Variables

146 Estadística para Biología y Ciencias de la Salud varianza de X, a partir del conocimiento de la densidad. Los Ejer

Views 782 Downloads 21 File size 146KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

146

Estadística para Biología y Ciencias de la Salud

varianza de X, a partir del conocimiento de la densidad. Los Ejercicios 7 a 10 plantean está cuestión. EJERCICIOS 4.2 1. La siguiente tabla muestra la densidad para la variable aleatoria X, número de personas por día que solicitan un tratamiento innecesario en el servicio de urgencias de un pequeño hospital.

X

0

1

2

3

4

5

0.01

0.1

0.3

0.4

0.1

?

a) Encontrar f(5). ¿Qué probabilidad representa en el contexto del problema? b) Encontrar P[X < 2]. Interpretar esta probabilidad en el contexto del problema. c) Encontrar P[X < 2]. d) Encontrar P[X > 3]. 2. La siguiente tabla muestra la densidad para la variable aleatoria X, número de aleteos por segundo de una especie de polillas grandes mientras vuelan.

X

6

7

8

9

10

0.05

0.1

0.6

0.15

?

a) Encontrar f(10). b) Encontrar P[X < 8]. Interpretar esta probabilidad en el contexto del problema. c) Encontrar P[X < 8]. d) Encontrar P[X > 7]. e) Encontrar P[X > 7]. 3. Se desarrolla un compuesto para aliviar las cefaleas migrañosas. El fabricante afirma que es eficaz en un 90 % de los casos. Se prueba sobre cuatro pacientes. Sea X el número de pacientes que obtienen alivio. Utilice un diagrama de árbol para resolver estos apartados: a) Encontrar la densidad para X, suponiendo que la afirmación del fabricante sea correcta. b) Encontrar P[X < 1]. Interpretar esta probabilidad en el contexto del problema. c) Si el compuesto no alivia a ninguno de los pacientes, ¿es ésa una razón para sospetchar de la afirmación de la compañía relativa a que el compuesto es eficaz en el 90 % de los casos? Razonar sobre la base de la probabilidad implicada. 4. Un brote de parotiditis está extendiéndose entre los niños de la escuela primaria. El 10 % de ellos está afectado. Un pediatra atiende a tres niños de esta edad durante la primera hora de su día de trabajo. Sea X el número de los que tienen parotiditis. Suponga independencia y use un diagrama de árbol para hallar la densidad de X. Utilícela para calcular la probabilidad de que ninguno de los tres niños tenga parotiditis, y la de que sólo uno las tenga.

Variables aleatorias discretas

147

5.

Sea la densidad:

6.

Hallar E(X) y μ. La tabla siguiente nos muestra la densidad para la variable aleatoria X, número de hembras adultas en un grupo de monos aulladores:

X

1

2

3

4

5

0.1

0.15

0.5

0.15

0.1

Hallar el número promedio de hembras adultas, por grupo. 7. Lα esperanza de las funciones de X. Si X es una variable aleatoria, entonces X2, X - 1, y muchas otras variables que podemos expresar en función de X, son también variables aleatorias. Cada una tendrá una esperanza o promedio teórico a largo plazo. Si H(X) es una función de X, entonces su esperanza viene expresada por,

Ilustraremos este concepto hallando E(X2), sólo para el caso del problema del dado del Ejemplo 4.2.2. Para este ejercicio,

a) Hallar E(X2) para la variable aleatoria del Ejercicio 1. b) Hallar E(X2) para la variable aleatoria del Ejercicio 2. c) Hallar E(X2) para la variable aleatoria del Ejercicio 3. d) Hallar E(X2) para la variable aleatoria del Ejercicio 4. e) Hallar para la variable aleatoria del Ejercicio 5. f) Hallar para la variable aleatoria del Ejercicio 6. 8. Varianza. Recordemos de la Sección 1.5 que la medida de variabilidad de la población más usual es la varianza poblacional. Representábamos este parámetro mediante la letra griega Su valor, como μ, no puede hallarse a partir de una muestra aunque puede

148

Estadística para Biología y Ciencias de la Salud

estimarse mediante s2. No obstante, si disponemos de la densidad real para X, podemos definida por = Var X = E[(X - μ)2]. Sea la densidad calcular X

f(x)

1

2

3

0.4

0.2

0.4

Aquí, por observación, μ = 2. Y de ello deducimos,

α) ¿Cuál es la varianza de la variable aleatoria X en el Ejercicio 5? b) ¿Cuál es la varianza de la variable aleatoria X en el Ejercicio 6? c) Hallar la varianza de la variable aleatoria X del Ejemplo 4.2.2. d) Hallar la varianza de la variable aleatoria X del Ejemplo 4.2.3. 9. Método simplificado para calcular la . En el Ejercicio 8, se define la varianza de una variable aleatoria X. Es fácil calcular a partir de la definición cuando μ es un número entero y X no toma muchos valores. En este ejercicio, se presenta un método alternativo para calcular cómodamente Esta fórmula simplificada es

Para ilustrar el método, consideremos la densidad del Ejercicio 8. En este caso

y

a) Utilizar el método simplificado para verificar las respuestas de los apartados a a d del Ejercicio 8. b) Considerar la densidad del Ejercicio 1. Encontrar Var X. c) Considerar la densidad del Ejercicio 2. Hallar 10. Desviación típica. Recuerde de la Sección 1.5 que la desviación típica muestral es la raíz cuadrada positiva de la varianza muestral. Teóricamente, la desviación típica se define como la raíz cuadrada positiva de . Es decir, a) Considerar la densidad del Ejercicio 1. Hallar . b) Considerar la densidad del Ejercicio 2. Hallar c) ¿Qué magnitud física podemos asociar a en el apartado a? ¿Y en el b? 11. Tres pacientes reciben inyecciones de desensibilización contra las picaduras de insect tos. Se calcula que este suero tiene una eficacia del 95 %. Sea X el número de pacientes desensibilizados. a) Utilice un diagrama de árbol para obtener la tabla de f(x). b) Hallar e interpretar E[X]. c) Hallar μ. d) Hallar E[X2]. e) Hallar Var X y

Variables aleatorias discretas

149

12. Algunos genes experimentan una desviación tan extrema de su estructura normal, que el organismo es incapaz de sobrevivir. Estos genes reciben el nombre de genes letales. Un ejemplo de esto es el gen que produce un pelaje amarillo en los ratones, llamémoslo Y. Este gen es dominante con respecto al que expresa el color gris, y. La teoría genética habitual postula que, para dos ratones amarillos, heterocigóticos para este carácter (Yy), \ de las crías serán grises y serán amarillas. Los biólogos han observado que estas proporciones previsibles no se dan en la realidad y que los verdaderos porcentajes obtenidos son grises y amarillos. Esta variación tiene una explicación por el hecho de que de los embriones, aquellos que son homocigotos para el amarillo (YY), no llegan a desarrollarse. Con esto, nos quedan sólo dos genotipos, Yy y yy, con una relación de 2 es a 1, siendo el primero un ratón de pelo amarillo. Por este motivo se dice que el gen Y es letal. α) En el caso de que dos ratones heterocigotos amarillos se acoplen, utilice un diagrama de árbol para comprobar que la teoría genética es capaz de prever una relación de 3 a 1, para ratones amarillos y grises. b) Se lleva a cabo un experimento de reproducción en el que una pareja de ratones amarillos heterocigotos se acopla. Consideremos tres crías. Con X indicaremos el número de ratones amarillos que encontramos. La densidad para X es

0

X

1

2

3

Compruebe los valores de esta tabla. c) Halle el número esperado de ratones amarillos entre las crías, en una carnada de tamaño 3. Halle también la varianza y la desviación típica de X. 13. Lα desigualdad de Chebyshev. Esta desigualdad nos indica otra propiedad muy útil de la desviación típica. En particular nos dice que «la probabilidad de que cualquier variable aleatoria X caiga a una distancia máxima de su media de k desviaciones típicas, es por lo menos de 1 - 1/k2». Por ejemplo, si sabemos que X tiene de media 3, con desviación típica 1, podemos llegar a la conclusión de que la probabilidad de que X caiga entre 1 y 5 (k = 2 desviaciones típicas de la media) es por lo menos de 1 - 1/22 = 0.75. a) Sea X la variable que representa la cantidad de lluvia caída de una semana en una región determinada. Supongamos que μ = 1.00 y a = 0.25 pulgadas. ¿Sería extraño que esta región registre más de 2 pulgadas de agua durante una semana? Razónelo basándose en la desigualdad de Chebyshev. b) Sea X el número de casos de rabia registrados a la semana en un determinado Estado. Supongamos que y ¿Podría considerarse infrecuente registrar dos casos en una misma semana? Razónelo basándose en la desigualdad de Chebyshev. 14. Se lleva a cabo un estudio comparativo de dos fármacos destinados a mantener un ritmo cardíaco constante en pacientes que ya han sufrido un infarto. Sea X el número de latidos por minuto, registrado mediante la utilización del fármaco A, e Y el número de latidos registrado con el fármaco B. Utilice las densidades hipotéticas siguientes:

X

40

60

68

70

72

80

100

0.01

0.04

0.05

0.80

0.05

0.04

0.01

150 Estadística para Biología y Ciencias de la Salud

y

40

60

68

70

72

80

100

0.40

0.05

0.04

0.02

0.04

0.05

0.40

α) Mediante observación, halle el ritmo cardíaco medio para cada fármaco. ¿Existe alguna diferencia entre los ritmos cardíacos provocados por los dos fármacos? b) Mediante observación, ¿cuál de los dos fármacos provocará una mayor variación en el ritmo cardíaco? Compruebe su respuesta calculando la Var X y la Var Y, y comparando los valores de estos dos parámetros. c) Halle . ¿Qué magnitud física podemos asociar a estas desviaciones típicas? d) Utilizando la desigualdad de Chebyshev, ¿entre qué valores oscilará el ritmo cardíaco del 75 % de los pacientes tratados con el fármaco A? ¿Qué valores obtendremos con el fármaco B? (Véase el Ejercicio 13.) 4.3.

LA FUNCIÓN DE DISTRIBUCIÓN ACUMULADA

La segunda función que utilizaremos en el cálculo de probabilidades es la función de distribución acumulada F. Esta es el equivalente teórico de la distribución de frecuencias relativas acumuladas, ya comentada en la Sección 1.3. En el caso discreto, podemos hallarla sumando los valores de la tabla de densidades. Es importante entender esta función ya que las tablas que se utilizan a lo largo del texto son tablas acumuladas. Daremos a continuación la definición de F. Definición 4.3.1. La función de distribución acumulada. Sea X una variable aleatoria con densidad f La función de distribución acumulada de X, representada por F, se define como para x real Tomemos un valor real concreto x0. En el caso discreto, se calcula sumando la densidad f para todos los valores de X menores o iguales al valor x0. Así,

Ejemplo 4.3.1. Sea la variable aleatoria X, número de mimetismos que escapan a la detección del Ejemplo 4.2.1. La densidad f para X viene dada por X

0

1

2

3

P[X = x]=f(x) La función de distribución acumulada (o función de distribución) para X se expresa por, X

0

1

2

3