Tema1

Componentes fundamentales de un sistema Hidráulico Elementos de un sistema hidráulico: En todo circuito hidráulico hay t

Views 174 Downloads 4 File size 451KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Componentes fundamentales de un sistema Hidráulico Elementos de un sistema hidráulico: En todo circuito hidráulico hay tres partes bien diferenciadas: El grupo generador de presión, el sistema de mando y el actuador. El grupo generador de presión es el órgano motor que transfiere la potencia al actuador para generar trabajo. La regulación de esta transmisión de potencia se realiza en el sistema de mando que está formado por una serie de válvulas limitadoras de caudal y de presión, distribuidoras, de bloqueo, etc.

Cada elemento de una instalación hidráulica tiene unas determinadas características que es preciso conocer para deducir el funcionamiento de la instalación.

Los elementos constitutivos del circuito hidráulico son:  Tanque o depósito de aceite.  Filtro  Bomba

 Elementos de regulación control  Actuadores  Redes de distribución

y

TANQUE HIDRAULICO: La principal función del tanque hidráulico es almacenar aceite, aunque no es la única. El tanque también debe eliminar el calor y separar el aire del aceite. Los tanques deben tener resistencia y capacidad

adecuadas, y no deben dejar entrar la suciedad externa. Los tanques hidráulicos generalmente son herméticos.

FILTRO: Un filtro hidráulico es el componente principal del sistema de filtración de una máquina hidráulica, de lubricación o de engrase. Estos sistemas se emplean para el control de la contaminación por partículas sólidas de origen externo y las generadas internamente por procesos de desgaste o de erosión de las superficies de la maquinaria, permitiendo preservar la vida útil tanto de los componentes del equipo como del fluido hidráulico

BOMBA HIDRAULICA: Nos proporcionan una presión y caudal adecuado de líquido a la instalación. La bomba hidráulica convierte la energía mecánica en energía hidráulica. Es un dispositivo que toma energía de una fuente (un motor, un motor eléctrico, etc.) y la convierte a una forma de energía hidráulica. La bomba toma aceite o fluido hidráulico de un depósito de almacenamiento (un tanque) y lo envía como un flujo al sistema hidráulico. Todas las bombas producen flujo de aceite de igual forma. Se crea un vacío a la entrada de la bomba. La presión atmosférica, más alta, empuja el aceite a través del conducto de entrada a las cámaras de entrada de la bomba. Los engranajes de la bomba llevan el aceite a la cámara de salida de la bomba. El volumen de la cámara disminuye a medida que se acerca a la salida. Esta reducción del tamaño de la cámara empuja el aceite a la salida.

ELEMENTOS DE REGULACION Y CONTROL: Son los encargados de regular el paso del aceite desde las bombas a los elementos actuadores. Estos elementos, que se denominan válvulas, pueden ser activados de diversas formas: manualmente, por circuitos eléctricos, neumáticos, hidráulicos o mecánicos. La clasificación de estas válvulas se puede hacer en tres grandes grupos: de dirección, anti retorno y de presión y caudal.

Actuadores: Los actuadores transforman la energía de presión del aire comprimido o del aceite en energía mecánica, que será aplicada posteriormente para conseguir el efecto deseado. Según el tipo de movimiento, hay dos tipos de actuadores:

 Los cilindros: capaces de producir un movimiento rectilíneo  Los motores: con los que se consigue un movimiento rotativo

RED DE DISTRIBUCION: Debe garantizar la presión y velocidad del aceite en todos los puntos de uso. En las instalaciones oleo hidráulicas, al contrario de las neumáticas, es necesario un circuito de retomo de fluido, ya que este se vuelve a utilizar una y otra vez. El material utilizado suele ser acero o plástico reforzado y depende de su uso.

PRINCIPIO DE BERNOULLI También denominado ecuación de Bernoulli o trinomio de Bernoulli, describe el comportamiento de un líquido moviéndose a lo largo de una corriente de agua. Fue expuesto por Daniel Bernoulli en su obra Hidrodinámica (1738) y expresa que en un fluido ideal (sin viscosidad ni rozamiento) en régimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido

LA ECUACION BERNOULLI: La energía de un fluido en cualquier momento consta de tres componentes:  Cinética: es la energía debida a la velocidad que posea el fluido;  Potencial o gravitacional: es la energía debido a la altitud que un fluido posea;

 Energía de presión: es la energía que un fluido contiene debido a la presión que posee APLICACIONES DEL PRINCIPIO DE BERNOULLI: Chimenea Las chimeneas son altas para aprovechar que la velocidad del viento es más constante y elevada a mayores alturas. Cuanto más rápidamente sopla el viento sobre la boca de una chimenea, más baja es la presión y mayor es la diferencia de presión entre la base y la boca de la chimenea, en consecuencia, los gases de combustión se extraen mejor.

Tubería La ecuación de Bernoulli y la ecuación de continuidad también nos dicen que si reducimos el área transversal de una tubería para que aumente la velocidad del fluido que pasa por ella, se reducirá la presión.

Natación La aplicación dentro de este deporte se ve reflejado directamente cuando las manos del nadador cortan el agua generando una menor presión y mayor propulsión.

Carburador de automóvil En un carburador de automóvil, la presión del aire que pasa a través del cuerpo del carburador disminuye cuando pasa por un estrangulamiento. Al disminuir la presión, la gasolina fluye, se vaporiza y se mezcla con la corriente de aire.

Flujo de fluido desde un tanque La tasa de flujo está dada por la ecuación de Bernoulli.

Dispositivos de Venturi En oxigenoterapia, la mayor parte de sistemas de suministro de débito alto utilizan dispositivos de tipo Venturi, el cual está basado en el principio de Bernoulli.

Aviación y vehículos de alta velocidad

La sustentación de un avión puede describirse como una diferencia de velocidades en las alas de los aviones, por consecuente, si en el extradós el viento fluye más rápido, entonces se genera una pérdida de presión, y como en el intradós hay menos velocidad, su presión es mayor, esto genera una fuerza de sustentación que le da al avión una ayuda (de entre un 7 a 13%) para mantenerse en el aire, de esta forma el ángulo de ataque del ala determina la diferencia de presión existente, y cuanta sustentación resulta, lo mismo sucede a la inversa con los alerones de los vehículos de alta velocidad,