL en la obra.

Instrucciones de seguridad Precauciones de Manipulación

Protéjase utilizando guantes y anteojos de seguridad. En caso de contacto con los ojos, lavar inmediatamente con abundante agua. En general, en caso de emergencia contacte al CITUC, FONO: 635 38 00.

Ecología

No disponer el producto en el suelo o cursos de agua, sino conforme a las regulaciones locales y previa neutralización. Para mayor información, solicite la hoja de seguridad del producto.

Observaciones

Las indicaciones que anteceden están basadas en ensayos que consideramos seguros y son correctas de acuerdo a nuestra experiencia. Sin embargo, no pudiendo controlar las condiciones de aplicación, no nos responsabilizamos por daños, perjuicios o pérdidas ocasionadas por el uso inadecuado de los productos. Aconsejamos al usuario determinar previamente si estos son apropiados para el uso particular propuesto. Nos reservamos el derecho a efectuar cambios a fin de adaptar nuestros productos a los niveles más altos de la tecnología.

CRITERIOS PARA DETERMINAR EL ANCHO DE LAS CINTAS PVC SIKA® Se debe partir de la premisa que el agua puede penetrar en cualquier tipo de hormigón, pero la profundidad depende de la presión del agua e indudablemente de la calidad del hormigón. De lo anterior se puede deducir que la impermeabilidad de la junta depende del trayecto que debe seguir el agua a través de la Cinta PVC Sika® CL, la que debe diseñarse con ancho un poco superior que la profundidad de penetración del agua en el hormigón. Ahora, con respecto a las Cintas PVC Sika® CL de superficie, como es el caso de la tipo DR-27, la impermeabilidad no está determinada por el ancho, sino que más bien por los nervios de la estanqueidad.

2

Cintas PVC Sika CL

2/3

TIPOS DE CINTA PVC SIKA® CL Tipo

Ubicación de la Cinta

Perfil de la Banda

Ancho (Cm)

DR - 27

Superficie del hormigón *

27

23

15

0 - 15 0 - 22 0 - 32

Interior del hormigón

15 22 32

0.9 1.5 3.0

5 10 25

**

Peso (kg./ml)

Altura máxima de agua en m.

Construcción

* Máximo 10 mm de expansión y 10 mm de movimiento en cizalle ** Máximo 20 mm de expansión y 10 mm de movimiento en cizalle

Sika SA Chile Av. Pdte. Salvador Allende 85 Tel. 2-5106510 San Joaquin Fax 2-5523875 Santiago www.sikachile.cl

3

Cintas PVC Sika CL

3/3