Cap 27

Problemas de 20.0°C), la corriente inicial es de 1.80 A. Sin embargo, la corriente empieza a reducirse conforme el eleme

Views 1,189 Downloads 11 File size 207KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Problemas de 20.0°C), la corriente inicial es de 1.80 A. Sin embargo, la corriente empieza a reducirse conforme el elemento calefactor se calienta. Cuando el tostador alcanza su temperatura de operación final, la corriente se ha reducido a 1.53 A. a) Determine la potencia entregada al tostador cuando está a su temperatura de operación. b) ¿Cuál es la temperatura final del elemento calefactor? 38. El costo de la electricidad varía ampliamente en Estados Unidos; un valor representativo es $0.120/kWh. Con este precio unitario, calcule el costo de a) dejar encendida la luz de 40 W del pórtico de una casa durante dos semanas mientras el propietario está de vacaciones, b) obtener una rebanada de pan tostado oscuro en 3.00 min utilizando un tostador de 970 W, y c) secar una carga de ropa en 40.0 min en una secadora de 5 200 W. 39. Hacer una estimación de orden de magnitud del costo de usar diario una secadora de pelo durante un año. Si usted no utiliza una secadora, observe o entreviste a alguien que la use. Enuncie las cantidades que estime y sus valores. Problemas adicionales 40.  Una lámpara está marcada como “25 W 120 V” y otra “100 W 120 V”; esto significa que cuando cada lámpara esté conectada a una diferencia de potencial constante de 120 V, recibirá cada una la potencia que se indica. a) Encuentre el valor de la resistencia de cada lámpara. b) ¿Cuánto tiempo transcurrirá para que pase 1.00 C a través de la lámpara de menor potencia? ¿Ha cambiado la carga en alguna forma a su salida de la lámpara en comparación con su entrada? Explique c) ¿Cuánto tiempo transcurrirá para que pase 1.00 J a través de la lámpara de menor potencia? ¿Mediante qué mecanismos entra y sale esta energía de la lámpara? d) Determine cuánto cuesta mantener encendida la lámpara de menor potencia durante 30 días, si la empresa eléctrica vende su producto en $0.070 0 por kWh. ¿Cuál es el producto que la compañía eléctrica de hecho vende? ¿Cuál es el precio de una unidad en el SI? 41. Un oficinista usa un calentador de inmersión para calentar 250 g de agua en una taza aislada, cubierta y ligera de 20°C a 100°C en 4.00 min. En términos eléctricos, el calentador es un alambre de resistencia de nicromo conectado a una fuente de poder de 120 V. Especifique el diámetro y longitud que puede tener el alambre. ¿Puede estar hecho a menos de 0.5 cm3 de nicromo? Puede suponer que el alambre está a 100°C durante todo el intervalo de tiempo. 42. En un capacitor de capacitancia C se coloca una carga Q. El capacitor está conectado en el circuito que se muestra en la figura P27.42, junto con un interruptor abierto, un resistor y un capacitor inicialmente descargado con una capacitancia de 3C. Después se cierra el interruptor y el circuito se equilibra. Determine, en función de Q y de C, a) la diferencia de potencial final entre las placas de cada capacitor, b) la carga de cada capacitor, y c) la energía final almacenada en cada capacitor. d) Determine la energía interna que aparece en el resistor.

3C

C

R

Figura P27.42

2  intermedio; 3  desafiante;

Cap_27_Serway.indd 771

771

43. Una definición más general del coeficiente de resistividad por temperatura es

1 dr r dT

a

donde r es la resistividad a la temperatura T. a) Si a es constante, demuestre que

r

r 0e a1T

T02

donde r0 es la resistividad a la temperatura T0. b) Utilizando la expansión en serie ex  1  x para x 1, demuestre que la resistividad es conocida aproximadamente por la expresión r  r0 [1  a(T  T0)] para a(T  T0) 1. 44. Una línea de transmisión con un diámetro de 2.00 cm y una longitud de 200 km lleva una corriente estable de 1000 A. Si el conductor es un alambre de cobre con una densidad de cargas libres de 8.49  1028 electrones/m3, ¿cuánto tarda un electrón en recorrer la línea de transmisión completa? 45.  Con la finalidad de medir la resistividad eléctrica del nicromo se lleva a cabo un experimento con alambres de diferentes longitudes y áreas de seccion transversal. Para un conjunto de mediciones, el estudiante usa alambre de calibre 30, que tiene un área de sección transversal de 7.30  108 m2. El estudiante mide la diferencia de potencial de un extremo a otro del alambre, así como la corriente en el mismo, utilizando un voltímetro y un amperímetro, respectivamente. Para cada una de las mediciones que aparecen en la tabla, calcule la resistencia de los alambres y los valores correspondientes de la resistividad. ¿Cuál es el valor promedio de la resistividad, y cómo se compara este valor con el valor incluido en la tabla 27.2?

L (m)

V (V)

I (A)

0.540 1.028 1.543

5.22 5.82 5.94

0.500 0.276 0.187

R ()

R (  m)

46. Una empresa pública eléctrica suministra energía al domicilio de un cliente a partir de las líneas de energía propias (a 120 V) mediante dos alambre de cobre, cada uno de los cuales tiene 50.0 m de largo y una resistencia de 0.108 por tramo de 300 m. a) Determine la diferencia de potencial en el domicilio del cliente para una corriente de carga de 110 A. Para esta corriente, encuentre b) la potencia que está recibiendo el cliente y c) la proporción a la cual es producida la energía interna en los alambres de cobre. 47. Un alambre cilíndrico recto que yace a lo largo del eje x tiene una longitud de 0.500 m y un diámetro de 0.200 mm. Está fabricado de un material que obedece la ley de Ohm con una resistividad r  4.00  108  m. Suponga que se mantiene en x  0 un potencial de 4.00 V, y que en x  0.500 m, V  0. Determine a) el campo eléctrico en el alambre, b) la resistencia del mismo, c) la corriente eléctrica que pasa por el alambre y d) la densidad de corriente J en el alambre. Exprese la dirección del campo eléctrico y de la corriente. e) Demuestre que E  rJ. 48. Un alambre cilíndrico recto que yace a lo largo del eje x tiene una longitud L y un diámetro d. Está fabricado de un material que obedece la ley de Ohm y tiene una resistividad r. Suponga que en x  0 se mantiene un potencial V y que el potencial es igual a cero en x  L. Deduzca, en función a L,

 razonamiento simbólico;   razonamiento cualitativo

9/11/08 5:25:31 PM

772

Capítulo 27

Corriente y resistencia

d, V y r, así como otras constantes físicas, expresiones para a) el campo eléctrico en el alambre, b) la resistencia del mismo, c)la corriente eléctrica que pasa por el alambre y d) la densidad de corriente en el alambre. Exprese la dirección del campo y de la corriente. e) Demuestre que E  rJ. 49. Un automóvil eléctrico (no un híbrido)ha sido diseñado para funcionar a partir de un banco de baterías de 12.0 V con un almacenamiento total de la energía de 2.00  107 J. a) Si el motor eléctrico consume 8.00 kW, ¿cuál es la corriente que se le suministra al motor? b) Si el motor eléctrico consume 8.00 kW conforme el automóvil se mueve a una rapidez constante de 20.0 m/s, ¿qué distancia recorrerá el automóvil antes de quedarse sin energía? 50.  Problema de repaso. Cuando se calienta un alambre recto, su resistencia está expresada por R  R0[1  a(T  T0)], de acuerdo con la ecuación 27.19, donde a es el coeficiente de resistividad por temperatura. a) Demuestre que un resultado más preciso, ya que tanto la longitud como el área del alambre se modifican al calentarse, es

R

R 0 31

a 1T 31

T0 2 4 3 1

a¿ 1T

T0 2 4

2a¿ 1T

T0 2 4

donde a9 es el coeficiente de expansión lineal (vea el capítulo 19). b) Explique cómo se comparan estos dos resultados para el caso de un alambre de cobre de 2.00 m de largo con un radio de 0.100 mm, primero a 20.0°C y después calentado a 100.0°C. 51. Los coeficientes de resistividad por temperatura que aparecen en la tabla 27.2 se determinaron a una temperatura de 20°C. ¿Cómo serían de haberse determinado a 0°C? Observe que el coeficiente de resistividad por temperatura a 20°C satisface la expresión r  r0[1  a(T  T0)], donde r0 es la resistividad del material a T0  20°C. El coeficiente de resistividad por temperatura a9 a 0°C debe satisfacer la expresión r  r90[1  a9T], siendo r90 la resistividad del material a 0°C. 52. Una oceanógrafa estudia cómo dependen las concentraciones de iones de la profundidad del agua de mar. Su procedimiento es sumergir dentro del agua un par de cilindros metálicos concéntricos (figura P27.52) en el extremo de un cable y registrar los datos para determinar la resistencia entre dichos electrodos en función de la profundidad. El agua entre los dos cilindros forma una envoltura cilíndrica de radio interior ra, de radio exterior rb y una longitud L mucho mayor que rb. La científica aplica una diferencia de potencial V entre las superficies interna y externa, produciendo una corriente radial hacia fuera I. Suponga que r representa la resistividad del agua. a) Determine la resistencia del agua entre los cilindros en función de L, r, ra y rb . b) Exprese la resistividad del agua en función de las cantidades medidas L, ra, rb, V e I.

resistencia original entre sus extremos, y d  L/Li  (L – Li)/ Li la deformación resultante de la aplicación de tensión. Suponga que la resistividad y el volumen del alambre no cambian conforme el alambre se estira. Demuestre que la resistencia entre los extremos del alambre bajo deformación está dada por R  Ri(1  2d  d2). Si las suposiciones son precisamente ciertas, ¿este resultado es exacto o aproximado? Explique su respuesta. 54.  En cierto sistema estéreo, cada altavoz tiene una resistencia de 4.00 . El sistema es nominalmente de 60.0 W por canal, y cada circuito de altavoz incluye un fusible de 4.00 A nominales. ¿Este sistema está protegido adecuadamente contra sobrecargas? Explique su razonamiento. 55.  Existe una gran analogía entre el flujo de energía por calor debido a una diferencia de temperaturas (vea la sección 20.7) y el flujo de cargas eléctricas debido a una diferencia de potencial. Tanto la energía dQ como la carga eléctrica dq pueden transportarse mediante electrones libres en el material conductor. En consecuencia, usualmente un buen conductor eléctrico es también un buen conductor térmico. Considere una placa conductora delgada de espesor dx, área A y de conductividad eléctrica s, con a una diferencia de potencial dV entre sus caras opuestas. a) Demuestre que la corriente I  dq/dt se conoce por la ecuación de la zquierda: Conducción de cargas Conducción térmica

dq dt

sA `

dV ` dx

kA `

dQ dt

dT ` dx

(ecuación 20.15)

En la ecuación de conducción térmica análoga de la derecha, la rapidez del flujo de energía dQ/dt (en unidades del SI es joules por segundo) se debe al gradiente de temperatura dT/ dx, en un material de conductividad térmica k. b) Establezca reglas similares que relacionen la dirección de la corriente eléctrica con el cambio en el potencial, y que relacionen la dirección del flujo de energía con el cambio en temperaturas. 56. Un material de resistividad r se modela como un cono truncado de altura h, según se muestra en la figura P27.56. El extremo inferior tiene un radio b, en tanto que el extremo superior tiene un radio a. Suponga que la corriente está uniformemente distribuida en cualquier sección transversal circular del cono, de forma que la densidad de la corriente no dependerá de la posición radial. (La densidad de corriente variará dependiendo de su posición a lo largo del eje del cono.) Demuestre que la resistencia entre ambos extremos del cono queda descrita mediante la expresión

R

r h a b p ab a

rb

ra

h b

L

Figura P27.56

Figura P27.52 53.  La deformación en un alambre se monitorea y calcula al medir la resistencia del alambre. Sea Li la longitud original del alambre, Ai su área de sección transversal original, Ri  rLi/Ai la

2  intermedio; 3  desafiante;

Cap_27_Serway.indd 772

57. Un material con una resistividad uniforme r se modela en forma de cuña como se muestra en la figura P27.57. Demuestre que la resistencia entre la cara A y la cara B de esta cuña es igual a

R

r

w 1y 2

L

y1 2

ln a

y2 y1

b

 razonamiento simbólico;   razonamiento cualitativo

9/11/08 5:25:32 PM

Respuestas a las preguntas rápidas y 1 Cara A

773

cas. Ahora la placa dieléctrica se retira del capacitor, como se observa en la figura P27.61. a) Determine la capacitancia cuando el borde izquierdo del material dieléctrico esté a una distancia x del centro del capacitor. b) Si se va retirando el dieléctrico a una rapidez constante v, ¿cuál será la corriente en el circuito conforme se retira el dieléctrico?

Cara B y2 L w



Figura P27.57



58. Una envolvente esférica, con radio interior ra y radio exterior rb, se forma a partir de un material de resistividad r. Porta corriente radialmente, con densidad uniforme en todas direcciones. Demuestre que su resistencia es

R

r 1 a 4p r a

1 b rb

59.  Los problemas 56, 57 y 58 se refieren al cálculo de la resistencia entre superficies específicas de un resistor con forma extraña. Para verificar los resultados experimentalmente, se puede aplicar una diferencia de potencial a las superficies indicadas y medir la corriente resultante. Después se calcula la resistencia a partir de su definición. Describa un método para asegurar que el potencial eléctrico es uniforme en toda la superficie. Explique si después puede asegurar que la corriente se dispersa sobre las superficies completas donde entra y sale. 60. El material dieléctrico que existe entre las placas de un capacitor de placas paralelas tiene siempre alguna conductividad s diferente de cero. Suponga que A representa el área de cada placa y d la distancia entre ellas. Sea k la constante dieléctrica del material. a) Demuestre que la resistencia R y la capacitancia C del capacitor están interrelacionadas mediante

RC

kP0 s

b) Determine la resistencia entre las placas de un capacitor de 14.0 nF con un dieléctrico de cuarzo fundido. 61. Problema de repaso. Un capacitor de placas paralelas está constituido por placas cuadradas de bordes de longitud  separadas una distancia d, donde d . Entre las placas se mantiene una diferencia de potencial V. Un material de constante dieléctrica k llena la mitad del espacio entre las pla-

v

V

d x

Figura P27.61 62. La curva característica corriente-voltaje de un diodo semiconductor en función de la temperatura T está dada por la ecuación

I

I 0 1e e ¢V>k BT

12

En este caso, el primer símbolo e representa el número de Euler, es decir, la base de los logaritmos naturales, la segunda e es la magnitud de carga de un electrón; kB representa la constante de Boltzmann y T es la temperatura absoluta. Prepare una hoja de cálculo para calcular I y R  V/I para V  0.400 V a 0.600 V, en incrementos de 0.005 V. Suponga que I0  1.00 nA. Trace R en función de V para T  280 K, 300 K y 320 K. 63. El oro es el más dúctil de todos los metales. Por ejemplo, un gramo de oro se puede convertir en un alambre de 2.40 km de largo. ¿Cuál es la resistencia de tal alambre a 20°C? En este libro puede encontrar la información de referencia necesaria. 64. Una línea de transmisión de alto voltaje lleva 1000 A desde 700 kV al inicio por una distancia de 100 millas. Si la resistencia del alambre es de 0.500 /milla, ¿cuál es la pérdida de energía debida a la resistencia del alambre? 65. La diferencia de potencial entre los extremos del filamento de una lámpara se mantiene en un nivel constante mientras se llega a la temperatura de equilibrio. Se observa que la corriente en estado estacionario de la lámpara es de sólo la décima parte de la corriente que utiliza la lámpara cuando se enciende por primera vez. Si el coeficiente de temperatura de resistividad para la lámpara a 20.0°C es de 0.004 50 (°C)1, y si la resistencia aumenta linealmente al elevarse la temperatura, ¿cuál será la temperatura final de operación del filamento?

Respuestas a las preguntas rápidas 27.1 d), b)  c), a). La corriente en el inciso d) es equivalente a dos cargas positivas moviéndose hacia la izquierda. Los incisos b) y c) representan cada uno cuatro cargas positivas que se mueven en la misma dirección, ya que las cargas negativas que se mueven hacia la izquierda son equivalentes a las cargas positivas que se mueven hacia la derecha. La corriente del inciso a) es equivalente a cinco cargas positivas moviéndose hacia la derecha. 27.2 b) La duplicación del radio hace que el área A sea cuatro veces mayor, por lo que la ecuación 27.10 indica que la resistencia disminuye.

2  intermedio; 3  desafiante;

Cap_27_Serway.indd 773

27.3 b) De acuerdo con la ecuación 27.7, la resistencia es la relación del voltaje a través de un dispositivo respecto a la corriente en el dispositivo. En la figura 27.7b, una línea dibujada desde el origen hasta el punto en la curva tendrá una pendiente igual a I/V, que es el inverso de la resistencia. Conforme V aumenta, la pendiente de la línea también aumenta, de modo que la resistencia disminuye. 27.4 a) Cuando el filamento está a la temperatura ambiente, su resistencia es baja, y por lo tanto la corriente es relativamente grande. Conforme el filamento se calienta, su resistencia se incrementa y la corriente se reduce. Las lámparas viejas a

 razonamiento simbólico;   razonamiento cualitativo

9/11/08 5:25:34 PM