Distribucion Uniforme Discreta

PROBABILIDAD Y ESTADÍSTICA 1 Una variable aleatoria X, que puede tomar un número finito de valores, 1,2,…,n, cada uno

Views 74 Downloads 4 File size 3MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

PROBABILIDAD Y ESTADÍSTICA

1

Una variable aleatoria X, que puede tomar un número finito de valores, 1,2,…,n, cada uno de los cuales tiene la misma probabilidad de ocurrir, se dice que sigue una ley de DISTRIBUCIÓN UNIFORME DISCRETA. Es decir, Pr(X= k)=

1 k=1,2,…,n k

0 en caso contrario

PROBABILIDAD Y ESTADÍSTICA

2

Su esperanza es igual a:

n  1 E(x) = 2 Su varianza es igual al:

n²  1 V(x)= 12 PROBABILIDAD Y ESTADÍSTICA

3

• Es la forma más obvia de asignar probabilidades dentro de un fenómeno aleatorio cuyo comportamiento es desconocido. • Esta ley aparece en los juegos de azar en los que todos los jugadores tienen iguales posibilidades; además, esta distribución es la básica en la simulación de eventos aleatorios mediante computadora. PROBABILIDAD Y ESTADÍSTICA

4

EJEMPLO 1: Un reloj automático registra la hora a la cual llegan los empleados de una oficina, en horas y minutos completos. Una persona puede atrasarse hasta 59 minutos luego de la hora prefijada para entrar, caso contrario se le considera como falta. Por cada minuto de atraso se le cobra una multa de 50 centavos. Si los tiempos de atraso se consideran aleatorios: a) ¿Cuánto esperará una persona que se le descuente por un día que se atraso? b) Si en la oficina hay 8 personas, que se atrasaron 2 veces al mes cada una, ¿cuánto será el descuento global esperado a estos empleados de la oficina? PROBABILIDAD Y ESTADÍSTICA

5

SOLUCIÓN: 1

2

3

…59

0.5

0.5

0.5

0.5

Sean: t: tiempo de atraso (en minutos) n: 1, 2, 3,… 59 D: descuento Z: descuento global

E(t)= (n+1)/2 E(t)= (59+1)/2 E(t)= 30 [min/día] D= 0.5t PROBABILIDAD Y ESTADÍSTICA

6

E(D)= E(D)= E(D)= E(D)=

E(0.5t) 0.5*E(t) 0.5*30 $15

a)

Z= 8*(0.5t)*2 Z= 8t E(Z)= E(Z)= E(Z)= E(Z)=

E(8t) 8*E(t) 8*30 $240

b)

PROBABILIDAD Y ESTADÍSTICA

7

EJEMPLO 2:

Para el servicio de transporte entre dos ciudades hay 10 buses, de los cuales 5 son de tipo normal (costo del pasaje 2 dólares) y 5 de tipo especial (costo del pasaje 3 dólares). Una persona tiene que viajar entre las dos ciudades (ida y vuelta) durante los 5 días laborables de la semana, y para transportarse toma el primer bus que aparece en esa ruta, sin diferenciar el tipo; ¿cuánto esperará gastar esta persona en la semana?.

PROBABILIDAD Y ESTADÍSTICA

8

SOLUCIÓN:

Sean: n: número de buses x: costo por viaje ($/día) BN: bus normal BE= bus especial G: gasto semanal de transporte #días laborables: 5 n: 10

#BN: 5

costo del pasaje: $2

#BE: 5

costo de pasaje: $3 PROBABILIDAD Y ESTADÍSTICA

9

IDA VUELTA

IDA VUELTA

IDA VUELTA

Normal

x= 2

Normal

x= 2

Especial

x= 3

Especial

x= 3

Normal

x= 2

Especial

x= 3

4

6

5

x

4

5

6

P(x)

(1/2)*(1/2)=1/4

2*(1/2)*(1/2)= 1/2

(1/2)*(1/2)= 1/4

PROBABILIDAD Y ESTADÍSTICA

10

P(BN)= 5/10 P(BN)= ½ P(BE)= 5/10 P(BE)= ½ G= 5x

E(G)= E(5x) E(G)= 5*E(x)

E(x)= 4*(1/4)+5*(1/2)+6*(1/4) E(x)= 1+2.5+1.5 E(x)= 5 [$/día]

E(G)= 5*5 E(G)= 25 [$/semana] PROBABILIDAD Y ESTADÍSTICA

11

EJEMPLO 3:

En una escuela primaria se registró el número de palabras por minuto que leían los estudiantes, encontrándose que leían un mínimo de 80 palabras y un máximo de 139. Bajo la suposición de que la variable aleatoria que describe el número de palabras leídas está uniformemente distribuida. a) Halle la probabilidad de que un estudiante, seleccionado al azar, lea al menos 100 palabras. b) Determine el número de palabras que se esperaría lea un estudiante seleccionado al azar.

PROBABILIDAD Y ESTADÍSTICA

12

SOLUCIÓN: ƒ(x)= 1/(b-a) si x € [a,b] ƒ(x)= 1/(139- 80) si x € [80, 139] ƒ(x)= 1/59

Pr (x ≥100)= 1- Pr (x 60 pasos 500[cm] Pasos hacia adelante= 50[cm / paso] = 10 pasos 60 pasos totales menos 10 pasos que con certeza va hacia adelante= 50 pasos La probabilidad de que los pasos sean hacia adelante es igual que la probabilidad de que los pasos sean hacia atrás. Entonces: Pasos hacia atrás= 50*(½)= 25 pasos Pasos hacia adelante= 50*(½)= 25 pasos

Total de pasos hacia adelante: (10+25)= 35 PROBABILIDAD Y ESTADÍSTICA

17

X

Pr(x1>35)= 1 – Pr(x ≤35)

Pr(x1>35)= 1 – [Pr(x=0)+Pr(x=1)+…+Pr(x=35) Pr(x1>35)= 1 – Pr

(

x  E ( x) 35  E ( x)  ) V ( x) V ( x)

Hacemos un cambio de variable: x u z= V ( x ) u= E(x1) V(x1)= 60* V(x) 1

E(x1)= 60*E(x) E(x1)= 60*(1/2) E(x1)= 30

V(x1)=60*(1/4) V(x1)= 15

PROBABILIDAD Y ESTADÍSTICA

18

z=

35  30 15

z= 1.29 Pr(x1>35)= 1 – Pr(z≤1.29) Pr(x1>35)= 1- 0.9015

0.9015: valor de tabla

Pr(x1>35)=0.0985

PROBABILIDAD Y ESTADÍSTICA

19

EJEMPLO 5:

Supóngase que la concentración que cierto contaminante se encuentra distribuida de manera uniforme en el intervalo de 0 a 20 pares de millón. Si se considera tóxica una concentración de 8 o más. a) ¿Cuál es la probabilidad de que al tomarse una muestra la concentración de esta sea tóxica?. b) ¿Cuál es la probabilidad de que la concentración sea exactamente 10?. c) Halle la varianza.

PROBABILIDAD Y ESTADÍSTICA

20

SOLUCIÓN:

X~Un (p1;p2) X~Un (0;20) Pr(x=20)= 1/20 Pr (x ≥8)= Pr (x ≥8)=[(1/20)*x] Pr (x ≥8)=(20/20) – (8/20) Pr (x ≥8)=0,6

a)

PROBABILIDAD Y ESTADÍSTICA

21

Pr (x=10)= Pr (x=10)=[(1/20)*x]

Pr (x=10)= 0 V(x)= (20 ²- 1)/12 V(x)= 33,3

b)

c)

PROBABILIDAD Y ESTADÍSTICA

22