Ejer Cici Os Micro Econom I A

MONOPOLIO 1) Si la curva de demanda que enfrenta el monopolista es P=200-10Q y su curva de costo marginal Cmg=100+5Q. ¿C

Views 153 Downloads 4 File size 2MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

MONOPOLIO 1) Si la curva de demanda que enfrenta el monopolista es P=200-10Q y su curva de costo marginal Cmg=100+5Q. ¿Cuál es el precio y la producción que maximizan la ganancia del monopolio? Haga los gráficos correspondientes.

Sabemos que la condición de maximización es IMa= CMa. Con esta condición encontramos la cantidad que producirá el monopolista. Esta cantidad en conjunto con la demanda me permite encontrar el precio al cual el monopolista venderá su producción. IT=PQ es el ingreso total o ingreso por ventas del monopolio Pero sabemos que el precio debe ser igual a P=200-10Q por la demanda. Podemos usar este precio que nos da la demanda para reemplazarlo en los ingresos del monopolista. Reemplazando el precio de la demanda en los ingresos: IT=PQ=(200-10Q)Q=200Q-10Q2 Para encontrar el ingreso marginal, debemos encontrar la derivada del ingreso total. IMa 

IT



(200Q 10Q2 )

Q IMa  200  20Q

Q



200Q Q



10Q2 Q

Según los datos entregados el costo marginal es CMa  100  5Q

La empresa monopólica maximiza su utilidad donde Img=Cmg. IMa  CMa 200  20Q  100  5Q Q

100

4

25

Para encontrar el precio, usamos la cantidad encontrada Q=4 en la demanda de mercado: P  200 10Q Q4 P  200 10* 4  200  40  160 250

Luego, el monopolista produce cuatro unidades y cobra 160.

200 A 160.00

150

Precio

CMa D B

100

IMa

50

4.00 0 0.0

2.0

4.0 Cantidad

6.0

8.0

1

2) Si la curva de demanda que enfrenta el monopolista es 𝑋 = 60 − 𝑃 y su curva de costo total 9

𝐶 = 300 + 95𝑋 + 16,75𝑋2 + 0,25𝑋3 ¿Cuál es el precio y la producción que maximizan la ganancia del monopolio? Haga los gráficos correspondientes.

Sabemos que la condición de maximización es Img= Cmg. Con esta condición encontramos la cantidad que producirá el monopolista. Esta cantidad en conjunto con la demanda me permite encontrar el precio al cual el monopolista venderá su producción. IT=PQ es el ingreso total o ingreso por ventas del monopolio Pero sabemos que el precio debe ser igual a P=200-10Q por la demanda. Podemos usar este precio que nos da la demanda para reemplazarlo en los ingresos del monopolista. Reemplazando el precio de la demanda en los ingresos: IT=PQ=

1

540

X

2

- 9,00

X

Para encontrar el ingreso marginal, debemos encontrar la derivada del ingreso total. 1

IMa=

540 - 18,00 X

Según los datos entregados el costo marginal es 1

CMa= 95,0 + 33,50

X

2

+ 0,75

X

La empresa monopólica maximiza su utilidad donde IMa=CMa. X= 7,76 Para encontrar el precio, usamos la cantidad encontrada en la demanda de mercado: 800

P =470,13 CMa

700 600 A

Precio

500 470,13 400

IMa B

D

300 200 100 7,76 0 0,0

5,0

10,0 Cantidad

15,0

3) La curva de demanda de mercado para ciertos artefactos es P=100-5Q. La industria de estos artefactos en la actualidad es un monopolio y la función de costo total del monopolista es CT=300+20Q. Encuentre el equilibrio de mercado.

Sea P=100-5Q la demanda, Sabemos que el ingreso total está dado por IT=PQ Reemplazamos el precio de la demanda en el ingreso total. IT=[100-5Q]Q=100Q-5Q2 Calculemos el ingreso marginal derivando respecto a Q:

 Im g 





2 2 IT  100Q  5Q 100Q 5Q     100 10Q Q Q Q Q

El costo total según el enunciado es: CT=300+20Q Para encontrar el costo marginal, hay que derivar la función de costo total respecto a Q. Cmg 

CT 300  20Q 300 20Q    Q  0  20 Q Q Q

El punto en que el monopolista maximiza su beneficio económico donde Img=Cmg: Im g  100 10Q  Cmg  20 100 10Q  20 80  10Q 80 Q 10 Q8

Usando la cantidad para 120

calcular el precio de acuerdo a la demanda 100

P=100-5*8=100-40=60

Precio

80 A

60

60.00

40

D 20 CMa

B

8.00

Ima

0

0.0

5.0

10.0 Cantidad

15.0

20.0

4) La curva de demanda de mercado para ciertos artefactos es 𝑄 = 36 −

1

𝑃. La industria de estos 15

artefactos en la actualidad es un monopolio y la función de costo variable medio del monopolista es 𝐶𝑉𝑀𝑒 = 95 + 15,5 𝑄. Encuentre el equilibrio de mercado.

Sea P=540-15Q la demanda, Sabemos que el ingreso total está dado por IT=PQ Reemplazamos el precio de la demanda en el ingreso total. IT=[540-15Q]Q=540Q-15Q2 Calculemos el ingreso marginal derivando respecto a Q: IMa= 540-30Q El costo total según el enunciado es: 𝐶𝑇 = 𝐶𝐹 + 𝐶𝑉 = 𝐶𝐹 + 95𝑄 + 15,5𝑄2 Para encontrar el costo marginal, hay que derivar la función de costo total respecto a Q. CMa= 95+31Q El punto en que el monopolista maximiza su beneficio económico donde Img=Cmg: 540-30Q = 95+31Q Q=7,30 Usando la cantidad para calcular el precio de acuerdo a la demanda P=540-15*7,30=430,57

600

CMa

500 A 430,57

Precio

400 D

300

B

IMa

200

100 7,30 0 0,0

5,0

10,0 Cantidad

15,0

5) Un monopolista con una función de costes totales iguales a 𝐶 𝑋 = 40𝑋 abastece a un mercado con 𝑝 una función de demanda igual a 𝑋 𝐷 = 100 – . 2 Obtenga: a) El equilibrio del monopolista b) Exprese el ingreso marginal en función del precio y la elasticidad precio de la demanda.

La C.P.O de maximización ed Beneficio requiere.



2 2 2 B(x)   I (x)   C(x) IMg CMg IMg CMg  0  0   2 2 2 x x x x x x x

Para Max el beneficio del monopolista: p(x)  200  2x I (x)  p(x)x  (200  x)x  200x  2x 2 

Sustituyendo en la función inversa de demanda: pM  200  2xM  200  2 40 120 BM 120 40  40 40  3.200 La producción de equilibrio se corresponde al punto de corte de las curvas de ingreso marginal y coste marginal. El precio de equilibrio viene determinado por la curva de demanda para ese nivel de producción 250

200

150

Precio



I (x)  IMg   200  4x  x  Maxx B(x)  200x  2x 2  40x  C(x) (40x)  40  CMg  x  x  M  IMg  CMg  200  4x  40  x  40

A 120,00 100

CM Da

50 B 40,00 0 0,0

20,0

40,0 60,0 Cantidad

80,0

100,0

2. El ingreso marginal puede expresarse en función del precio y la elasticidad precio de la demanda: IMg 

I (x)

IMg 

x

 p(x)  x

p(x) x

 p(x)(1

x p(x)



p(x) x

)

I (x) 1 1  p(x)(1 )  IMg  p(x)(1 )  x, p  x, p x

 0 si  x, p >1 (el equilibrio se produce en este tramo elástico)   IMg   0 si  x, p =1    0 si  x, p 0



𝒙 𝒊=𝟏,𝟓𝟑𝟖

5

Datos si no existen barreras a la entrada: 𝐷

𝐷

𝐷

𝑛

Demanda:

{ 𝑥1 ,…, 𝑥𝑖 , …, 𝑥𝑛 } = 𝑝𝑖 = 8,25 − 𝑥𝑖 − 0,2 𝛴𝑗≠1 𝑥𝑗 hasta que el𝑃𝑖 = 𝐶𝑀𝑒𝑖

Costos:

𝐶𝑖= 𝑥 3

𝑖

− 2𝑥2𝑖 +

3𝑥𝑖

Problema de la empresa representativa: 𝑀𝑎𝑥.

𝑛

3

𝑋𝑖

2

+

− 2𝑥𝑖

𝜋 𝑋𝑖 = 8,25 − 𝑥𝑖 − 0,2 𝛴𝑗≠ 1 𝑥𝑗 𝑥𝑖− 𝑥𝑖 Sujeto a que: 𝑃𝑖 =𝐶𝑀𝑒𝑖

3𝑥𝑖

C.P.O. 𝛿𝜋 𝛿

8,25 − 2𝑥 − 0,2 𝛴𝑛

=0

𝑖

𝑥𝑖

𝑗 ≠1

𝑥 − 3𝑥2 − 4𝑥 𝑗

𝑛

𝑃𝑖 =𝐶𝑀𝑒𝑖

𝛿𝜋 𝑥𝑖

1

+3=0

2

8,25 − 𝑥𝑖 − 0,2 𝛴𝑗≠1 𝑥𝑗 = 𝑥𝑖 − 2𝑥𝑖 + 3

Como 𝑥1 = 𝑥2 = … = 𝑥𝑖 = … = 𝑥𝑛 = 𝑥∗ 𝑛 = 𝑛−1 𝑥 𝛴𝑗≠ 1 𝑗𝑥 𝑖 𝛿

1

𝑖

entonces podemos decir que

𝒙∗ = 𝟎, 𝟓

8,25 − 2𝑥𝑖 − 0,2 𝑛 − 1 𝑥𝑖 − 3𝑥2 − 4𝑥1 + 3 = 0

=0

1

𝒊

2

𝑃𝑖 =𝐶𝑀𝑒𝑖

8,25 − 𝑥𝑖 − 0,2 𝑛 − 1 𝑥𝑖 =𝑥𝑖



− 2𝑥𝑖 + 3 𝒏

= 𝟓𝟔

𝑷𝒊=𝑪𝑴𝒆𝒊= 𝟐,𝟐𝟓

Gráficas Competencia Monopolística Corto plazo

Largo Plazo

CM

CM

CMe P* i=5,481

CMe P*

CMe*i=2,289

* i=CMe i=2,25

P(xi)

P(xi)

IM(xi) X*i=1,538

IM(xi) X*i=0,5

X*

i=1,538

MERCADOS IMPERFECTOS (OLIGOPOLIO): 1) Un mercado con una curva inversa de demanda 𝑃 𝑋 = 100 − 𝑋 es abastecido por dos empresas cuyas funciones de costes son: 𝐶 𝑥1 = 4𝑥1 y 𝐶 𝑥2 = 2𝑥 2 . Determine el equilibrio de cada empresa 2 en los siguientes casos: i) Obtenga el equilibrio si las dos empresas consideran al mismo tiempo la reacción de su rival ante cambios en las cantidades (Modelo de Cournot) ii) Analice si estas empresas tienen incentivos a formar un cártel si el beneficio conjunto se distribuye según la cuota de mercado de cada empresa. iii) Analice si una vez formado el cártel, la empresa 2 tiene incentivos a romper el acuerdo. iv) Calcule el equilibrio si la empresa 1 actúa como líder en cantidades (Modelo de Stackelberg)

Respuesta: a) Modelo de Cournot: “Las empresas compiten entre sí pero toman sus decisiones de manera simultánea” Problemas de la empresa 1

Problemas de la empresa 2 𝑀𝑎𝑥.

𝑀𝑎𝑥.

𝜋 𝑥1 = 100−𝑥1 − 𝑥2 𝑥1 − 4𝑥1

𝑥1

𝛿 𝑥𝑖

=0

𝜋 𝑥2 = 100−𝑥1 −𝑥2 𝑥2 − 2𝑥2

𝑥2

C.P.O. 𝛿𝜋

2

C.P.O. 𝛿𝜋

100 − 𝑥1 − 𝑥2 − 4 = 0 𝑥1 =

96−𝑥2

=0

𝛿 𝑥𝑖

100 − 𝑥1 − 2𝑥2 − 4𝑥2 = 0

“Curva reacción 1”

𝑥2 =

2

100−𝑥1

“Curva reacción 2”

6

Igualando las curvas de reacción: 𝐶𝑅 𝑥1 =𝐶𝑅 𝑥2

96−(100 −𝑥 1)

𝐶𝑂

6

𝑥1 =

=>

2

𝐶𝑂

= 43,27 , 𝑥2

=> 𝑥1

= 9,5 𝑋

𝑃𝐶𝑂 = 100 − 𝑋𝐶𝑂 = 100 − 52,72 = 47,28

Donde el precio es igual:

𝐶𝑂 1𝛱 = 2 𝛱𝐶𝑂 𝛱

Y el beneficio de cada empresa es:

𝐶𝑂

1872,53

= 2140,69

= 268,16

Empresa 2

Fig. Curvas de Reacción en cantidades Empresa 1 Vs. Empresa 2

100 90 80 70 60 50 40 30 20 10

9.45 43.27

0 0

10

20

30

40

50

60

70

80

90 100

Cantidad Empresa 1

𝐶𝑂

y

= 52,72

b) Situación del Cartel o Colusión: “En el cartel las empresas no compiten entre si, sino que cooperan o coluden para maximizar sus beneficios conjunto. Para esto actuan como fuesen una empresa con múltiples plantas” Por lo tanto el problema en colusión plantea que: 𝑀𝑎𝑥. 𝑋

𝜋 𝑋 = 100 − 𝑋 𝑋 − 4𝑥1 − 2𝑥2

2

Ingreso del Coste Coste Cartel Empresa 1 Empresa 2

C.P.O.

𝛿𝐼

𝐼𝑀 = 𝐶𝑀1

𝛿 𝐶1

=

𝛿𝑋

𝛿 𝑥1

𝛿𝐼

𝐼𝑀 = 𝐶𝑀2

100 − 𝑋 = 4 𝑋

𝛿𝐶2

=

𝛿𝑋

𝛿

𝐶𝐴

= 48

𝐶𝐴

100 − 2𝑥 = 4𝑥2

𝑥2 = 1

𝑥2

Donde: 𝑥1𝐶𝐴 = 48 − 1 = 47 Donde el precio es igual: Y el beneficio de cada empresa es:

𝑃𝐶𝐴 = 100 − 𝑋𝐶𝐴 = 100 − 48 = 52 𝐶𝐴 1𝛱 = 2 𝛱𝐶𝐴 𝛱

2256

𝐶𝐴

= 2306

= 50

c) ¿La empresa 2 tiene incentivos para formar un cartel? En en el equilibrio de Cournot: El beneficio de cada empresa es:

𝐶𝑂

𝐶𝑂

𝐶𝐴

𝐶𝐴

= 1872,53 𝛱 𝐶 𝑂 2𝛱 = 268,16

𝛱1

= 2140,69

En en el equilibrio del Cartel: Y el beneficio de cada empresa es:

= 2256 𝛱 2 𝛱𝐶𝐴 = 50

𝛱1

= 2306

Obviamente los beneficios conjuntos del cartel son mayores que los beneficios individuales: 𝛱𝐶𝑂 = 2140,69 < 𝛱𝐶𝐴 = 2306 ¿Qué hacer? Si comparamos los beneficios tenemos que: 𝛱𝐶𝐴 − 𝛱𝐶𝑂 = 2306 − 2140,69 = 165,31

Alternativa A: (distribuir los beneficios extraordinarios por partes iguales) 𝛱1𝐴 = 𝛱𝐶𝑂1 + 𝛱2 = 𝛱𝐶𝑂2 𝐴

165 ,31

= 1872,53 + 82,65 = 1955,18 165,31 + = 268,16 + 82,65 = 350,81 2 2

Alternativa B: (proporcional a nivel de producción) 𝑥1𝐶𝑂 % = 𝑥2𝐶𝑂 % =

43,2 52,72

= 82%

9,5

52,72

= 18%

𝛱1𝐴 = 𝛱𝐶𝑂1 + 165,31 ⋅ 82% = 1872,53 + 135,55 = 2008,08 𝛱2 = 𝛱𝐶𝑂2 + 165,31 ⋅ 18% = 268,16 + 29,76 = 297,92 𝐴

¿Otra alternativa? Que tal si las empresas firman el acuerdo de la alternativa A. Es decir, pactamos a partes iguales las ganancias extraordinarias. En esta situación, deben acordar que la empresa “1” produzca 𝒙𝟏 = 𝟒𝟕 y la empresa “2” 𝒙𝟐 = 𝟏

¿Qué sucede si la empresa “1” rompe el acuerdo? ¿Esto puede tener algún sentido? Analizando esta situación de la empresa individual sabemos que si la otra empresa cumple el acuerdo… …. la reacción óptima para maximizar beneficios debe ser: 96−𝑥2

𝑥1 =

2

=

96−1 2

=

95 2

= 47,5

Por lo tanto: Dado que la Empresa “2” produce 𝑥2 = 1 implicaría que la oferta total es: 𝑋 = 48,5 Es decir, el precio es igual a P=100-48,5=51,5 𝛱∗1 = 2256,25

Y el beneficio de cada empresa es: 𝛱∗

= 2305,75

𝛱2∗ = 49,5 ¿Qué sucede si la empresa “2” rompe el acuerdo? ¿Esto puede tener algún sentido? Analizando esta situación de la empresa individual sabemos que si la otra empresa cumple el acuerdo… …. la reacción óptima para maximizar beneficios debe ser: 100−𝑥1

𝑥2 =

6

=

96−47 6

=

49 6

= 8,16

Por lo tanto: Dado que la Empresa “1” produce 𝑥1 = 47 implicaría que la oferta total es: 𝑋 = 55,166 Es decir, el precio es igual a P=100-55,16=44,833 ∗∗ Y el beneficio de cada empresa es: = 2151,92 1𝛱 = 1919,15 ∗∗ ∗∗ 𝛱 𝛱2 = 232,77 En resumen:

Empresa 2

Resumen de los beneficios bajo distintos escenarios

Cournot

Cournot 𝛱𝐶𝑂 = 1872,53 1 𝛱𝐶𝑂 = 268,16

𝛱1∗ = 2256,25 𝛱∗ = 49,5

𝛱1∗∗ = 1919,15 𝛱∗∗ = 232,77

𝛱1𝐶𝐴 = 1955,18 𝛱𝐶𝐴 = 350,81

2

Empresa 1 Cartel

Cartel

2

2

2

Dados estos resultados ¿Cuál de todas esta situaciones sería la que ocurriría?

Empresa 2

Resumen de los beneficios bajo distintos escenarios

Cournot

Cournot 𝛱𝐶𝑂 = 1872,53 1 𝛱𝐶𝑂 = 268,16

𝛱1∗ = 2256,25 𝛱∗ = 49,5

𝛱1∗∗ = 1919,15 𝛱∗∗ = 232,77

𝛱𝐶𝐴 = 1153 1 𝛱𝐶𝐴 = 1153

2

Empresa 1 Cartel

Cartel

2

2

2

d) Equilibrio si la empresa 1 actúa como líder en cantidades (Modelo de Stackelberg) Problema de la empresa “1” como “líder” 𝑀𝑎𝑥. 𝑥1

𝜋 𝑥1 = 100−𝑥1 −𝑥2 𝑥1 − 4𝑥1

100 −𝑥1

…pero sabemos que: 𝑥2 = 100 −𝑥1

𝑀𝑎𝑥.

𝜋 𝑥1 = 100 − 𝑥1 −

𝑥1

𝜋 𝑥1 =

𝑥1

C.P.O.

1

6 500 −10𝑥 1

=0

𝛿 𝑥𝑖

6

600 −6𝑥1−100 +𝑥1

𝑥1−4𝑥1=

500 −5𝑥1

𝑥1−4𝑥1=

6

6

𝑥1 −4𝑥1

𝑥1−5𝑥2

500

𝑀𝑎𝑥.

𝛿𝜋

6

− 4𝑥1

−4= 0

=>

500 − 10𝑥 = 24 𝑥 1

6

= 47,6

=> 1

𝑥2 = 100 −47,6 = 8,733 6 Por lo tanto: Acutando la empresa “1” como líder, y la empresa “2” como seguidora tenemos que la oferta total es: 𝑋 = 56,33 Es decir, el precio es igual a P=100-56,33=43,66 Y el beneficio de cada empresa es: 𝛱∗

𝛱∗1 = 1887,82

= 2116,05

𝛱2∗ = 228,23

2) Dos empresas 1 y 2, están eligiendo simultáneamente las cantidades 𝑞1 y 𝑞2, que van a producir de un producto homogéneo. El costo total de producir 𝑞𝑖 por la empresa 𝑖 es 𝐶𝑇𝑖 = 7 𝑞𝑖 para todo 𝑖 = 1,2; donde la cantidad agregada en el mercado es 𝑄 = 𝑞1 + 𝑞2 . De igual manera, se sabe que la demanda es tal que 𝑄𝐷(𝑃) = 70 − 𝑃. Determine los equilibrios (precios y cantidades), así como los beneficios en cada situación: i) Las dos empresas consideran al mismo tiempo la reacción de su rival ante cambios en las cantidades. ii) Las dos empresas acuerdan cooperar coludiendo en cantidades para maximizar el beneficio conjunto. iii) Si una de las empresas incumple el acuerdo anterior: ¿qué sucedería con los beneficios? iv) Desde el punto de vista de la teoría de juegos ¿Qué tipo de juego representan los resultados obtenidos? ¿Tienen las empresas una estrategia dominante? ¿Existe un equilibrio de Nash?

i)

Las dos empresas consideran al mismo tiempo la reacción de su rival ante cambios en las cantidades

Datos: 𝐶𝑇1 =7𝑞1 𝐶𝑇2 =7𝑞2 𝑄 = 𝑞1+𝑞2 𝑃 = 70 − 𝑄 ó 𝑃 = 70 − 𝑞1 − 𝑞2. Corresponde a un planteamiento de Cournot. Problema de maximización de la representativa 𝑖 (hacer esto es lo mismo que hacerlo para la empresa 1 ó la empresa 2 de simultánea) Max𝐵𝑖= 𝑃𝑞𝑖– 𝐶𝑇𝑖= 70−𝑞𝑖−𝑞𝑗 𝑞𝑖– 7𝑞𝑖= 70𝑞𝑖−𝑞𝑖 −𝑞𝑖𝑞𝑗– 7𝑞𝑖=63𝑞𝑖 −𝑞𝑖 −𝑞𝑖𝑞𝑗 𝑑𝐵 CPO: =0 𝑑 𝑞𝑖

2

2

empresa manera

𝑑𝐵

= 63 − 2𝑞

𝑑 𝑞𝑖

𝑖

− 𝑞 = 0  𝑞 = 63−𝑞 𝑗 𝑗

𝑖

𝑞1 =



2

63−𝑞 2

simetría 𝑞∗ = 𝑞∗ = 𝑞∗  1

𝑞2= 63−𝑞1

2

2



𝑞∗ =

63−𝑞 2 2

𝑞∗ = 21 ∗



Empresa 2

 𝑞1 = 𝑞2 = 21 Respuesta: Q=21+21=42 P=70-42=28 𝐵1 = 28 ⋅ 21 − 7 ⋅ 21 = 441 𝐵2 = 28 ⋅ 21 − 7 ⋅ 21 = 441

70 60 50 40 30 21.00

20 10

21.00 0 0

10

20

30

40

50

60

70

Cantidad Empresa 1

ii)

Las dos empresas acuerdan cooperar como un cartel para maximizar el beneficio conjunto. ¿Qué sucedería con los beneficios si alguna no cumple con los acuerdos?

Corresponde a un planteamiento de Cartel: Max 𝐵𝑐𝑎𝑟𝑡𝑒𝑙 =𝑃𝑄– 𝐶𝑇1−𝐶𝑇2 = 70−𝑞𝑖 −𝑞𝑗 𝑞𝑖+𝑞𝑗 – 7𝑞𝑖−7𝑞𝑗 =63𝑞1+63𝑞2 − 𝑞2 − 2 𝑞2 − 2𝑞 1𝑞 2 CPO:

𝑑𝐵 𝑐𝑎𝑟𝑡𝑒𝑙

=0 𝑑𝐵

y

𝑑𝑞1

𝑑𝐵 𝑐𝑎𝑟𝑡𝑒𝑙 𝑑 𝑞1

𝑐𝑎𝑟𝑡𝑒𝑙

=0

𝑑𝑞2

= 63 − 2𝑞1 − 2 𝑞2 = 0 ∗



Simetría 𝑞1 = 𝑞2 = 𝑞 𝑑𝐵 𝑐𝑎𝑟𝑡𝑒𝑙 𝑑 𝑞2

1

= 63 − 2𝑞2 − 2 𝑞1 = 0





 𝑞=

63−2𝑞∗ 2

 𝑞



= 15,75

Respuesta: Q=15,75+15,75=31,5 P=70-31,5=38 𝐵1 = 38 ⋅ 31,5 − 7 ⋅ 15,75 = 992,25 𝐵2 = 38 ⋅ 31,5 − 7 ⋅ 15,75 = 992,25 iii)

𝑞𝑖=

Si rompe el acuerdo entonces una de ellas produce 𝑞𝑗 = 15,75 conociendo las funciones de reacción, entonces: 63−15,75 2

= 23,625

Respuesta: Q=23,625+15,75=39,375 P=70-39,375=30,625 𝐵1 = 30,625 ⋅ 23,625 − 7 ⋅ 23,625 = 558,145 𝐵2 = 30,625 ⋅ 15,750 − 7 ⋅ 15,750 = 372,094

iv)

Desde el punto de vista de la teoría de juegos ¿Qué tipo de juego representan los resultados obtenidos? ¿Tienen las empresas una estrategia dominante? ¿Existe un equilibrio de Nash?

Empresa 2 Empresa 1

1)

Cournot

Cartel

Cournot

441 , 441

558 , 372

Cartel

373 , 558

992 , 992

Suponga un juego con dos empresas que deciden simultáneamente acerca de la estrategia de precios a seguir. La empresa 1 se plantea elegir entre seguir manteniendo los precios, o bajarlos, mientras que la empresa 2 se plantea entre subirlos o bajarlos. La matriz de pagos de este juego es el siguiente:. Empresa 2 Subirlos Bajarlos Empresa 1

i)

Mantenerlos

441 , 442

558 , 372

Bajarlos

373 , 558

497 , 498

¿Tiene alguna empresa una estrategia dominante? No existe estrategia dominante!!!!! Conjunto de la Emp. 1 si mantiene precio {441,558} Conjunto de la Emp. 1 si baja precios {373,497} no existe la posibilidad que un conjunto domine a otro Conjunto de la Emp. 2 si sube precio Conjunto de la Emp. 2 si baja precios domine a otro

ii)

{442,558} {372,498} no existe la posibilidad que un conjunto

¿Existe un equilibrio de Nash? El equilibrio de Nash es: Emp1 mantiene precios y Empresa 2 sube precios

iii)

¿Cuál situación es un resultado óptimo de Pareto? La situación óptima de Pareto es donde en conjunto las empresas maximizan sus beneficios, es decir, la situación bajar-bajar

MERCADOS IMPERFECTOS – OLIGOPOLIO PRECIOS (Modelo de Bertran): Suponga que existen dos empresas, 1 y 2, que eligen simultáneamente los precios 𝑝1 y 𝑝2 a los que estarían dispuestos a ofrecer un bien que producen (no diferenciado). Si es conocido por todos que la demanda de los consumidores es tal que: 𝑞𝑖 𝑝𝑖 , 𝑝𝑗 = 𝑎 – 𝑝𝑖 + 𝑝𝑗 . i)

Determine el equilibrio de Bertrand-Nash de esta situación.

ii)

¿Es este equilibrio eficiente en el sentido de Pareto?

El modelo de Bertrand es un modelo de competencia imperfecta nombrada en honor de Joseph Louis François Bertrand (1822-1900). En este se supone que las interacciones entre vendedores (empresas) se da por medio de la fijación de los precios, donde los compradores decidan cuanto comprar a ese precio. En este caso se resuelve similar al modelo de Cournot, pero sustituyendo la cantidad por el “precio” como variable estratégica. Por lo tanto el problema se plantea como: 𝑀𝑎𝑥. 𝑝𝑖

𝜋 𝑝𝑖,𝑝𝑗 =𝑝𝑖 ∙𝑞 𝑝𝑖,𝑝𝑗 −𝐶𝑀𝑖 ∙ 𝑞𝑖 Ingresos

Costos

C.P.O. 𝛿𝜋

=

=0 𝛿𝜋

𝛿 𝑝𝑖

𝛿[𝑝𝑖∙𝑞𝑖−𝐶𝑀𝑖∙𝑞𝑖]

𝛿 𝑝𝑖 𝛿𝜋 𝛿

𝑝𝑖 𝛿𝜋

𝛿

𝑝𝑖

=

𝛿[𝑝𝑖∙ 𝑎−𝑝𝑖+𝑝𝑗 −𝐶𝑀𝑖∙(𝑎−𝑝𝑖+𝑝𝑗)]

=0

𝛿𝑝𝑖

𝛿 𝑝𝑖

𝛿 [𝑝𝑖 ∙𝑎−𝑝 2+𝑝𝑖∙𝑝𝑗 −𝑎∙𝐶𝑀𝑖+𝐶𝑀𝑖∙𝑝𝑖−𝐶𝑀𝑖∙𝑝𝑗]

𝑖

=

= 𝑎 − 2𝑝𝑖 + 𝑝𝑗 + 𝐶𝑀𝑖 = 0

𝑝𝑖 =

=0

𝛿 𝑝𝑖

𝑎+𝑝𝑗+𝐶𝑀𝑖

por lo tanto despenjando 𝑝𝑖

“Función de mejor respuesta de 𝑖 = 1,2

2

Por lo tanto en equilibrio se debe satisfacer que:

𝑝1= 𝑝2=

𝑎+𝑝2+𝐶𝑀1 2 𝑎+𝑝1 +𝐶𝑀2 2

Suponiendo que son indénticas tenemos que 𝐶𝑀 = 𝐶𝑀 = 𝐶𝑀 1





𝑝1 = 𝑝2= 𝑎+𝐶𝑀 Y la cantidad de equilibrio es por lo tanto: ∗



𝑞𝑖 = 𝑎 − 𝑎 + 𝐶𝑀 + 𝑎 + 𝐶𝑀 = 𝑎

Es decir: 𝑞1 = 𝑎 𝑞∗2 = 𝑎

Los beneficios serían tal que: 𝜋𝑖 ∗ = 𝑎 + 𝐶𝑀 ∙ 𝑎 − 𝐶𝑀𝑖 ∙ 𝑎 = 𝑎2 + 𝑎 𝐶𝑀 − 𝑎 𝐶𝑀 = 𝑎2 Donde

𝜋∗1= 𝑎2 𝜋∗2= 𝑎2

Gráficamente tendríamos:

2

CR1 (p2)

p2

CR2 (p1)

a+CM Equilibrio Bertrand – Nas h a+CM 2

p1 a+CM 2

a+CM

¿Qué sucede si las empresas acuerdan formar un cartel de precios? Por ejemplo supongamos que acuerdan un cartel de precios en el que doblan los precios: 𝑝𝑖 = 𝑝𝑗 = 2 𝑎 + 𝐶𝑀 y por lo tanto cada una produce 𝑞𝑖 = 𝑎 Entonces los beneficios serían: 𝜋𝑖𝐶𝐴𝑅𝑇𝐸𝐿 = 2 𝑎 +𝐶𝑀 ∙𝑎 −𝐶𝑀𝑖 ∙𝑎 = 2𝑎2 +2𝑎 ∙𝐶𝑀 −𝑎 ∙𝐶𝑀 = 2𝑎2 +𝑎 ∙ 𝐶𝑀 𝜋1𝐶𝐴𝑅𝑇𝐸𝐿 =𝜋2𝐶𝐴𝑅𝑇𝐸𝐿 =2𝑎2 +𝑎 ∙𝐶𝑀 Obviamente esta solución es mejor que la anterior ya que 𝜋𝑖𝐶𝐴𝑅𝑇𝐸𝐿 =2𝑎2+𝑎 ∙𝐶𝑀> 𝜋∗= 𝑎2

𝑖

Pero ¿existe una mejor situación individual? CR1 (p2)

p2

CR2 (p1)

a+CM

a+CM 2

p1 a+CM 2

a+CM

Por tanto, en el modelo de Bertrand: – No existe equilibrio estable – El proceso reiterativo de bajar el precio continuará hasta que alcance su límite económico natural que es el coste marginal. – La solución de precio y cantidad es exactamente idéntica a la de competencia perfecta.

MERCADOS IMPERFECTOS (Stackelberg): Un mercado con una curva de demanda 𝑋𝐷 = 100 − 𝑃, el cual es abastecido por dos empresas cuyas funciones de costes son: 𝐶 𝑥1 = 4𝑥1 y 𝐶 𝑥2 = 2𝑥2. Determine el equilibrio si la empresa 1 actúa como líder 2 en precios así como lo siguiente: a) Curva de oferta de la empresa seguidora b) Curva de demanda residual de la empresa líder c) Equilibrio de la empresa líder d) Cantidad ofrecida por la empresa seguidora

a) Curva de oferta de la empresa seguidora Consideremos que la Empresa 2 (seguidora) es precio aceptante. Por lo tanto su curva de oferta será tal que𝐶𝑀2 ≥𝐶𝑀𝑒2 Entonces: 𝐶 𝑥2 = 2𝑥2

=> 𝐶𝑀2𝑥2 =4𝑥2 => 𝐶𝑀𝑒2 𝑥2 = 2𝑥2

2

4𝑥2 ≥2𝑥2

=>

𝑥2 ≥ 0

Pot lo tanto, todo valor positivo sobre la curva de coste marginal es la curva de oferta: 𝑃

=> 𝑥𝑂(𝑃)2=

𝑃𝑂 ≡𝐶𝑀2 𝑥2 = 4𝑥2

4

b) Curva de demanda residual de la empresa líder: Sabemos que oferta debe igualar a la demanda, por lo tanto: 𝐿

𝑆

𝐷

𝐿

𝑥1 + 𝑥2 (𝑃) = 𝑥 𝑃

𝐷

𝑆

=>

𝑥1 = 𝑥 𝑃 − 𝑥2(𝑃)

=>

𝑥1 = 100 − 𝑃 − 4 = 100 − 4 𝑃

𝑃

𝐿

Por lo tanto la curva de demanda residual para la líder será: 5

𝐿

𝑋1 = 100 − 4 𝑃 0

Si 0 ≤ 𝑃 ≤ 80 Si 𝑃 > 80

c) Equilibrio de la empresa líder 𝑀𝑎𝑥. 𝑥1

𝜋 𝑥1 =

400 −4 𝑥 1 𝑥 1− 5

Ingresos C.P.O. 𝛿𝜋

=

= 0 𝛿𝜋

Costos

400 −8𝑥1

𝛿𝑥1

𝛿 𝑥1

4𝑥1

−4 =0

5

d) Cantidad ofrecida por la empresa seguidora 𝑥∗2 = 10,5 𝑋∗ = 100 − 42 = 58 𝜋1∗ = 1805 𝜋2∗ = 220,5

=>

𝑥∗ = 47,5 1 𝑃∗

= 42

5

PRACTICAS ADICIONALES

1) Sean dos únicos consumidores, A y B, de quienes se conoce sus preferencias por el bien oro (G) y la plata (S). Se sabe, que el consumidor A posee inicialmente 3 unidades de oro (G A) y 9 unidades de plata (SA); y que el consumidor B posee inicialmente 8 unidades de oro (GB) y 4 unidades de plata (SB). Con estas dotaciones iniciales, se conoce adicionalmente que la relación marginal de sustitución (RMSS,G) de plata por oro es de 4 en el caso del consumidor A y de 2 en el caso del consumidor B. Se pide: a) Determine la asignación y los precios de equilibrio general competitivo (EGC) de esta economía de intercambio puro. b) ¿Era la dotación inicial eficiente en el sentido de Pareto? c) Compruebe que la asignación de EGC verifica la Ley de Walras.

2)

Dos empresas 1 y 2, están eligiendo simultáneamente las cantidades 𝑞1 y 𝑞2, que van a producir de un producto homogéneo. El costo total de producir 𝑞𝑖 por la empresa 𝑖, 𝑖 = 1,2, es 𝐶𝑇𝑖 = 𝑐 𝑞𝑖 , donde 𝑐 > 0 y el precio de equilibrio del mercado, cuando la cantidad agregada en el mercado es 𝑄 = 𝑞1 + 𝑞2 , es tal que 𝑃(𝑄) = 𝑎 − 𝑄, con 𝑄 < 𝑎, 𝑎 > 𝑐. Determine los equilibrios para cada situación: i) ¿Qué sucedería si cada firma creyera que es un monopolista? ii) ¿Qué sucedería si las dos empresas consideran al mismo tiempo la reacción de su rival ante cambios en las cantidades? iii) ¿Qué sucedería si las empresas actúan como un cartel en el que se distribuyen a partes iguales la producción? iv) Considerando los resultados de los casos ii) y iii), establezca las posibles estrategias de las dos firmas en este mercado y determine: ¿cuál es el equilibrio de Nash? y ¿Cuál estrategia es Pareto óptima?

3)

Suponga que existen dos empresas, 1 y 2, que eligen simultáneamente los precios 𝑝1 y 𝑝2 a los que estarían dispuestos a ofrecer un bien que producen (no diferenciado). Si es conocido por todos que la demanda de los consumidores es tal que: 𝑞𝑖 𝑝𝑖 , 𝑝𝑗 = 𝑎 – 𝑝𝑖 + 𝑝𝑗 . i) Determine el equilibrio de Bertrand-Nash de esta situación. ii) ¿Es este equilibrio eficiente en el sentido de Pareto?.

4)

Dado que en el mercado cada consumidor comprará a la firma que coloque el precio más bajo, las dos única empresas, 𝑁 = {1,2}, consideran que el único conjunto de estrategias posibles es elegir un precio tal que 𝑝𝑖 pertenece al conjunto [0 , 𝑎]. Suponiendo que ambas empresas tiene un costo marginal constante y común dado por 𝑐 > 0 y que la demanda de la i-ésima firma es tal que:

𝑞𝑖 𝑝𝑖,𝑝𝑗 =

0 𝑠𝑖 𝑝𝑖 > 𝑝𝑗 𝑎 − 𝑝𝑖 𝑠𝑖 𝑝𝑖 < 𝑝𝑗(𝑎 − 𝑝𝑖)/2 𝑠𝑖𝑝𝑖 =𝑝𝑗

donde 𝑎 > 𝑐,

i) Encuentre el equilibrio de Bertrand-Nash de esta situación. ii) Represente gráficamente sus resultados