Filtros

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II Contenido INTRODUCCION ..........

Views 315 Downloads 0 File size 2MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II

Contenido INTRODUCCION ............................................................................................................... 2 OBJETIVOS ...................................................................................................................... 3 Filtros Activos .................................................................................................................... 4 Especificaciones de un filtro ........................................................................................... 7 Funciones Prototipo ....................................................................................................... 9 a)

Butterworth .......................................................................................................... 9

b)

Chebyshev ........................................................................................................ 12

c)

Bessel................................................................................................................ 15

Diseño de un filtro pasa banda 35 kHz de 10no orden tipología MFB (Multiple-FeedBack) o RAUCH ............................................................................................................................ 17 Implementacion del filtro .................................................................................................. 18 Selección del orden y tipo de filtro a utilizar. ................................................................. 18 I.

Análisis teórico. ..................................................................................................... 18 Función de transferencia .......................................................................................... 21 Ancho de banda........................................................................................................ 22 Diagrama de Bode: Magnitud y fase ......................................................................... 23

II.

Simulación en Spice Opus .................................................................................... 25

III.

Resultados obtenidos en laboratorio .................................................................. 29

CONCLUSIONES ............................................................................................................ 30

1

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II

INTRODUCCION Como ya se sabe, entre las características que determinan a una señal eléctrica se encuentra la frecuencia. En muchos casos, en la práctica, a través de un circuito, puede pasar más de una señal eléctrica, es decir, pueden pasar señales eléctricas con distinta frecuencia; sin embargo, se puede dar el caso de que en determinadas circunstancias solo interesa única y exclusivamente una de las señales que pueden circular por el circuito. Esta "selección" de una señal eléctrica según la frecuencia que tenga es lo que hacen los filtros. Al principio, los filtros estaban compuestos únicamente por elementos pasivos, es decir, resistencias, condensadores e inductancias. Sin embargo, la aparición del amplificador operacional ha traído consigo una mejora notable en la fabricación de los filtros, ya que se ha podido prescindir de las inductancias. La mejora conseguida con el cambio de inductancias por amplificadores operacionales es apreciable en lo que se refiere a respuesta, aprovechamiento de la energía (menor disipación), tamaño y peso, ya que las inductancias no se pueden integrar en un circuito y, por tanto, son elementos discretos con un tamaño considerable. Como desventajas de estos filtros (filtros activos RC) frente a los filtros fabricados con elementos pasivos (filtros RLC) están las limitaciones en los niveles de tensión y corriente y los efectos parásitos inducidos por los elementos activos, como por ejemplo la tensión de desplazamiento en corriente continua a la salida, la corriente de polarización en la entrada, etc. Sin embargo, en la mayoría de las aplicaciones que se dan a los filtros, las ventajas de los filtros activos RC sobre los pasivos RLC son más numerosas; de ahí que estén tomando una importancia cada vez mayor en el campo de la ingeniería. Los filtros activos son circuitos compuestos por resistencias, condensadores y amplificadores operacionales, cuya finalidad es dejar pasar a través de ellos las frecuencias para las que han sido diseñados, eliminando por tanto el resto de las frecuencias que no interesan. Esto se consigue atenuando o incluso llegando a anular aquellas cuya frecuencia no está en el margen de frecuencias admisible. Existen diferentes clasificaciones de los filtros, dependiendo de su configuración, orden, respuesta en frecuencia, función de transferencia, etc. Pero para el presente proyecto se creará un filtro pasa banda de 35 kHz de tipo Butterworth, configuración MFB de 10° orden y así poner en práctica lo aprendido en clase y la previa investigación.

2

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II

OBJETIVOS Objetivo General: 

Diseñar un filtro activo pasa banda con una frecuencia de resonancia de 35 kHz, implementando los recursos utilizados en clase asi como también la investigación.

Objetivos Específicos:  

Conocer las diferentes clasificaciones de los filtros y el uso que estos tienen en el campo de la electrónica. Implementar el uso de herramientas básicas para la simulación y análisis como TINA y Spice Opus.

3

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II Filtros Activos

Los filtros juegan un importante rol en la electrónica actual, tanto en áreas de comunicaciones y procesamiento de imágenes como control automático. Estos se pueden clasificar en Filtros análogos, digitales y de capacitor conmutado (híbrido, el cual contiene elementos análogos y digitales). Un filtro es un dispositivo de dos puertas capaz de transmitir una banda de frecuencias limitada. Estos pueden ser pasivos o activos. Los primeros, están construidos en base a resistencias, bobinas y condensadores, mientras los activos están conformados por resistencias, condensadores y Amplificadores Operacionales, los que además tienen las siguientes características:  Pequeño tamaño y peso.  Uso en el rango de las frecuencias de audio (20KHz)  Valores de resistencias y condensadores razonables a frecuencias muy bajas.  Tiene elevadas características de aislamiento.  Puede proveer ganancia si se requiere. A continuación se dará un marco teórico para los filtros activos, sus especificaciones y diseño. TIPOS DE FILTROS: Los filtros se pueden representar mediante la función de transferencia H(s), la cual se expresa en términos de su ganancia o atenuación, así se tiene: (1)

Figura 1: Red bipuertos, filtro activo.

Donde Vi(s)es la entrada del filtro y Vo(s), la salida. La transmisión del filtro se encuentra evaluando H(s)|s=jω, así en términos de magnitud y fase se tiene: (2) El espectro de señal de salida será obtenido por:

4

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II

(3) De acuerdo al criterio de selección de frecuencia de paso o de rechazo, existen cuatro tipo de filtros: 1) Filtros Pasa Bajo Son aquellos que tienen ganancia a frecuencias menores que la frecuencia de corte ωc. Así, la banda de paso está dada para0ωc, se tiene que:

ó

Así, la variación será de −20n[dB] por década, donde n es el orden del filtro. Determinación de la función de transferencia Sea (14) con G=1 y ωc=1, haciendo s=jω, entonces ω=s/j, reemplazando se tiene:

10

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II Los polos de la función de transferencia se obtienen para:

Pero como

, entonces:

Así los polos para k=1,2,3….,n, estarán dados por:

Los polinomios que se obtienen son de la forma:

Para n=2 se tiene que

, luego:

El denominador de (23) corresponde a un polinomio de Butterworth indicado en la tabla 1:

Tabla 1 Polinomios de Butterworth de forma factorizada.

11

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II De la misma forma son determinados los polinomios para orden superior. Al determinar el módulo de H(s) basada en estos polinomios, se obtiene (14) b) Chebyshev Este filtro tiene una ondulación (ripple) en la banda de paso. Mientras mayor es el orden, mayor es la pendiente en la región de transición, pero mayor es el ripple y el número de ondulaciones en la banda de paso. El módulo de la función de transferencia está dado por (24), donde K1 y , son valores constantes y Cn(x) es el polinomio Chebyshev (en primera aproximación) de grado n. La Fig.11 muestra la respuesta en frecuencia para diferentes n y la tabla II, los polinomios correspondientes.

estan dados por

De (25) se determina una ecuación de recurrencia para encontrar los polinomios

Tabla 2. Polinomios de Chebyshev.

Figura 11. Respuesta del filtro Chebysehev Paso Bajo.

12

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II RW será la distancia



, tomando la referecia de 0 [dB], queda:

Así, el RW queda determinado por a elección de , el cual fluctúa entre 0 y 1. Si entonces RW = 1−



,

es decir, 3 [dB]. En la Fig. 11, cuando ω=ωc la ganancia no cae

en−3 [dB] respecto del máximo, esto ocurrirá sólo cuandoRW=3[dB]. Propiedades del filtro Sea k1=1, para

Como

de acuerdo a la tabla 2, la magnitud es igual al ancho del ripple . Para se tiene:

ó

Para

,

se puede aproximar a

así :

De acuerdo a (32), la atenuación para un mismo orden en la región de transición es mayor que−20 [dB/Dec], esto debido al término−20 log−6(n−1).Comoes menor que1, el valor obtenido resulta ser negativo luego para compensarlo, se puede escoger un valor de n más grande. Determinación de las funciones de transferencia Como

Luego los polos de H(s) se obtienen haciendo

13

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II

Usando la forma trigonométrica dada en (25)

( )

Donde sk son las raíces buscadas. Sea pk = , así :

Como

para todo

por otro lado,

,

.

Los polinomios dependen de los valores de =0.50884.

De lo que:

14

,así, para un filtro de n=2 y RW = 1 [dB],

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II Luego los polos de H(s) son s1 = 0.549 + j0.895 y s2 = 0.549−j0.895, reemplazando en (22), queda:

Lo cual se registra en la tabla 3: Tabla 3. Polinomios de Chebyshev

c) Bessel. Tiene una respuesta lineal con respecto a la fase, lo cual resu lta en un retardo constante en todo el ancho de banda deseado.

Figura 12 Caracteristicas de estructuras de filtros En la siguiente figura se muestra las características de las estructuras antes mencionadas, las cuales están hechas para un filtro pasa baja de segundo orden. Orden del filtro.

15

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II • Cuando la frecuencia se multiplica o divide por dos, se llama octava. • Cuando la frecuencia se multiplica o divide por diez, se llama década. • Según el orden del filtro, sabemos cuánto atenúa por cada octava o cada década a partir de la frecuencia de corte. • En octavas, atenúa 6 dB/octava multiplicado por el orden del filtro. • En décadas, atenúa 20 dB/década multiplicado por elorden del filtro. • Filtro de primer orden: – Atenúa 6 dB/octava ó 20 dB/década. • Filtro de segundo orden: – Atenúa 12 dB/octava ó 40 dB/década. • Filtro de tercer orden: – Atenúa 18 dB/octava ó 60 dB/década. • Filtro de cuarto orden: – Atenúa 24 dB/octava ó 80 dB/década. En la siguiente imagen nos muestra la importancia del orden del filtro con respecto a la precisión de un filtro pasa baja de segundo orden.

16

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II Diseño de un filtro pasa banda 35 kHz de 10no orden tipología MFB (Multiple-FeedBack) o RAUCH

Normalmente se usarían filtros pasa-baja en serie con filtros pasa-alta de los órdenes adecuados. Si se necesitara un ancho de banda estrecho, podríamos usar las topologías pasa banda Sallen-Key o la MFB.

Figura 13. Modelo a seguir de la configuracion MFB

Figura 14. Implementacion de la configuracion MFB para un filtro de 10° orden

Tienen la siguiente función de transferencia:

Y los coeficientes serian:

17

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II

Y podemos notar que se puede ajustar Q, Am y fm independientemente.

Implementacion del filtro Selección del orden y tipo de filtro a utilizar. El filtro asignado fue el Pasa banda de 35 kHz de frecuencia de resonancia. Luego de realizada la investigación sobre los tipos de filtros, se ha seleccionado un filtro de Décimo orden, de tipo Butterworth, configuración MFB puesto que presenta la respuesta más plana posible, es decir, la pendiente se mantiene casi constante hasta la frecuencia de corte. De esta forma, los cálculos se nos reducen considerablemente, ya que sólo será necesario conectar 5 etapas en cascada de filtros de 2do orden y así conseguir uno de 10mo orden.

I.

Análisis teórico.

Considerar el siguiente circuito empleado para implementar filtros pasa bandas de segundo orden: C2

R2 5

Vs

2 R3

R1 +

1

C1

IOP1 3 4

Del ckto:

Vo +

V1 = VS V5 = VO

18

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II Del amp-op: V3 =V4= 0 Para encontrar la función de transferencia del circuito, aplicamos LCK para conocer las tensiones de entrada y de salida: LCK en (2): ⁄ (

⁄ )

(1)

LCK en (3):

(2)

Sustituyendo (2) en (1): ( (

)(

) )

(

) (3)

Se tiene la ecuación típica para un filtro pasa banda de 2do orden:

Por lo que hay que llevar la ecuación (3) a la forma de la expresión anterior. Para ello multiplicamos el numerador y el denominador por .

19

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II

Donde por equivalencia: (4) (5) (6) Consideraciones a tener en cuenta para el cálculo de los valores de las resistencias:  Se diseñará un filtro pasa banda de banda angosta (Q < 10) y se seleccionará un valor de Qbp =5.  La máxima ganancia Ar de voltaje, ocurre a la frecuencia de resonancia. En nuestro caso, el circuito diseñado poseerá una ganancia unitaria, es decir, Ar = 1.  Los valores de los capacitores se tomarán iguales, se eligió esto debido a que el rango de valores para capacitores disponibles en los comercios son limitados. Entonces C1 = C2 = C = 150 pF.  De la investigación tenemos las siguientes ecuaciones: (7)

(8)

Sustituyendo (7) en (5) para despejar R2:

Calculando R1 de (8):

20

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II Despejando R3 de (6):

Función de transferencia Para la función de transferencia, se necesitan conocer los valores de k, BW y ωo:

Encontrando los ceros:

Encontrando los polos:

Graficando los polos y ceros:

21

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II

Polos y Ceros de la función de transferencia H(s) 1 0.5 0 -8000

-6000

-4000 Ceros

-2000

0

Polos

Ancho de banda Es posible conocer las frecuencias de corte conociendo el ancho de banda la frecuencia de resonancia con las siguientes ecuaciones:

Expresando estos resultados en Hz:

En resumen, los valores de los elementos y parámetros del filtro de 2do orden son: R1 = 151.57 k R2 = 303.15 k R3 = 3.09 k C1 = C2 = 150 pF Q=5 Ar = 1 ωo2 = 4.841x1010 rad2/s2 ωo = 2.2x105 rad/s fo = 35 kHz BW = 43.982x103 rad/s = 7 kHz ωh = 2.42x105 rad/s

22

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II fh = 38.52 kHz ωl = 1.98x105 rad/s fl = 31.52 kHz Diagrama de Bode: Magnitud y fase Los cálculos realizados anteriormente corresponden a un filtro pasabanda de orden 2, su función de transferencia es la siguiente:

Para conseguir un filtro del mismo tipo, de mayor orden, se conecta este mismo circuito en cascada para ir aumentando el orden de la función de transferencia. Ya que se seleccionó el de orden 10, es necesario implementar 5 de estos circuitos. De esta forma, la función de transferencia total es el producto de las funciones de transferencia de cada etapa, y dicha función tiene la forma siguiente: (

)

El diagrama de Bode para esta función de transferencia queda de la siguiente forma: 0.00

Gain (dB)

-100.00 -200.00 -300.00 -400.00 -500.00

Phase [deg]

0.00 -100.00 -200.00 -300.00 -400.00 10

100

1k

10k Frequency (Hz)

100k

1M

Como puede verse, el punto más alto de la gráfica representa la frecuencia de resonancia del filtro, 35 kHz. Las frecuencias de corte y el ancho de banda se muestran en la siguiente imagen:

23

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II

Respuesta completa (transitorio) en el tiempo a la excitación u(t) a la entrada del filtro diseñado: 1.00

Voltage (V)

500.00m

0.00

-500.00m

-1.00 0.00

100.00u

200.00u 300.00u Time (s)

24

400.00u

500.00u

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II

II.

Simulación en Spice Opus

Código en Spice Opus: *Fuente de Voltaje V1 1 0 dc 0 ac 1 *Amplificadores E1 4 0 E2 7 0 E3 10 0 E4 13 0 E5 16 0

0 0 0 0 0

*Resistencias R1 1 R2 3 R3 2 R4 4 R5 5 R6 6 R7 9 R8 8 R9 7 R10 12 R11 11 R12 10 R13 15 R14 14 R15 13

2 4 0 5 0 7 10 0 8 13 0 11 16 0 14

151.6K 303.2K 3.1K 151.6K 3.1K 303.2K 303.3K 3.1K 151.6K 303.2K 3.1K 151.6K 303.2K 3.1K 151.6K

*Capacitores C1 2 C2 2 C3 5 C4 5 C5 8 C6 8 C7 11 C8 11 C9 16 C10 14

3 4 6 7 10 9 13 12 14 15

150p 150p 150p 150p 150p 150p 150p 150p 150p 150p

3 6 9 12 15

1Meg 1Meg 1Meg 1Meg 1Meg

.control set unit = degrees ac dec 1000 100Hz 100KHz *Diagrama de Bode Magnitud plot dB(V(16)/V(1))

25

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II + x label 'f[Hz]' + ylabel 'Ganancia(dB)' + title 'Diagrama de bode(magnitud)' *Diagrama de Bode fase plot ph(V(16)) + xlabel 'f[Hz]' + ylabel 'Grados' + title 'Diagrama de Bode (Fase)' .endc .end Simulación.

Diagrama de Bode: Amplitud

26

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II Diagrama de Bode: Fase

Respuesta transitoria a la excitación de un tren de pulsos.

Código: *señal de entrada Vin 1 0 dc 0 ac 1 PWL(0s 0v 0s 1v 22.5us 1v 22.5us -1v 45us -1v 45us 1v 67.5us 1v +67.5us -1v 90us -1v 90us 1v 112us 1v 112us) *Amplificadores E1 4 0 E2 7 0 E3 10 0 E4 13 0 E5 16 0

0 0 0 0 0

*Resistencias R1 1 R2 3 R3 2 R4 4 R5 5 R6 6 R7 9 R8 8 R9 7 R10 12

151.6K 303.2K 3.1K 151.6K 3.1K 303.2K 303.3K 3.1K 151.6K 303.2K

2 4 0 5 0 7 10 0 8 13

3 6 9 12 15

1Meg 1Meg 1Meg 1Meg 1Meg

27

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II R11 R12 R13 R14 R15

11 10 15 14 13

*Capacitores C1 2 C2 2 C3 5 C4 5 C5 8 C6 8 C7 11 C8 11 C9 16 C10 14

0 11 16 0 14

3.1K 151.6K 303.2K 3.1K 151.6K

3 4 6 7 10 9 13 12 14 15

150p 150p 150p 150p 150p 150p 150p 150p 150p 150p

.control set units= degrees tran 0.00000001 112us plot v(1) xlabel t[seg] ylabel"Vs" title "voltaje de entrada" plot v(9) xlabel t[seg] ylabel "Vo" title "voltaje de salida" .endc .end Simulación. Voltaje de entrada:

Voltaje de salida:

28

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II

III.

Resultados obtenidos en laboratorio

Circuito filtro de décimo orden.

Gráficas de entrada (amarilla) y salida (verde) cuando la entrada es una señal de 35 kHz.

Gráfica de entrada y salida cuando la entrada es una señal de 50 kHz:

Gráfica de entrada y salida cuando la entrada es una señal de 20 kHz:

Respuesta transitoria a un tren de pulsos.

Gráfica de Lissajous.

29

Universidad de El Salvador Facultad deIngeniería y Arquitectura Análisis Eléctrico II

CONCLUSIONES Los filtros electrónicos se utilizan en muchos dispositivos que trabajan con señales (generalmente de voltaje y que pueden ser análogas o digitales), ya que estas pueden tener diferentes valores de frecuencias, que pueden ser o no deseables en la aplicación a implementar. Con ellos se puede eliminar señales no deseadas que estén a determinadas frecuencias (armónicos, ruido, etc.), permitiendo manejar las señales que realmente nos interesan Para el caso del proyecto presentado, se decidió implementar un filtro de décimo orden, de tipo Butterworth, configuración MFB ya que presenta la respuesta más plana posible, es decir, la pendiente se mantiene casi constante hasta la frecuencia de corte. En muchas ocaciones, ya en la creación existen muchas variantes que no permiten el perfecto funcionamiento del filtro, o como comunmente se llama, ruido, entre las cuales se pueden mencionar, la exactitud al elegir los componentes (resistencias, capacitores, etc.) , el tamaño de estos componentes, la breadbore en la que se armará posiblemente puede estar dañada, el equipo a utilizar presenta poca exactitud, etc. Es necesario que, mediante el análisis téorico elegir los valores correctos con los cuales trabajaran el filtro, y tratar de apegarlos a los que existen en la realidad.

30