ECOGRAFIA

ECOGRAFIA Instrumentaciòn y Perifèricos 1 INDICE 1. 2. 3. 4. 5. 6. Introducción Principios Físicos Transductor Modo

Views 291 Downloads 6 File size 1MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

ECOGRAFIA

Instrumentaciòn y Perifèricos

1

INDICE 1. 2. 3. 4. 5. 6.

Introducción Principios Físicos Transductor Modos de funcionamiento Equipo de Ecografía Conclusiones

Instrumentaciòn y Perifèricos

2

INTRODUCCION (1) 

La ecografía puede definirse como un medio diagnóstico médico basado en las imágenes obtenidas mediante el procesamiento de los ecos reflejados por las estructuras corporales, gracias a la acción de pulsos de ondas ultrasónicas. Instrumentaciòn y Perifèricos

3

INTRODUCCION (2) El procedimiento de una ecografía sigue este proceso: 1) Se unta un gel en la zona del cuerpo. 

2) El transductor envía un ultrasonido 3) El sonido del transductor se refleja en las estructuras del interior del cuerpo Instrumentaciòn y Perifèricos

4

INTRODUCCION (3) 4) La información de los sonidos es analizada por una computadora. 5)La computadora entonces crea una imagen de estas estructuras en una pantalla de televisión.

Instrumentaciòn y Perifèricos

5

INTRODUCCION (4) Tipos de ecografía:  Ecografía Doppler  Ecografía Vascular  Ecocardiograma  Ecografía Abdominal  Ecografía Obstretica  Ecografía del Seno  ………………… Instrumentaciòn y Perifèricos

6

PRINCIPIOS FISICOS (1) 

Sonido es la sensación producida a través del oído por una onda longitudinal originada por la vibración de un cuerpo elástico y propagada por un medio material

Instrumentaciòn y Perifèricos

7

PRINCIPIOS FISICOS (2) 

El Ultrasonido podría entonces definirse como un tren de ondas mecánicas, generalmente longitudinales, originadas por la vibración de un cuerpo elástico y propagadas por un medio material y cuya frecuencia supera la del sonido audible por el genero humano: 20.000 ciclos/s (20 KHz) aproximadamente.

Instrumentaciòn y Perifèricos

8

PRINCIPIOS FISICOS (3) Principales parámetros de la curva sinusoidal:   

Velocidad Frecuencia Longitud de Onda

Instrumentaciòn y Perifèricos

9

PRINCIPIOS FISICOS (3)

Instrumentaciòn y Perifèricos

10

PRINCIPIOS FISICOS (4) 

Las ondas sonoras corresponden básicamente a rarefacción y compresión periódica del medio en el cual se desplazan como vemos en la gráfica siguiente:

Instrumentaciòn y Perifèricos

11

PRINCIPIOS FISICOS (5) Diferencia entre radiación electromagnética y ultrasonido:  Onda Transversal (ejemplo: ola de Agua)  Onda Longitudinal (ejemplo: moléculas de aire rarificadas) Instrumentaciòn y Perifèricos

12

PRINCIPIOS FISICOS (6) Diferencia entre radiación electromagnética y ultrasonido:  Las ondas sonoras requieren un medio para transmitirse.  Los rayos X pueden viajar en el vació.

Instrumentaciòn y Perifèricos

13

PRINCIPIOS FISICOS (7) Para la ecografía se usan dos tipos de ultrasonidos:  Ultrasonidos de onda continua (método doppler)  Ultrasonidos de onda pulsátil (modo A, B, M y tiempo real)

Instrumentaciòn y Perifèricos

14

PRINCIPIOS FISICOS (8) IMAGEN: frecuencia y longitud de la onda tienen relación con la resolución; amplitud con la intensidad. SONIDO: la frecuencia de la onda es el tono, la amplitud es la intensidad.

Instrumentaciòn y Perifèricos

15

PRINCIPIOS FISICOS (9): La velocidad La velocidad del ultrasonido depende de la densidad y la facilidad de compresión del medio a través del cual se trasmiten las ondas. (ejemplo: raíles del ferrocarril) La velocidad del ultrasonido no depende de la frecuencia , depende por el medio.

Instrumentaciòn y Perifèricos

16

PRINCIPIOS FISICOS (9):

Instrumentaciòn y Perifèricos

17

PRINCIPIOS FISICOS (10): La frecuencia Alta frecuencia     



Longitud de onda corta Mejor resolución espacial Menos capacidad de penetración Mayor grado de absorción Puedo distinguir objetos pequeños (ejemplo:ojo 15 Mhz, hígado 2.5 Mhz) Se reduce su dispersión desde la fuente: mas direccionalidad. Instrumentaciòn y Perifèricos

18

PRINCIPIOS FISICOS (11): La Intensidad Def.: es el flujo de energía a través de unidad de área.  





Es proporcional a la amplitud de la onda Es proporcional al desplazamiento y velocidad de las partículas en el medio. Varia en función del transductor utilizado, la longitud del pulso y el modo de aplicación. La unidad de medida es el Decibel Instrumentaciòn y Perifèricos

19

PRINCIPIOS FISICOS (12): La Intensidad Ejemplo: Si el haz ultrasónico trasmitido es 100 veces mas intenso que el reflejado, ¿Cuál será la intensidad del haz reflejado? Respuesta: Ir(dB) = 10 log(Ir/It) Ir = 10 log 1/100 Ir = 10 (-2) Ir = -20 dB Instrumentaciòn y Perifèricos

20

PRINCIPIOS FISICOS (12):

Instrumentaciòn y Perifèricos

21

PRINCIPIOS FISICOS (13): La Ecografía Envía paquetes de energía dentro del paciente. Un pequeño porcentaje es reflejado en las diferentes interfases y llega al transductor el cual la traduce a un pequeño voltaje. El mayor porcentaje de energía atraviesa las diversas interfases y penetra a regiones mas profundas.

Instrumentaciòn y Perifèricos

22

PRINCIPIOS FISICOS (14) Las interfases son los límites entre medios de diferentes impedancias.  Impedancia ( Z ) es igual al producto de la densidad de un medio por la velocidad del sonido en dicho medio: Z = VD 

Instrumentaciòn y Perifèricos

23

PRINCIPIOS FISICOS (15) Haz Ultrasonido atenuado:  Reflexión  Refracción  Dispersión (superficie irregular)  Absorción Instrumentaciòn y Perifèricos

24

TRANSDUCTOR(1) 





Transductor: cualquier dispositivo que convierte un tipo de energía en otro. Transductor de sonido: convierte energía eléctrica en energía de sonido y viceversa(ej:micrófonos) Transductor ultrasónico: se basa en el efecto piezoeléctrico. Instrumentaciòn y Perifèricos

25

TRANSDUCTOR(2): Efecto Piezoeléctrico:   



Estimulación eléctrica de un material cristalino El cristal se expande Si la polaridad de la señal eléctrica se invierte el cristal se contrae El cristal eléctrico se expande y se contrae a la misma frecuencia de la señal eléctrica

Instrumentaciòn y Perifèricos

26

TRANSDUCTOR(3) 





Este movimiento mecánico produce un ultrasonido de la misma frecuencia de la señal eléctrica. El transductor convierte la señal eléctrica en movimiento mecánico y este en ultrasonido. Es posible el procedimiento inverso.

Instrumentaciòn y Perifèricos

27

TRANSDUCTOR(4) Componentes de un transductor:    



Carcasa Cara Capa adaptadora Material amortiguador Conector Instrumentaciòn y Perifèricos

28

TRANSDUCTOR(5) Cristal piezoeléctrico:  Material (PZT, cuarzo, circonato de plomo y bario)  Grosor (la mitad o la cuarta parte de la longitud de la onda)  Diámetro (controla la forma del haz ultrasónico) Instrumentaciòn y Perifèricos

29

TRANSDUCTOR(6) 



Campo próximo (zona Fresnel):  Haz colimado  Variación de intensidad entre frente de onda Campo Lejano (zona Fraunhofer):  Divergencia del haz ultrasónico  Intensidad mas uniforme

Instrumentaciòn y Perifèricos

30

TRANSDUCTOR(6)

Instrumentaciòn y Perifèricos

31

TRANSDUCTOR(7) La mejor resolución de la imagen se obtiene en la zona de transición entre el campo próximo y el campo lejano.

Instrumentaciòn y Perifèricos

32

TRANSDUCTOR(8) 

Resolución Espacial: capacidad del sistema para identificar interfases muy próximas. La imagen ultrasónica comprende resolución axial y resolución lateral. Instrumentaciòn y Perifèricos

33

TRANSDUCTOR(9)

Instrumentaciòn y Perifèricos

34

MODOS DE FUNCIONAMIENTO(1) Modos de operación de la ecografía:  Modos de imagen estática: modo A y modo B  Modos de imagen dinámica: modo M y el tiempo real  Modo de localización: modo Doppler. Instrumentaciòn y Perifèricos

35

MODOS DE FUNCIONAMIENTO(2): PulsoEco Todos los ultrasonidos menos el Doppler emplean técnicas de Pulso-eco.

Instrumentaciòn y Perifèricos

36

MODOS DE FUNCIONAMIENTO(3): Modo A  

   



Modo de Amplitud Se basa en la técnica de Pulsoeco Se visualizan blips en pantalla Distancia entre blips….. Altura de cada blip…… Emplea uno o dos transductores Principal finalidad es medir la profundidad de interfases

Instrumentaciòn y Perifèricos

37

MODOS DE FUNCIONAMIENTO(4): Modo B  







Modo de Brillo El eco captado se registra en la pantalla como un punto. tamaño y luminosidad dependen de la intensidad del eco. Los puntos se reparten por la pantalla. Con el movimiento del transductor en un solo plano se obtiene otra serie de puntos, que al sumarse configuran una imagen 2D.

Instrumentaciòn y Perifèricos

38

MODOS DE FUNCIONAMIENTO(5): Modo M Modo Movimiento  Se utiliza para registrar movimientos de estructuras, fundamentalmente del corazón (ecocardiogramas).  Un registro de tiempo-posición representa cómo varía una línea de eco A en función del tiempo. 

Instrumentaciòn y Perifèricos

39

MODOS DE FUNCIONAMIENTO(6): Doppler 

Efecto Doppler: La longitud de onda de la luz varia con el movimiento relativo entre la fuente y el observador (ejemplo: las estrella)

Instrumentaciòn y Perifèricos

40

MODOS DE FUNCIONAMIENTO(7): Doppler   

 

Se emite un haz ultrasónico continuo El transductor recibe el haz reflejado Se determina electrónicamente el cambio de la frecuencia producido por efecto doppler Fd = Ft – Fr Fd = Ft2u/V  

V es la velocidad del sonido en el medio u es la velocidad del movimiento de la interfase Instrumentaciòn y Perifèricos

41

MODOS DE FUNCIONAMIENTO(7): Doppler 



El rojo y amarillo indican que el flujo se está alejando de la sonda. El verde y el azul indican que se está acercando.

Instrumentaciòn y Perifèricos

42

MODOS DE FUNCIONAMIENTO(8): Imagen en tiempo real 

Técnica de tiempo real (real time): Si las imágenes ultrasonográficas en modo B se producen en el orden de 40 imágenes por segundo, el ojo humano recibe la impresión de que se trata de una imagen en movimiento Instrumentaciòn y Perifèricos

43

MODOS DE FUNCIONAMIENTO(9): Imagen en tiempo real 

Barrido de matriz lineal: línea de transductores contenidos en una sola carcasa.  Cada transductor es activado en secuencia o en grupo  Debe permanecer activo lo suficiente para recibir el eco  Las líneas de barrido constituyen un cuadro  30 o 40 cuadros por segundo constituyen la imagen real Instrumentaciòn y Perifèricos

44

MODOS DE FUNCIONAMIENTO(10): Imagen en tiempo real 

Barrido de matriz en fase: es muy similar a la matriz lineal; el dispositivo incorpora excitación segmentaría de los transductores.  El barrido de sector se obtiene por un circuito electrónico que incorpora un retraso hasta el tiempo de excitación y recepción.  El retraso se denomina fase Instrumentaciòn y Perifèricos

45

Equipo de Ecografia(1) 

Sala de ecografia con ecografo desplazable , camilla ,video y preparada para el estudio del paciente. Debe estar oscurecida y ser confortable para el medico y paciente. Se observa a la izquierda video VHS para grabar la sesion. Instrumentaciòn y Perifèricos

46

Equipo de Ecografia(2) 

Mesa de control.Arriba a la derecha 2 sondas una curva para ecografia abdominal y otra plana para partes blandas y tiroides

Instrumentaciòn y Perifèricos

47

Equipo de Ecografia(3) 

Detalle de la mesa de control en la que observamos una bola blanca o trackball que nos permite mediciones y desplazamientos del cursor por el monitor.En la esquina inferior derecha (verde) las teclas de pausa de imagen e impresion en papel Instrumentaciòn y Perifèricos

48

Equipo de Ecografia(4) 

Detalle de la mesa de control.El trackball , ya visto , a su lado un control blanco y plano que ajusta la *ganancia global* y a la izquierda deslizadores que ajustan la ganacia por planos.La ganacia significa amplificacion de los ecos , y se traduce por un aumento o disminucion del brillo de la imagen. Instrumentaciòn y Perifèricos

49

Equipo de Ecografia(5) En las ecografias vemos estos datos que significan: G67 ganancia 67 (brillo) D72 rango dinamico 72 (grises) T60 transmision focal 60 (enfoque)

Instrumentaciòn y Perifèricos

50

Equipo de Ecografia(6) 

Sonda convexa de 3.5 MHz.La mas utilizada en la practica medica general

Instrumentaciòn y Perifèricos

51

Equipo de Ecografia(7) • Sonda settoriale 3,5-3,5/5-5-5/7,5 MHZ • Matrice immagine 512 x 512 • Scala dei grigi a 256 livelli • Profondità di penetrazione selezionabile 4-6-8-10-12-14-1720-25 cm • Controllo emissione ultrasuoni in continuo dal 10 al 100%,