POLARIZACION

Polarización electromagnética La polarización electromagnética es una propiedad de 2 Polarización de ondas planas las on

Views 139 Downloads 1 File size 313KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Polarización electromagnética La polarización electromagnética es una propiedad de 2 Polarización de ondas planas las ondas que pueden oscilar con más de una orientación. Esto se refiere normalmente a las llamadas ondas trans- Un ejemplo sencillo para visualizar la polarización es el versales, en particular se suele hablar de las ondas electro- de una onda plana, que es una buena aproximación de la magnéticas, aunque también se puede dar en otras ondas mayoría de las ondas luminosas. longitudinales. Por otra parte, las ondas de sonido en un gas o líquido son ondas exclusivamente longitudinales en la que la oscilación va siempre en la dirección de la onda; por lo que no se habla de polarización en este tipo de ondas. En una onda electromagnética, tanto el campo eléctrico y el campo magnético son oscilantes, pero en diferentes direcciones; ambas perpendiculares entre si y perpendiculares a la dirección de propagación de la onda; por convención, el plano de polarización de la luz se refiere a la polarización del campo eléctrico. z

E

y

Descomposición del vector de campo eléctrico en dos componentes.

v

x B

En un punto determinado la onda del campo eléctrico puede tener dos componentes vectoriales perpendiculares (transversales) a la dirección de propagación. Las dos componentes vectoriales transversales varían su amplitud con el tiempo, y la suma de ambas va trazando una figura geométrica. Si dicha figura es una recta, la polarización se denomina lineal; si es un círculo, la polarización es circular; y si es una elipse, la polarización es elíptica.

Fig.1 - Una onda electromagnética polarizada. Las oscilaciones del campo eléctrico sólo se producen en el plano del tiempo, son perpendiculares a las oscilaciones del campo magnético, y ambas son perpendiculares a la dirección de propagación de la onda.

Si la onda electromagnética es una onda armónica simple, como en el caso de una luz monocromática, en que la amplitud del vector de campo eléctrico varía de masinusoidal, los dos componentes tienen exactamen1 Campo eléctrico y campo magné- nera te la misma frecuencia. Sin embargo, estos componentes tico de una onda electromagnéti- tienen otras dos características de definición que pueden ser diferentes. Primero, los dos componentes pueden no ca tener la misma amplitud. Segundo, los dos componentes pueden no tener la misma fase, es decir, pueden no alcanUna onda electromagnética es una onda transversal com- zar sus máximos y mínimos al mismo tiempo. puesta por un campo eléctrico y un campo magnético simultáneamente. Ambos campos oscilan perpendicularmente entre sí; las ecuaciones de Maxwell modelan este 3 Tipos de polarización comportamiento. Habitualmente se decide por convenio que para el estudio de la polarización electromagnética se atienda exclusivamente al campo eléctrico, ignorando el campo magnético, ya que el vector de campo magnético puede obtenerse a partir del vector de campo eléctrico, pues es perpendicular y proporcional a él.

La forma trazada sobre un plano fijo por un vector de campo eléctrico de una onda plana que pasa sobre él es una curva de Lissajous y puede utilizarse para describir el tipo de polarización de la onda. Las siguientes figuras muestran algunos ejemplos de la variación del vector de campo eléctrico (azul) con el tiempo (el eje vertical), con 1

2

4

RADIACIÓN INCOHERENTE

− → sus componentes X y Y (roja/izquierda y verde/derecha), E0 = E0|| · ej·θ · u⃗|| + E0⊥ · ej·θ⊥ · u⃗⊥ y la trayectoria trazada por la punta del vector en el plano donde el símbolo || se usa para las componentes paralelas, (púrpura). Cada uno de los tres ejemplos corresponde a mientras que ⊥ es para las componentes perpendiculares. un tipo de polarización. Los vectores u, son vectores unitarios en la dirección que En la figura de la izquierda, la polarización es lineal y la indican sus subíndices (paralela o perpendicular al plano oscilación del plano perpendicular a la dirección de pro- de incidencia). pagación se produce a lo largo de una línea recta. Se puede representar cada oscilación descomponiéndola en dos ejes X y Y. La polarización lineal se produce cuando ambas componentes están en fase (con un ángulo de desfase nulo, cuando ambas componentes alcanzan sus máximos y mínimos simultáneamente) o en contrafase (con un ángulo de desfase de 180º, cuando cada una de las componentes alcanza sus máximos a la vez que la otra alcanza Representación de los casos de polarización elíptica: Polarizasus mínimos). La relación entre las amplitudes de ambas ción elíptica levógira (gira hacia la izquierda) y Polarización componentes determina la dirección de la oscilación, que elíptica dextrógira (gira hacia la derecha). es la dirección de la polarización lineal. En la figura central, las dos componentes ortogonales tie- Se realiza la diferencia θ|| − θ⊥ y según el resultado se nen exactamente la misma amplitud y están desfasadas tendrá: exactamente 90º. En este caso, una componente se anula cuando la otra componente alcanza su amplitud máxima • Polarización lineal si la diferencia es 0 o un múltio mínima. Existen dos relaciones posibles que satisfacen plo entero (positivo o negativo) de π . esta exigencia, de forma que la componente x puede estar • Polarización circular si la diferencia es un múltiplo 90º adelantada o retrasada respecto a la componente Y. entero impar (positivo o negativo) de π2 . En este El sentido (horario o antihorario) en el que gira el campo caso se cumple, además, que E0|| = E0⊥ . eléctrico depende de cuál de estas dos relaciones se dé. En este caso especial, la trayectoria trazada en el plano • En el resto de casos se producirá polarización elíppor la punta del vector de campo eléctrico tiene la forma tica. de una circunferencia, por lo que en este caso se habla de polarización circular. Es posible conocer, en el caso de polarización elíptica, el En la figura de la derecha, se representa la polarización sentido de giro de la polarización de la onda. A partir de elíptica. Este tipo de polarización corresponde a cual- la diferencia anterior se puede obtener fácilmente: quier otro caso diferente a los anteriores, es decir, las dos componentes tienen distintas amplitudes y el ángulo de • Si θ|| − θ⊥ < 0 se trata de polarización elíptica desfase entre ellas es diferente a 0º y a 180º (no están en levógira ó helicidad negativa. fase ni en contrafase). • Si θ|| − θ⊥ > 0 se trata de polarización elíptica dextrógira ó helicidad positiva.

3.1

Cómo determinar la polarización de 4 una onda plana

Para averiguar el tipo de polarización de la onda, es necesario analizar el campo (eléctrico o magnético). El análisis se realizará para el campo eléctrico, pero es similar al del campo magnético. Si el campo eléctrico es de la forma: − → − → ⃗ E = E0 · ej·(k·⃗r±ω·t) − → La amplitud de la onda, E0 , va siempre en la dirección de polarización de la onda. Es por ello por lo que se hace − → necesario analizar E0 para ver qué tipo de polarización se tiene. − → Se puede descomponer E0 como suma de un vector paralelo al plano de incidencia y otro vector perpendicular a dicho plano:

Radiación incoherente

En la naturaleza, la radiación electromagnética es producida a menudo por un gran conjunto de emisores individuales, cada uno de los cuales da lugar a un tren de ondas independiente. Este tipo de luz se llama incoherente. En general, no hay una única frecuencia sino un espectro de frecuencias y, aunque sea filtrado a una arbitraria y estrecha gama de frecuencias, puede no haber un estado constante y uniforme de polarización. Sin embargo, esto no significa que la polarización sea solamente una característica de la radiación coherente. La radiación incoherente puede demostrar la correlación estadística entre las componentes del campo eléctrico. Esta correlación se puede interpretar como polarización parcial. En general, se puede describir un campo ondulatorio como la suma de una parte totalmente incoherente (sin correlaciones) y de una

5.2

Polarización por reflexión

parte totalmente polarizada. Entonces se puede describir la luz en términos del grado de polarización y los parámetros de la elipse de polarización.

3

Rayo incidente (no polarizado)

Rayo reflejado (polarizado) θB

5

Obtención de luz polarizada

A continuación se explicarán brevemente algunos de los procedimientos experimentales que permiten la obtención de luz polarizada a partir de una emisión de luz natural. Para obtener luz polarizada linealmente se hace que el vector eléctrico vibre en un único plano (plano de polarización) de los que contienen la dirección de propagación.

Rayo refractado (parcialmente polarizado)

Existen varios métodos para obtener luz polarizada: absorción selectiva, por reflexión, refracción y por difusión. Ángulo de Brewster ( θB ).

5.2 Polarización por reflexión Al reflejarse un haz de luz no polarizado sobre una superficie, la luz reflejada sufre una polarización parcial de forma que el componente del campo eléctrico perpendicular al plano de incidencia (plano que contiene la dirección del rayo de incidencia y el vector normal a la superficie de incidencia) tiene mayor amplitud que el componente contenido en el plano de incidencia. Cuando la luz incide sobre una superficie no absorbente con un determinado ángulo, el componente del campo eléctrico paralelo al plano de incidencia no es reflejado. Este ángulo, conocido como ángulo de Brewster, en honor del físico británico David Brewster, se alcanza cuando el 5.1 Polarización por absorción selectiva rayo reflejado es perpendicular al rayo refractado. La tangente del ángulo de Brewster es igual a la relación entre Algunos materiales absorben selectivamente una de las los índices de refracción del segundo y el primer medio. componentes transversales del campo eléctrico de una onda. Esta propiedad se denomina dicroísmo. La luz experimenta una absorción en ciertos estados de polariza- 5.3 Polarización por birrefringencia ción. El término dicroísmo proviene de las observaciones realizadas en épocas muy tempranas de la teoría óptica sobre ciertos cristales, tales como la turmalina. En estos cristales, el efecto del dicroísmo varía en gran medida con la longitud de onda de la luz, haciendo que aparezcan diferentes colores asociados a la visión de diferentes colores con diferentes planos de polarización. Este efecto es también denominado pleocroísmo, y la técnica se emplea en mineralogía para identificar los diferentes minerales. En algunos materiales, tales como la herapatita (sulfato de iodoquinina) o las capas Polaroid, el efecto no es tan Birrefringencia en un cristal de calcita. fuertemente dependiente de la longitud de onda, y ésta es la razón por la que el término dicroico se emplea muy La birrefringencia o doble refracción es una propiedad de ciertos cuerpos, como el espato de Islandia, de despoco. El dicroísmo ocurre también como fenómeno óptico en doblar un rayo de luz incidente en dos rayos linealmente los cristales líquidos debido en parte a la anisotropía óp- polarizados de manera perpendicular entre sí como si el tica que presentan las estructuras moleculares de estos material tuviera dos índices de refracción distintos. materiales. A este efecto se le denominó posteriormen- La primera de las dos direcciones sigue las leyes normales te “efecto huésped-invitado” (guest-host effect en inglés). de la refracción y se llama rayo ordinario; la otra tiene una

4

6

POLARIZACIÓN EN NATURALEZA, CIENCIA, Y TECNOLOGÍA

velocidad y un índice de refracción variables y se llama rayo extraordinario. Este fenómeno sólo puede ocurrir si la estructura del material es anisótropa. Si el material tiene un solo eje de anisotropía, (es decir es uniaxial), la birrefringencia puede formalizarse asignando dos índices de refracción diferentes al material para las distintas polarizaciones.

reflectante. Un filtro polarizador, como el de unas gafas de sol polarizada, puede utilizarse para observar este fenómeno haciendo girar el filtro y mirando a través de él. Para determinados ángulos, se atenuará la luz o será totalmente bloqueada. Los filtros polarizadores bloquean el paso de luz polarizada a 90º respecto al plano polarizador del filtro. Si dos filtros polarizadores (polarizador y analizador) se colocan uno en frente del otro de forma La birrefringencia está cuantificada por la relación: que ambos sean atravesados por un haz de luz que no estaba polarizado previamente, la intensidad luminosa del haz que sale del segundo filtro será proporcional al coseno ∆n = ne − no del ángulo que forman los planos polarizadores de ambos filtros entre sí. Si ese ángulo es de 90º, el paso de la luz donde nₒ y nₑ son los índices de refracción para las polaries bloqueado. zaciones perpendicular (rayo ordinario) y paralela al eje La polarización por dispersión puede observarse cuando de anisotropía (rayo extraordinario), respectivamente. la luz pasa por la atmósfera de la Tierra. La dispersión de La birrefringencia puede también aparecer en matela luz produce el resplandor y el color cuando el cielo está riales magnéticos, pero variaciones sustanciales en la despejado. Esta polarización parcial de la luz dispersapermeabilidad magnética de materiales son raras a las freda puede ser usada para oscurecer el cielo en fotografías, cuencias ópticas. El papel de celofán es un material birreaumentando el contraste. Este efecto es fácil de obserfringente común. var durante la puesta de sol, cuando el horizonte forma un ángulo de 90° respecto a la dirección del observador hacia el sol. Otro efecto fácilmente observado es la re6 Polarización en naturaleza, cien- ducción drástica del resplandor de las imágenes del cielo reflejadas sobre superficies horizontales, que es la razón cia, y tecnología principal por la que a menudo se usan filtros polarizadores en gafas de sol. También puede verse con frecuencia que un filtro polarizador muestre algunos arcoíris a causa de la dependencia del color de los efectos de la birrefringencia, por ejemplo en las ventanas de cristal laminado de los automóviles o en artículos hechos de plástico transparente. El papel desempeñado por la polarización en una pantalla LCD puede verse con unas gafas de cristal polarizado, pudiendo reducir el contraste incluso hasta a hacer Efecto de un polarizador sobre la reflexión en el fango. En la la visión de la pantalla ilegible. imagen de la izquierda, el polarizador está girado para transmitir las reflexiones. Al girar el polarizador 90º (imagen de la derecha) casi toda la luz del sol reflejada es bloqueada.

Efecto de un filtro polarizador sobre la imagen del cielo en una fotografía en color. La imagen de la derecha se ha realizado utilizando un filtro polarizador.

6.1

Efectos de la polarización en la vida diaria

La luz reflejada sobre materiales brillantes transparentes es parcial o totalmente polarizada, excepto cuando la luz incide en dirección normal (perpendicular) a la superficie

Efecto de un cristal templado sobre la luz polarizada analizado con un filtro polarizador.

En la fotografía de la derecha se ve el parabrisas de un coche a través de la luneta trasera de otro coche situado delante y un filtro polarizador (como el de unas gafas de cristal polarizado). La luz del cielo se refleja en el parabrisas del coche de atrás, haciendo que se polarice la luz reflejada, principalmente con un plano de polarización horizontal. La luneta trasera del coche delantero está fabricada con vidrio templado. Debida al tratamiento térmico del templado en el cristal de la luneta del coche

6.5

Astronomía

situado delante, el cristal tiene una tensión residual que hace que cambie el ángulo del plano de polarización de la luz que pasa por él. Si no estuviera la luneta trasera, las gafas de sol bloquearían toda la luz polarizada horizontalmente que es reflejada por la ventana del otro coche. Sin embargo, la tensión en la luneta trasera cambia un poco el ángulo del plano de polarización de la luz, con una componente vertical y otra horizontal. La componente vertical no es bloqueada por los cristales de las gafas, percibiéndose la luz reflejada en el parabrisas del coche de atrás.

6.2

Biología

Muchos animales pueden ser capaces de percibir la polarización de luz, usando esa habilidad con objetivos de navegación ya que la polarización lineal de la luz de cielo es siempre perpendicular a la dirección del sol. Esta capacidad es muy común entre los insectos, incluyendo las abejas, que usan esta información para orientar su danza de la abeja. La sensibilidad a la polarización también ha sido observada en especies de pulpo, calamar, sepia y mantis. El rápido cambio en la coloración de la piel de la sepia se usa para la comunicación, polarizando la luz que se refleja sobre ella. La mantis religiosa es conocida por tener un tejido reflexivo selectivo que polariza la luz. Hace tiempo se pensaba que la polarización de la luz del cielo era percibida por las palomas y era una de las ayudas de las palomas mensajeras, pero algunas investigaciones señalan que eso es un mito popular.[1] El ojo humano es débilmente sensible a la polarización, sin necesidad de la intervención de filtros externos. La luz polarizada crea un dibujo modelo muy débil cerca del campo visual, llamado cepillo de Haidinger. Este dibujo es muy difícil de ver, pero con la práctica uno puede aprender a descubrir la luz polarizada a simple vista.

6.3

Geología

La propiedad de la birrefringencia lineal es común a muchos minerales cristalinos y su estudio ayudó a descubrir el fenómeno de la polarización. En mineralogía, esta propiedad es estudiada con frecuencia usando microscopios de luz polarizada, con el objetivo de identificar minerales.

6.4

Química

La polarización es de principal importancia en la química debido al dicroísmo circular y la rotación del plano de polarización (birrefringencia circular) mostrada por moléculas quirales ópticamente activas. Esta rotación del plano de polarización puede medirse utilizando un polarímetro.

5 de un grupo funcional en las propiedades eléctricas (por ejemplo, el momento dipolar) de un enlace covalente o de un átomo.

6.5 Astronomía En muchas áreas de la astronomía, el estudio de la radiación electromagnética polarizada del espacio exterior es de gran importancia. Aunque por lo general no se produce en la radiación térmica de las estrellas, la polarización está también presente en la radiación de algunas fuentes astronómicas coherentes (por ejemplo, algunas masas de metanol o de hidróxidos), y de fuentes incoherentes como los grandes lóbulos de radio en galaxias activas, y la radiación pulsatoria de radio (que se especula que pueda ser a veces coherente), y también se impone sobre la luz de las estrellas dispersando polvo interestelar. Aparte del aporte de información sobre las fuentes de radiación y dispersión, la polarización también se utiliza para explorar el campo magnético aplicando el efecto Faraday. La polarización de la radiación de fondo de microondas sirve para estudiar la física del principio del universo. La radiación sincrotrón está severamente polarizada. También usando un filtro polarizador, en el Telescopio Infrarrojo Británico (UKIRT) se ha logrado por vez primera ver con claridad el disco de materia alrededor de un agujero negro, diferenciándolo de las nubes de gas y polvo que lo rodean.

6.6 Tecnología Las aplicaciones tecnológicas de la polarización están sumamente extendidas. Quizás los ejemplos más comúnmente encontrados son las pantallas de cristal líquido (display clearblack creados por Nokia, con filtros polarizados que permiten mejor la vizualizacion de la pantalla en exteriores con luz natural)(LCD), las gafas de sol de cristal polarizado y los filtros polarizadores utilizados en fotografía. Todas las antenas transmisoras y receptoras de radiofrecuencia usan la polarización electromagnética, especialmente en las ondas de radar. La mayoría de las antenas irradian ondas polarizadas, ya sea con polarización horizontal, vertical o circular. La polarización vertical es usada más frecuentemente cuando se desea irradiar una señal de radio en todas las direcciones como en las bases de telefonía móvil o las ondas de radio AM. Sin embargo, no siempre se utiliza la polarización vertical. La televisión normalmente usa la polarización horizontal. La alternancia entre polarización vertical y horizontal se utiliza en la comunicación por satélite (incluyendo satélites de televisión) para reducir la interferencia entre señales que tienen un mismo rango de frecuencias, teniendo la separación reducida angular en cuenta entre los satélites.

La polarización también puede observarse en el efecto inductivo o la resonancia de los enlaces o en la influencia En ingeniería, la relación entre la tensión y la birrefrin-

6

8

REFERENCIAS

observador. El efecto 3-D sólo funciona proyectando la imagen sobre una pantalla metálica que mantiene la polarización de los proyectores, mientras que la reflexión sobre una pantalla de proyección normal anularía el efecto.

6.7 Arte Varios artistas visuales han trabajado con la luz polarizada y materiales birrefringentes para crear imágenes vistosas y cambiantes. La más notable es la artista contemporánea Austine Wood Comarow,[2] cuyos trabajos de arte Polage han sido expuestos en el Museo de la Ciencia (Museum of Science) de Boston, el Museo de Historia Natural y Ciencia de Nuevo México (New Mexico Museum of Natural History and Science) en Albuquerque (Nuevo MéxiImagen de un plástico sometido a tensión en un ensayo de co), y la Cité des Sciencies et de l'Industrie (Ciudad de Ciencia y de Industria) en París. Los trabajos del artista fotoelasticidad. son realizados cortando cientos de pequeños pedazos de celofán y otras películas birrefringentes y laminándolos gencia motiva el empleo de la polarización para caracte- entre filtros polarizadores planos. rizar la distribución de tensiones y la tensión en los prototipos usando la técnica de la fotoelasticidad. La muestra a analizar se coloca entre dos filtros polarizadores, el pri- 7 Véase también mero hace que la luz que pase por la pieza a ensayar esté polarizada y el segundo descompone la luz. Es un ensayo • Wikimedia Commons alberga contenido mulmuy utilizado en aplicaciones de piezas de dos dimensiotimedia sobre Polarización electromagnética. nes. Commons La polarización en la atmósfera fue estudiada en los años • Filtro polarizador 1950 navegando cerca de los polos campo magnético terrestre cuando ni el el sol ni las estrellas eran visibles (por • Óptica ejemplo en un día nublado). Se ha sugerido, polémicamente, que los vikingos ya utilizaban espato de Islandia • Laser para ver la dirección del sol en días nublados para orien• Propagación de ondas tarse durante sus largas expediciones a través el Atlántico Norte entre los siglos IX y X, antes de la llegada de la • Dispersión de la luz brújula magnética a Europa en el siglo XII. Uno de los • Refracción de la luz dispositivos más ingeniosos de Charles Wheatstone fue el reloj polar expuesto en la reunión de la British Asso• Propagación de la luz ciation for the Advancement of Science en 1848. • Interferencia en la luz La polarización también se utiliza en las películas de cine 3D, en las cuales las imágenes son proyectadas, o bien por • Reflexión de la luz dos proyectores diferentes con filtros de polarización or• Dispersión de la luz togonalmente orientados, o bien por un único proyector que proyecta ambas imágenes alternativamente con pla• Difracción de la luz nos de polarización perpendiculares entre sí mediante un multiplexor. Las gafas con filtros polarizadores orientados de modo similar a los planos de polarización de las imágenes proyectadas aseguran que cada ojo reciba sólo la 8 Referencias imagen correcta. De igual manera, este efecto también es usado para realizar proyecciones estereoscópicas, ya que [1] “No evidence for polarization sensitivity in the pigeon electroretinogram”, J. J. Vos Hzn, M. A. J. M. Coemans no es muy caro de producir y permite realizar visualiza& J. F. W. Nuboer, The Journal of Experimental Biology, ciones de alto contraste. En ambientes donde el especta1995. dor se mueve, como en simuladores, a veces se utiliza la polarización circular. Esto permite que la separación de [2] Austine Wood Comarow ambos canales (correspondiente a cada uno de los ojos del observador) no se vea afectada por la orientación del 3. Phd. Anderson Arévalo, el adn del cosmos

7

9

Enlaces externos • http://www.educaplus.org/luz/polarizacion.html • http://library.thinkquest.org/C003776/espanol/ print/chapter10.htm • http://mecfunnet.faii.etsii.upm.es/difraccion/ PolElipt.html • Explicación animada sobre la polarización Física 2000 • Polarización circular

8

10 ORIGEN DEL TEXTO Y LAS IMÁGENES, COLABORADORES Y LICENCIAS

10 10.1

Origen del texto y las imágenes, colaboradores y licencias Texto

• Polarización electromagnética Fuente: https://es.wikipedia.org/wiki/Polarizaci%C3%B3n_electromagn%C3%A9tica?oldid=87447674 Colaboradores: 4lex, Gengiskanhg, Sergioller, Gelo71, Charlitos, Chobot, Caiserbot, Yrbot, Oscar ., GermanX, Roche, Coppelius, Mirkovich, BOTpolicia, CEM-bot, Davius, Nands, Thijs!bot, PabloCastellano, Tortillovsky, Poc-oban, TXiKiBoT, Idioma-bot, Pólux, Mferrand, Stardust, VolkovBot, Technopat, BlackBeast, Muro Bot, NapoliAzzurro, Tesi1700, HUB, Eduardosalg, Botito777, JetDriver, -antonio-, UA31, AVBOT, MastiBot, FiriBot, Diegusjaimes, DumZiBoT, Lasusirexula, Draxtreme, ArthurBot, SuperBraulio13, Xqbot, Jkbw, Skywiki, Rubinbot, Dreitmen, Vmmf, Irbian, Sofi11.10, GrupoKikeAdriUEM, EmausBot, ChessBOT, El Ayudante, Diamondland, MerlIwBot, KLBot2, Higienicosanitario, MetroBot, Lorenhey, Peneadicto1450, Acratta, Elvisor, Malayachi, And are100, Jarould, Allison michel duarte, Lectorina y Anónimos: 90

10.2

Imágenes

• Archivo:Calcite.jpg Fuente: https://upload.wikimedia.org/wikipedia/commons/7/7a/Calcite.jpg Licencia: Public domain Colaboradores: ? Artista original: ? • Archivo:CircularPolarizer.jpg Fuente: https://upload.wikimedia.org/wikipedia/commons/d/d8/CircularPolarizer.jpg Licencia: CC-BYSA-3.0 Colaboradores: Trabajo propio Artista original: User PiccoloNamek on en.wikipedia • Archivo:Commons-logo.svg Fuente: https://upload.wikimedia.org/wikipedia/commons/4/4a/Commons-logo.svg Licencia: Public domain Colaboradores: This version created by Pumbaa, using a proper partial circle and SVG geometry features. (Former versions used to be slightly warped.) Artista original: SVG version was created by User:Grunt and cleaned up by 3247, based on the earlier PNG version, created by Reidab. • Archivo:Mudflats-polariser.jpg Fuente: https://upload.wikimedia.org/wikipedia/commons/a/a3/Mudflats-polariser.jpg Licencia: CCBY-SA-3.0 Colaboradores: ? Artista original: ? • Archivo:Onde_electromagnetique.svg Fuente: https://upload.wikimedia.org/wikipedia/commons/3/35/Onde_electromagnetique.svg Licencia: CC-BY-SA-3.0 Colaboradores: Self, based on Image:Onde electromagnetique.png Artista original: SuperManu • Archivo:Photoelasticimetry1.JPG Fuente: https://upload.wikimedia.org/wikipedia/commons/3/3e/Photoelasticimetry1.JPG Licencia: Public domain Colaboradores: No machine-readable source provided. Own work assumed (based on copyright claims). Artista original: No machine-readable author provided. Fffred~commonswiki assumed (based on copyright claims). • Archivo:Polarisation_circulaire.gif Fuente: https://upload.wikimedia.org/wikipedia/commons/1/18/Polarisation_circulaire.gif Licencia: Public domain Colaboradores: ? Artista original: ? • Archivo:Polarisation_elliptique.gif Fuente: https://upload.wikimedia.org/wikipedia/commons/b/b6/Polarisation_elliptique.gif Licencia: Public domain Colaboradores: ? Artista original: ? • Archivo:Polarisation_rectiligne.gif Fuente: https://upload.wikimedia.org/wikipedia/commons/1/1e/Polarisation_rectiligne.gif Licencia: Public domain Colaboradores: ? Artista original: ? • Archivo:Rear_mirror_view_using_polarizing_filter.jpg Fuente: https://upload.wikimedia.org/wikipedia/commons/8/8e/Rear_ mirror_view_using_polarizing_filter.jpg Licencia: CC-BY-SA-3.0 Colaboradores: ? Artista original: ? • Archivo:Vector_components.png Fuente: https://upload.wikimedia.org/wikipedia/commons/9/99/Vector_components.png Licencia: CC-BY-SA-3.0 Colaboradores: and own work. Artista original: ? • Archivo:Wire-grid-polarizer.svg Fuente: https://upload.wikimedia.org/wikipedia/commons/9/94/Wire-grid-polarizer.svg Licencia: CC-BY-SA-3.0 Colaboradores: ? Artista original: ? • Archivo:_Circular_polarization_schematic.png Fuente: https://upload.wikimedia.org/wikipedia/commons/6/67/Circular_ polarization_schematic.png Licencia: Public domain Colaboradores: Transferred from pl.wikipedia Artista original: Superborsuk • Archivo:_Elliptical_polarization_schematic.png Fuente: https://upload.wikimedia.org/wikipedia/commons/6/6a/Elliptical_ polarization_schematic.png Licencia: Copyrighted free use Colaboradores: ? Artista original: ? • Archivo:_Linear_polarization_schematic.png Fuente: https://upload.wikimedia.org/wikipedia/commons/2/2e/Linear_polarization_ schematic.png Licencia: Copyrighted free use Colaboradores: from [1] Artista original: ? • Archivo:_PolarizacionEliptica.png Fuente: https://upload.wikimedia.org/wikipedia/commons/8/87/PolarizacionEliptica.png Licencia: GFDL Colaboradores: Trabajo propio Artista original: GrupoKikeAdriUEM • Archivo:Ángulo_de_Brewster.svg Fuente: https://upload.wikimedia.org/wikipedia/commons/c/c7/%C3%81ngulo_de_Brewster.svg Licencia: CC BY 3.0 Colaboradores: Image:Brewsters-angle.svg and own work Artista original: HUB1

10.3

Licencia del contenido

• Creative Commons Attribution-Share Alike 3.0