Stewart Introduccion

CAPITULO-09-A-A 06/04/2009 20:20 Page 566 9 ECUACIONES DIFERENCIALES Los campos de dirección nos permiten hacer un

Views 103 Downloads 1 File size 217KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

CAPITULO-09-A-A

06/04/2009

20:20

Page 566

9 ECUACIONES DIFERENCIALES

Los campos de dirección nos permiten hacer un bosquejo de soluciones de una ecuación diferencial sin una fórmula explícita.

Quizá la más importante de todas las aplicaciones del cálculo es a las ecuaciones diferenciales. Cuando los científicos emplean el cálculo, muy a menudo es para analizar una ecuación diferencial que ha surgido en el proceso de modelar algún fenómeno que están estudiando. Aun cuando frecuentemente es imposible hallar una fórmula explícita para la solución de la ecuación diferencial, los planteamientos gráficos y numéricos proporcionan la información necesaria.

566

CAPITULO-09-A-A

06/04/2009

20:20

Page 567

9.1 Ahora es un buen momento para leer (o volver a leer) la exposición de una representación matemático en la página 24.

&

MODELADO CON ECUACIONES DIFERENCIALES Al describir el proceso de representación en la sección 1.2, se habló acerca de formular un modelo matemático de un problema del mundo real, ya sea por razonamiento intuitivo acerca del fenómeno o de una ley física en función de la evidencia de experimentos. El modelo matemático con frecuencia toma la forma de una ecuación diferencial, es decir, una ecuación que contiene una función desconocida y algunas de sus derivadas. Esto no es sorprendente, porque en el problema del mundo real, es común observar que ocurran cambios y se desea predecir el comportamiento futuro con respecto a cómo cambian los valores actuales. Se comienza por examinar varios ejemplos de cómo surgen las ecuaciones diferenciales cuando se representan fenómenos físicos.

MODELOS DE CRECIMIENTO POBLACIONAL

Un modelo para el crecimiento de una población se basa en asumir de que la población crece en una cantidad proporcional al tamaño de la población. Ésa es una suposición razonable para una población de bacterias o animales en condiciones ideales (ambiente ilimitado, nutrición adecuada, ausencia de predadores, inmunidad a enfermedad). Se procede a identificar y nombrar las variables en este modelo: t  tiempo la variable independiente. P  número de individuos en la población la variable dependiente. La rapidez de crecimiento de la población es la derivada dPdt. Así que la suposición de que la rapidez de crecimiento de la población es proporcional al tamaño de la población, se escribe como la ecuación 1

dP  kP dt

donde k es la constante de proporcionalidad. La ecuación 1 es nuestro primer modelo para el crecimiento poblacional; es una ecuación diferencial porque contiene una función desconocida P y su derivada dPdt. Una vez formulado un modelo, se consideran sus consecuencias. Si se descarta una población de 0, por lo tanto Pt  0 para toda t. Así, si k  0, entonces la ecuación 1 muestra que Pt  0 para toda t. Esto significa que la población siempre está creciendo. De hecho, cuando crece Pt la ecuación 1 muestra que dPdt se vuelve más grande. En otras palabras, la rapidez de crecimiento se incrementa cuando crece la población. La ecuación 1 pide hallar una función cuya derivada sea un múltiplo constante de sí mismo. Se sabe del capítulo 3 que las funciones exponenciales tienen esa propiedad. De hecho, si se establece Pt  Ce kt, en tal caso

P

Pt  Cke kt   kCe kt   kPt t

FIGURA 1

La familia de soluciones de dP/dt=kP

Así, cualquier función exponencial de la forma Pt  Ce kt es una solución de la ecuación 1. Cuando se estudia esta ecuación en detalle en la sección 9.4, se verá que no hay otra solución. Si se permite que C varíe por todos los números reales, se obtiene la familia de soluciones Pt  Ce kt cuyas gráficas se muestran en la figura 1. Pero las poblaciones tienen sólo valores positivos y, por lo tanto, se está interesado sólo en soluciones con C  0. Y probablemente se tiene interés sólo en valores de t mayores que el tiempo inicial t  0. En la figura 2 se muestran las soluciones con significado físico. Si se escribe 567

CAPITULO-09-A-A

568

||||

06/04/2009

20:20

Page 568

CAPÍTULO 9 ECUACIONES DIFERENCIALES

t  0, se obtiene P0  Ce k0  C , de modo que la constante C resulta ser la población inicial, P0. La ecuación 1 es apropiada para representar el crecimiento poblacional en condiciones ideales, pero se tiene que reconocer que un modelo más real debe reflejar el hecho de que un determinado ambiente tiene recursos limitados. Muchas poblaciones comienzan incrementándose de manera exponencial, pero la población se estabiliza cuando se aproxima a su capacidad de soporte K (o disminuye hacia K si alguna vez excede a K). Para que un modelo tome en cuenta ambas tendencias, se hacen dos suposiciones:

P

0

t

&

FIGURA 2

La familia de soluciones P(t)=Ce C kt con C>0 y t˘0 &

dP

kP si P es pequeña (al inicio, la rapidez de crecimiento es proporcional dt a P). dP  0 si P  K (P disminuye si nunca excede a K). dt

Una expresión simple que incorpora ambas suposiciones, es la siguiente ecuación

2

P

P =K

solución de equilibrio P =0 0

FIGURA 3

Soluciones de la ecuación logística

t

 

P dP  kP 1  dt K

Observe que si P es pequeña en comparación con K, entonces PK se aproxima a 0 y, por lo tanto, dPdt kP. Si P  K , entonces 1  PK es negativa y, por lo tanto, dPdt  0. La ecuación 2 se llama ecuación diferencial logística, y la propuso el biólogo matemático holandés Pierre-François Verhulst en la década de 1840 como un modelo para el crecimiento poblacional mundial. Se desarrollarán técnicas que permiten hallar soluciones explícitas de la ecuación logística en la sección 9.4, pero por ahora se pueden deducir características cualitativas de las soluciones directamente de la ecuación 2. Se observa primero que las funciones constantes Pt  0 y Pt  K son soluciones porque, en cualquier caso, uno de los factores del lado derecho de la ecuación 2 es cero. (Esto sin duda tiene sentido físico: si la población es alguna vez 0 o está a la capacidad de soporte, permanece así). Estas dos soluciones constantes se llaman soluciones de equilibrio. Si la población inicial P(0) está entre 0 y K, entonces el lado derecho de la ecuación 2 es positivo, por lo tanto dPdt  0 y crece la población. Pero si la población rebasa la capacidad de soporte P  K , entonces 1  PK es negativa, así que dPdt  0 y la población disminuye. Observe que, en cualquier caso, si la población tiende a la capacidad de soporte P l K, entonces dPdt l 0, lo que significa que la población se estabiliza. Así que se espera que las soluciones de la ecuación diferencial logística tengan gráficas que se parecen a algo como las de la figura 3. Observe que las gráficas se alejan de la solución de equilibrio P  0 y se mueven hacia la solución de equilibrio P  K. MODELO PARA EL MOVIMIENTO DE UN RESORTE

Ahora se examina un ejemplo de un modelo de las ciencias físicas. Se considera el movimiento de un objeto con masa m en el extremo de un resorte vertical (como en la figura 4). En la sección 6.4 se analizó la ley de Hooke, la cual establece que si un resorte se estira (o comprime) x unidades desde su longitud natural, entonces ejerce una fuerza que es proporcional a x: fuerza de restauración  kx

CAPITULO-09-A-A

06/04/2009

20:20

Page 569

SECCIÓN 9.1 MODELADO CON ECUACIONES DIFERENCIALES

||||

569

donde k es una constante positiva (llamada constante del resorte). Si se ignoran las fuerzas de resistencia externas (debidas a la resistencia del aire o la fricción) entonces, por la segunda ley de Newton (fuerza es igual a masa por aceleración), se tiene m

posición de equilibrio

3

0

x

m

m

d 2x  kx dt 2

Éste es un ejemplo de lo que se llama una ecuación diferencial de segundo orden porque tiene que ver con segundas derivadas. Se verá lo que se puede conjeturar acerca de la forma de la solución directamente de la ecuación. Se puede rescribir la ecuación 3 en la forma

x

d 2x k  x dt 2 m

FIGURA 4

que dice que la segunda derivada de x es proporcional a x pero tiene signo opuesto. Se conocen dos funciones con esta propiedad, las funciones seno y coseno. De hecho, resulta que todas las soluciones de la ecuación 3 se pueden escribir como combinaciones de ciertas funciones seno y coseno (véase el ejercicio 4). Esto no es sorprendente; se espera que el resorte oscile respecto a su posición de equilibrio y, por lo tanto, es natural pensar que están involucradas las funciones trigonométricas. ECUACIONES DIFERENCIALES GENERALES

En general, una ecuación diferencial es una ecuación que contiene una función desconocida y una o más de sus derivadas. El orden de la ecuación diferencial en el orden de la mayor de las derivadas que ocurren en la ecuación. Así, las ecuaciones 1 y 2 son de primer orden, y la ecuación 3 es de segundo. En las tres ecuaciones, la variable independiente se llama t y representa el tiempo, pero en general la variable independiente no tiene que representar tiempo. Por ejemplo, cuando se considera la ecuación diferencial 4

y  xy

se entiende que y es una función desconocida de x. Una función f se llama solución de una ecuación diferencial si la ecuación se satisface cuando y  f x y sus derivadas se sustituyen en la ecuación. Así, f es una solución de la ecuación 4 si f x  xf x para todos los valores de x en algún intervalo. Cuando se pide resolver una ecuación diferencial, se espera hallar las posibles soluciones de la ecuación. Ya se han resuelto algunas ecuaciones diferenciales particularmente simples, a saber, aquellas de la forma y  f x Por ejemplo, se sabe que la solución general de la ecuación diferencial y  x 3 está dada por y

x4 C 4

donde C es una constante arbitraria. Pero, en general, resolver una ecuación diferencial no es un asunto fácil. No hay técnica sistemática que permita resolver todas las ecuaciones diferenciales. Sin embargo, en la sección 9.2 se verá cómo dibujar gráficas aproximadas de soluciones aun cuando no se tiene fórmula explícita. También se aprenderá cómo hallar aproximaciones numéricas a soluciones.

CAPITULO-09-A-A

570

||||

06/04/2009

20:20

Page 570

CAPÍTULO 9 ECUACIONES DIFERENCIALES

V EJEMPLO 1

Muestre que cualquier integrante de la familia de funciones y

1  ce t 1  ce t

es una solución de la ecuación diferencial y  12 y 2  1. SOLUCIÓN Se usa la regla del cociente para derivar la expresión para y:

y   En la figura 5 se muestran las gráficas de siete integrantes de la familia del ejemplo 1. La ecuación diferencial muestra que si y 1, por lo tanto y 0. Esto se confirma por lo alisado de las gráficas cerca de y  1 y y  1.

&

1 2

y 2  1 

_5

FIGURA 5



5

ce t  c 2e 2t  ce t  c 2e 2t 2ce t  1  ce t 2 1  ce t 2

El lado derecho de la ecuación diferencial se convierte en

5

_5

1  ce t ce t   1  ce t ce t  1  ce t 2

1 2



1  ce t 1  ce t

   2

1 

1 2

1  ce t 2  1  ce t 2 1  ce t 2



1 4ce t 2ce t  2 1  ce t 2 1  ce t 2

Por lo tanto, para todo valor de c, la función dada es una solución de la ecuación diferencial.



Al aplicar ecuaciones diferenciales, normalmente no se está tan interesado en hallar una familia de soluciones (la solución general) como en determinar una solución que satisfaga algún requerimiento adicional. En muchos problemas físicos se requiere hallar la solución particular que satisface una condición de la forma yt0   y0 . Ésta se llama condición inicial, y el problema de hallar una solución de la ecuación diferencial que satisface la condición inicial se llama problema con valores iniciales. Desde el punto de vista geométrico, cuando se impone una condición inicial, se considera la familia de curvas solución y se elige una que pasa por el punto t0 , y0 . Físicamente esto corresponde a medir el estado de un sistema en el tiempo t0 y usar la solución del problema de valor inicial para predecir el comportamiento futuro del sistema. Hallar una solución de la ecuación diferencial y  12 y 2  1 que satisface la condición inicial y0  2. V EJEMPLO 2

SOLUCIÓN Al sustituir los valores t  0 y y  2 en la fórmula

y

1  ce t 1  ce t

del ejemplo 1, se obtiene 2

1  ce 0 1c 0  1  ce 1c

Si esta ecuación se resuelve para c, se obtiene 2  2c  1  c, que da c  13 . Por lo tanto, la solución del problema con valores iniciales es y

1  13 e t 3  et  1  13 e t 3  et



CAPITULO-09-A-A

06/04/2009

20:20

Page 571

SECCIÓN 9.1 MODELADO CON ECUACIONES DIFERENCIALES

9.1

571

EJERCICIOS

1. Muestre que y  x  x 1 es una solución de la ecuación

diferencial xy  y  2x.

9. Una población se representa mediante una ecuación diferencial



dP P  1.2P 1  dt 4200

2. Compruebe que y  sen x cos x  cos x es una solución del

problema con valores iniciales y  tan xy  cos x

y0  1

2

en el intervalo  2  x  2. diferencial 2y  y  y  0 ? (b) Si r1 y r2 son los valores de r que halló en el inciso (a), demuestre que cualquier integrante de la familia de funciones y  ae r x  be r x también es una solución. 1

2

4. (a) ¿Para qué valores de k la función y  cos kt satisface la

ecuación diferencial 4y   25y ? (b) Para esos valores de k, verifique que cualquier integrante de la familia de las funciones y  A sen kt  B cos kt también es una solución.

5. ¿Cuáles de las siguientes funciones son soluciones de la ecuación

diferencial y   y  sen x ? (a) y  sen x (b) y  cos x 1 1 (c) y  2 x sen x (d) y   2 x cos x

10. Una función yt satisface la ecuación diferencial

dy  y 4  6y 3  5y 2 dt (a) ¿Cuáles son las soluciones constantes de la ecuación? (b) ¿Para qué valores de y crece y? (c) ¿Para qué valores de y decrece y? 11. Explique por qué las funciones con las gráficas dadas no

pueden ser soluciones de la ecuación diferencial dy  e t y  12 dt (a) y

(b) y

1

1

6. (a) Muestre que cualquier integrante de la familia de funciones

y  ln x  C/x es una solución de la ecuación diferencial x2y  xy  1 . (b) Ilustre el inciso (a) graficando diferentes integrantes de la familia de soluciones en una pantalla común. (c) Encuentre una solución de la ecuación diferencial que satisface la condición inicial y1  2 . (d) Determine una solución de la ecuación diferencial que satisface la condición inicial y2  1 .



(a) ¿Para qué valores de P la población es creciente? (b) ¿Para qué valores de P la población es decreciente? (c) ¿Cuáles son las soluciones de equilibrio?

3. (a) ¿Para qué valores de r la función y  e rx satisface la ecuación

;

||||

t

1

1

t

12. La función con la gráfica dada es una solución de una de las

siguientes ecuaciones diferenciales. Decida cuál es la ecuación correcta y justifique su respuesta. y

7. (a) ¿Qué puede decir acerca de una solución de la ecuación

y  y 2 observando sólo la ecuación diferencial? (b) Compruebe que los integrantes de la familia y  1x  C  son soluciones de la ecuación del inciso (a). (c) ¿Puede pensar en una solución de la ecuación diferencial y  y 2 que no sea un miembro de la familia del inciso (b)? (d) Encuentre una solución del problema con valores iniciales y  y 2

y0  0.5

8. (a) ¿Qué se puede decir acerca de la gráfica de una solución de

;

la ecuación y  xy 3 cuando x es cercana a 0? ¿Qué pasa si x es grande? (b) Compruebe que los integrantes de la familia y  c  x 2 12 son soluciones de la ecuación diferencial y  xy 3. (c) Grafique diferentes integrantes de la familia de soluciones en una pantalla común. ¿Las gráficas confirman lo que predijo en el inciso (a)? (d) Encuentre una solución del problema con valores iniciales. y  xy 3

y0  2

0

A. y  1  xy

x

B. y  2xy

C. y  1  2xy

13. Los psicólogos interesados en teoría de aprendizaje estudian

curvas de aprendizaje. Una curva de aprendizaje es la gráfica de una función Pt, el desempeño de alguien que aprende una habilidad como una función del tiempo de capacitación t. La derivada dPdt representa la rapidez a la que mejora el desempeño. (a) ¿Cuándo considera que P se incrementa con más rapidez? ¿Qué sucede con dPdt cuando t crece? Explique. (b) Si M es el nivel máximo de desempeño del cual es capaz el alumno, explique por qué la ecuación diferencial dP  kM  P dt

k es una constante positiva

es un modelo razonable para aprender.