Sintesis

Colegio Gimnasio Campestre San Sebastián Síntesis del periodo Como sabemos la segunda ley de Newton es una de las leyes

Views 185 Downloads 3 File size 243KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Colegio Gimnasio Campestre San Sebastián Síntesis del periodo

Como sabemos la segunda ley de Newton es una de las leyes básicas de la mecánica (Rama de la física que estudia los fenómenos relacionados con el movimiento de los cuerpos); se utiliza en el análisis de los movimientos próximos a la superficie de la tierra y también en el estudio de los cuerpos celestes. Mediante este trabajo presentamos los resultados de un experimento básico para comprobar la segunda ley de Newton (Análisis de fuerzas). INTRODUCCIÓN Cuando estudiamos l primera ley de Newton vemos que la resultante de la fuerza que actúan es nula este cuerpo se encuentra en reposo un movimiento rectilíneo uniforme. En cualquiera de estos casos la aceleración del cuerpo es nula. De modo que si: Consideremos un objeto colocado sobre una superficie horizontal lisa (sin fricción), y que es arrastrado por una fuerza; como las demás fuerzas que actúan en el (Peso y normal) se equilibran, podemos considerar la fuerza como la única fuerza que actúa en el cuerpo. Como la distancia entre dos posiciones sucesivas está aumentando, obviamente la velocidad de un cuerpo también aumenta, ósea, que el movimiento del cuerpo es acelerado. Concluimos entonces que un cuerpo, por la acción de una fuerza única adquiere una aceleración,



ósea, si ¹ 0 tenemos que ¹ 0. OBJETIVOS Desarrollar los conceptos de fuerza, masa y aceleración.



Verificar el cumplimiento de que la fuerza es igual a la masa por la aceleración.



Estudiar los conceptos básicos de la dinámica.



Analizar las diferentes graficas que nos ayuden a entender el movimiento MARCO TEÓRICO La dinámica es parte de la mecánica y se encarga de estudiar las fuerzas que intervienen en un movimiento y las leyes que lo rigen a diferencia de la cinemática. Segunda Ley de Newton La aceleración que un cuerpo adquiere es directamente proporcional a la resultante de las fuerzas que actúan en él, y tiene la misma dirección y el mismo sentido que dicha resultante. R = m a , o bien, å F = m a. Consideremos un cuerpo sometido a la acción de varias fuerzas (F1, F2, F3, etc.). Sabemos que al suceder esto, es posible sustituir el sistema de fuerzas por una fuerza única, la resultante R del sistema. CODIGO: FT-001 FECHA:19-12-2014

VERSION:004

La aceleración que el cuerpo vaya a adquirir por la acción del sistema de fuerza, se obtendrá como si el cuerpo estuviese sometido a la acción de una fuerza única, igual a R. La ecuación F = ma será en este caso, sustituida por R = ma, y el vector a tendrá la misma dirección y el mismo sentido que el vector R. La ecuación R = ma es la expresión matemática de la Segunda Ley de Newton en su forma más general. La Segunda Ley de Newton es una de las leyes básicas de la mecánica, se utiliza en el análisis de los movimientos próximos a la superficie de la tierra y también en el estudio de los cuerpos celestes.

El mismo Newton la aplicó al estudiar los movimientos de los planetas, y el gran éxito logrado constituyó una de las primeras confirmaciones de esta ley. La masa de un cuerpo es el cociente entre la fuerza que actúa en el mismo, y la aceleración que produce en él, o sea: m=F/a Cuanto mayor sea la masa de un cuerpo, tanto mayor será su inercia; es decir, la masa de un cuerpo es una medida de la inercia del mismo. Las Leyes de Newton, también conocidas como Leyes del movimiento de Newton,1son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinámica, en particular aquellos relativos al movimiento de los cuerpos. Revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo, en tanto que Constituyen los cimientos no sólo de la dinámica clásica sino también de la física clásica en general. Aunque incluyen ciertas definiciones y en cierto sentido pueden verse como axiomas, Newton afirmó que estaban basadas en observaciones y experimentos cuantitativos; ciertamente no pueden derivarse a partir de otras relaciones más básicas. La demostración de su validez radica en sus predicciones… La validez de esas predicciones fue verificada en todos y cada uno de los casos durante más de dos siglos. En concreto, la relevancia de estas leyes radica en dos aspectos:

o

Por un lado, constituyen, junto con la transformación de Galileo, la base de la mecánica clásica;

o

Por otro, al combinar estas leyes con la Ley de la gravitación universal, se pueden deducir y explicar las Leyes de Kepler sobre el movimiento planetario.

CODIGO: FT-001 FECHA:19-12-2014

VERSION:004

Las 3 Leyes físicas, junto con la Ley de Gravitación Universal formuladas por Sir Isaac Newton, son la base fundamental de la Física Moderna. Así, las Leyes de Newton permiten explicar tanto el movimiento de los astros, como los movimientos de los proyectiles artificiales creados por el ser humano, así como toda la mecánica de funcionamiento de las máquinas. Su formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiae Naturalis Principia Mathematica. No obstante, la dinámica de Newton, también llamada dinámica clásica, sólo se cumple en los sistemas de referencia inerciales; es decir, sólo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz (que no se acerquen a los 300,000 km/s); la razón estriba en que cuanto más cerca esté un cuerpo de alcanzar esa velocidad (lo que ocurriría en los sistemas de referencia no-inerciales), más posibilidades hay de que incidan sobre el mismo una serie de fenómenos denominados efectos relativistas o fuerzas ficticias, que añaden términos suplementarios capaces de explicar el movimiento de un sistema cerrado de partículas clásicas que interactúan entre sí. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905. Las leyes de newton De manera Generalizada, las 3 leyes de Sir Isaac Newton son:

Primera Ley o Ley de Inercia

Todo cuerpo permanece en su estado de reposo o de movimiento rectilíneo uniforme a menos que otros cuerpos actúen sobre él.

Segunda ley Principio Fundamental de Dinámica

La fuerza que actúa sobre un cuerpo es directamente proporcional a su aceleración.

CODIGO: FT-001 FECHA:19-12-2014

o la

VERSION:004

De entre todos los movimientos rectilíneos uniformemente acelerados (m.r.u.a.) o movimientos rectilíneos uniformemente variados (m.r.u.v.) que se dan en la naturaleza, existen dos de particular interés: la caída libre y el lanzamiento vertical. En este apartado estudiaremos la caída libre. Ambos se rigen por las ecuaciones propias de los movimientos rectilíneos uniformemente acelerados (m.r.u.a.) o movimientos rectilíneos uniformemente variados (m.r.u.v.): y=y0+v0t+12at2 v=v0+a⋅t a=cte Caída Libre En la caída libre un objeto cae verticalmente desde cierta altura H despreciando cualquier tipo de rozamiento con el aire o cualquier otro obstáculo. Se trata de un movimiento rectilíneo uniformemente acelerado (m.r.u.a.) o movimiento rectilíneo uniformemente variado (m.r.u.v.) en el que la aceleración coincide con el valor de la gravedad. En la superficie de la Tierra, la aceleración de la gravedad se puede considerar constante, dirigida hacia abajo, se designa por la letra g y su valor es de 9'8m/s2 (a veces se aproxima por 10 m/s2). Para estudiar el movimiento de caída libre normalmente utilizaremos un sistema de referencia cuyo origen de coordenadas se encuentra en el pie de la vertical del punto desde el que soltamos el cuerpo y consideraremos el sentido positivo del eje y apuntando hacia arriba, tal y como puede verse en la figura:

Con todo esto nos quedaría: v0=0; y0=H; a=−g La caída libre es un movimiento rectilíneo uniformemente acelerado (m.r.u.a.) o movimiento rectilíneo uniformemente variado (m.r.u.v.) en el que se deja caer un cuerpo verticalmente desde cierta altura y no encuentra resistencial alguna en su camino. Las ecuaciones de la caída libre son: y=H−12gt2 CODIGO: FT-001 FECHA:19-12-2014

VERSION:004

v=−g⋅t a=−g Donde: 

y: La posición final del cuerpo. Su unidad en el Sistema Internacional (S.I.) es el metro (m)



v: La velocidad final del cuerpo. Su unidad en el Sistema Internación (S.I.) es el metro (m/s)



a: La aceleración del cuerpo durante el movimiento. Su unidad en el Sistema Internación (S.I.) es el metro (m/s).



t: Intervalo de tiempo durante el cual se produce el movimiento. Su unidad en el Sistema Internación (S.I.) es el segundo (s)



H: La altura desde la que se deja caer el cuerpo. Se trata de una medida de longitud y por tanto se mide en metros.



g: El valor de la aceleración de la gravedad que, en la superficie terrestre puede considerarse igual a 9.8 m/s2

CODIGO: FT-001 FECHA:19-12-2014

VERSION:004