Cuerda s

Instituto Politécnico Nacional CECYT # 10 “Carlos Vallejo Márquez” Alumna: Ponce Torres Jocelyn Grupo: 4IV7 Turno vespe

Views 171 Downloads 7 File size 1MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Instituto Politécnico Nacional CECYT # 10 “Carlos Vallejo Márquez”

Alumna: Ponce Torres Jocelyn Grupo: 4IV7 Turno vespertino Materia: Metrología Geométrica ENGRANES Y ROSCAS

TIPOS DE ROSCAS Y SUS PARÁMETROS PRINCIPALES Los elementos roscados se usan extensamente en la fabricación de casi todos los diseños de ingeniería. Los tornillos suministran un método relativamente rápido y fácil para mantener unidas dos partes y para ejercer una fuerza que se pueda utilizar para ajustar partes movibles.

- Rosca: es un filete continuo de sección uniforme y arrollada como una elipse sobre la superficie exterior e interior de un cilindro. - Rosca externa: es una rosca en la superficie externa de un cilindro. - Rosca Interna: es una rosca tallada en el interior de una pieza, tal como en una tuerca. - Diámetro Interior: es el mayor diámetro de una rosca interna o externa. - Diámetro del núcleo: es el menor diámetro de una rosca interna o externa. - Diámetro en los flancos (o medio): es el diámetro de un cilindro imaginario que pasa por los filetes en el punto en el cual el ancho de estos es igual al espacio entre los mismos. - Paso: es la distancia entre las crestas de dos filetes sucesivos. Es la distancia desde un punto sobre un filete hasta el punto correspondiente sobre el filete adyacente, medida paralelamente al eje.

- Avance: es la distancia que avanzaría el tornillo relativo a la tuerca en una rotación. Para un tornillo de rosca sencilla el avance es igual al paso, para uno de rosca doble, el avance es el doble del paso, y así sucesivamente.

CLASIFICACIÓN DE LAS ROSCAS Las roscas pueden clasificarse de variadas maneras. Según el número de filetes: - Roscas de una sola entrada, que tienen un filete. - Roscas de varias entradas, con varios filetes.

Según la forma del filete pueden ser: - Roscas triangulares, cuando la sección del filete tiene la forma aproximada de un triangulo. Son las más usadas. - Roscas trapeciales, cuando la sección del filete tiene forma de trapecio isósceles. - Roscas cuadradas, esta rosca puede transmitir todas las fuerzas en dirección casi paralela al eje; a veces se modifica la forma de filete cuadrado dándole una conicidad o inclinación de 5° a los lados. - Roscas redondas, se utiliza en tapones para botellas y bombillos, donde no se requiere mucha fuerza, es bastante adecuada cuando las roscas han de ser moldeadas o laminadas en chapa metálica - Roscas de diente de sierra, cuya sección tiene la forma de un trapecio rectángulo.

Según su posición las roscas se clasifican en: - Roscas exteriores si pertenecen al tornillo. - Roscas interiores si pertenecen a la tuerca.

Exteriores Interiores Según su sentido se dividen en: - Rosca a derecha cuando avanza o gira en sentido de las manecillas del reloj. - Rosca a izquierda cuando avanza o gira en sentido contrario a las manecillas del reloj.

SISTEMAS DE ROSCAS Se llama Sistema de Roscas a cada uno de los grupos en que se pueden clasificar las roscas normalizadas con especificaciones o reglas que deben cumplir. • Rosca Whitworth; El ángulo del hilo de rosca es de 55°. En este sistema de roscas el paso se considera como el número de filetes que hay por pulgada, y el diámetro se expresa en fracciones de pulgada. • Profundidad (t1)= 0.64033 x p

• Radio de giro (r)= 0.13733 x p

• Rosca Métrica; El ángulo que forma el filete es de 60º. Su diámetro exterior y el avance se miden en milímetros, siendo el avance la longitud que avanza en dirección axial el tornillo en una vuelta completa. (A=p). • Profundidad(t1)= 0.6495 x p • Radio de giro (r) del fondo= 0.1082 x p

FORMAS DE TALLAR ROSCAS

a) Roscas con machos b) Roscas con terrajas c) Roscas con útil de roscar d) Fresado de roscas e) Roscado con esmeril roscas

f) Laminado de

Roscado, en torno, con machos y terrajas

Fabricación de roscas por medio de machuelos y terrajas, método más sencillo y económico, se utiliza para roscas triangulares.

“El tallado de una rosca con terraja está limitado por las dimensiones del perno a roscar, en las roscas Whitworth el diámetro máximo es de 1 1/4 " y en las métricas es de 30 mm. Cualquier rosca mayor a 16 mm o 5/8 de pulgada debe iniciarse con un roscado previo, para evitar que se rompan los filetes. En el caso de roscas interiores fabricadas con machuelos, es muy importante hacer el barreno previo a la rosca con el diámetro adecuado, para definirlo de acuerdo a la rosca que se va a fabricar, existen normas como la DIN 336, de la cual se presenta un extracto a continuación" ROSCA WHITWORTH

Rosca*

1/4"

5/16"

3/8"

1/2"

5/8"

3/4"

7/8"

1"

1 1/8"

1 1/4"

1 3/8"

1 1/2"

1 5/8"

1 3/4"

2"

Para acero

5.1

6.5

7.9

10.5

13.5

16.5

19.25

22

24.75

27.75

30.5

33.5

35.5

39

44.5

Para fundición gris y latón

5

6.4

7.7

10.25

13.25

16.25

19

21.7 5

24.50

27.50

30

33

35

38.5

44

M 10

M 12

M14

M16

M18

M20

M22

M24

M27

ROSCA MÉTRICA Rosca

M3

M3.5

M4

M5

M6

M8

Acero

2.5

2.9

3.3

4.2

5

6.7

8.4

10

11.75

13.75

15.25

17.25

19.25

20.75

23.75

Fundición Gris y latón

2.4

2.8

3.2

4.1

4.8

6.5

8.2

9.9

11.5

13.5

15

17

19

20.5

23.5

Los elementos roscados se usan extensamente en la fabricación de casi todos los diseños de ingeniería. Los tornillos suministran un método relativamente rápido y fácil para mantener unidas dos partes y para ejercer una fuerza que se pueda utilizar para ajustar partes movibles.

DEFINICIONES DE LA TERMINOLOGIA DE ROSCAS

Rosca: es un filete continuo de sección uniforme y arrollada como una elipse sobre la superficie exterior e interior de un cilindro. Rosca externa: es una rosca en la superficie externa de un cilindro. Rosca Interna: es una rosca tallada en el interior de una pieza, tal como en una tuerca. Diámetro Interior: es el mayor diámetro de una rosca interna o externa. Diámetro del núcleo: es el menor diámetro de una rosca interna o externa. Diámetro en los flancos (o medio): es el diámetro de un cilindro imaginario que pasa por los filetes en el punto en el cual el ancho de estos es igual al espacio entre los mismos. Paso: es la distancia entre las crestas de dos filetes sucesivos. Es la distancia desde un punto sobre un filete hasta el punto correspondiente sobre el filete adyacente, medida paralelamente al eje. Avance: es la distancia que avanzaría el tornillo relativo a la tuerca en una rotación. Para un tornillo de rosca sencilla el avance es igual al paso, para uno de rosca doble, el avance es el doble del paso, y así sucesivamente.

El ángulo de la hélice o rosca (α): Esta relacionado en el avance y el radio medio (rm) por la ecuación: tan  

avance 2 *  * rm

En algunos casos se utilizará el angulo θn que mide la pendiente del perfil de la rosca en la sección normal, esta relacionado en el angulo θ en la sección axial y el angulo de la hélice como sigue: tan  n  tan  * cos

Nota: Cuando aparece cosθn en las ecuaciones, se reemplazan con frecuencia por cosθ. Esto da una ecuación aproximada pero, para los valores normalmente pequeños de α, no introduce error apreciable.

NORMAS Y ESTANDARES ORGANISMOS DE NORMALIZACION En la tabla que se presenta a continuación, se indican los organismos de normalización de varias naciones. PAIS

ABREVIATURA DE LA NORMA

ORGANISMO NORMALIZADOR

Internacio nal

ISO

Organización Internacional de Normalización.

España

UNE

Instituto de Racionalización y Normalización.

Alemania

DIN

Comité de Normas Alemán.

Rusia

GOST

Organismo Nacional de Normalización Soviético.

Francia

NF

Asociación Francesa de Normas.

Inglaterra

BSI

Instituto de normalización Ingles.

Italia

UNI

Ente Nacional Italiano de Unificación.

América

USASI

Instituto de Normalización para los Estados de América.

REPRESENTACIÓN, ACOTACIÓN Y DESIGNACION DE PIEZAS NORMALIZADAS En la inmensa diversidad de mecanismos y maquinas en general, una gran cantidad de piezas accesorias que los componen, tienen unas formas y dimensiones ya predeterminadas en una serie de normas, es decir, son piezas normalizadas.

En general, la utilización de piezas normalizadas facilita en gran medida la labor de delineación, ya que al utilizar este tipo de piezas, evitamos tener que realizar sus correspondientes dibujos de taller. Estas normas especificaran: forma, dimensiones, tolerancias, materiales, y demás características técnicas. DESIGNACIÓN DE LOS TORNILLOS Básicamente, la designación de un tornillo incluye los siguientes datos: tipo de tornillo según la forma de su cabeza, designación de la rosca, longitud y norma que lo define. A estos datos, se pueden añadir otros, referentes a la resistencia del material, precisión, etc. Ejemplo: Tornillo hexagonal M20 x 2 x 60 x To DIN 960.mg 8.8 Y al analizar cada elemento vemos que. a) b) c) d) e)

Denominación o nombre: Tornillo Hexagonal Designación de la Rosca: M20 x 2 Longitud del vástago: 60 To: Cabezas in saliente en forma de plato Norma que especifica la forma y característica del tornillo: DIN 960 f) m.g: Ejecución y precisión de medidas g) 8.8: clase de resistencia o características mecánicas. La longitud que interviene en la designación es la siguiente:

L

L

L

1. En general, la longitud indicada se corresponde con la longitud total del vástago. 2. Para tornillos con extremo con tetón, la longitud indicada incluye la longitud del tetón. 3. Para tornillos de cabeza avellanada, la longitud indicada es la longitud total del tornillo.

d

d d

DESIGNACION DE LAS ROSCAS

.La designación o nomenclatura de la rosca es la identificación de los principales elementos que intervienen en la fabricación de una rosca determinada, se hace por medio de su letra representativa e indicando la dimensión del diámetro exterior y el paso. Este último se indica directamente en milímetros para la rosca métrica, mientras que en la rosca unificada y Witworth se indica a través de la cantidad de hilos existentes dentro de una pulgada. Por ejemplo, la rosca M 3,5 x 0,6 indica una rosca métrica normal de 3,5 mm de diámetro exterior con un paso de 0,6 mm. La rosca W 3/4 ’’- 10 equivale a una rosca Witworth normal de 3/4 pulg de diámetro exterior y 10 hilos por pulgada. La designación de la rosca unificada se haced e manera diferente: Por ejemplo una nomenclatura normal en un plano de taller podría ser:

1/4 – 28 UNF – 3B – LH Y al examinar cada elemento se tiene que: 1/4 de pulgada es el diámetro mayor nominal de la rosca. 28 es el numero de rosca por pulgada. UNF es la serie de roscas, en este caso unificada fina. 3B: el 3 indica el ajuste (relación entre una rosca interna y una externa cuando se arman); B indica una tuerca interna. Una A indica una tuerca externa. LH indica que la rosca es izquierda. (Cuando no aparece indicación alguna se supone que la rosca es derecha) La tabla siguiente entrega información para reconocer el tipo de rosca a través de su letra característica, se listan la mayoría de las roscas utilizadas en ingeniería mecánica Símbolos de roscado más comunes

American Petroleum Institute

Denominación usual Otras

API

British Association

BA

International Standards Organisation

ISO

Rosca para bicicletas

C

Rosca Edison

E

Rosca de filetes redondos

Rd

Rosca de filetes trapesoidales

Tr

Rosca para tubos blindados

PG

Pr

Rosca Whitworth de paso normal

BSW

W

Rosca Whitworth de paso fino

BSF

Rosca Whitworth cilíndrica para tubos

BSPT

KR

BSP

R

Rosca Métrica paso normal

M

SI

Rosca Métrica paso fino

M

SIF

UNC

NC, USS

UNF

NF, SAE

UNEF

NEF

Rosca Whitworth

Rosca Americana Unificada p. normal Rosca Americana Unificada p. fino Rosca Americana Unificada p.exrafino Rosca Americana Cilíndrica para tubos

NPS

Rosca Americana Cónica para tubos

NPT

ASTP

Rosca Americana paso especial

UNS

NS

Rosca Americana Cilíndrica "dryseal" para tubos

NPSF

Rosca Americana Cónica "dryseal" para tubos

NPTF

Con respecto al sentido de giro, en la designación se indica "izq" si es una rosca de sentido izquierdo, no se indica nada si es de sentido derecho. De forma similar, si tiene más de una entrada se indica "2 ent" o "3 ent". Si no se indica nada al respecto, se subentiende que se trata de una rosca de una entrada y de sentido de avance derecho. En roscas de fabricación norteamericana, se agregan más símbolos para informar el grado de ajuste y tratamientos especiales Es posible crear una rosca con dimensiones no estándares, pero siempre es recomendable usar roscas normalizadas para adquirirlas en ferreterías y facilitar la ubicación de los repuestos. La fabricación y el mecanizado de piezas especiales aumenta el costo de cualquier diseño, por lo tanto se recomienda el uso de las piezas que están en plaza.

Tipos de Rosca Rosca en V Aguda Se aplica en donde es importante la sujeción por fricción o el ajuste, como en instrumentos de precisión, aunque su utilización actualmente es rara.

P/2

P

0,87 P

60°

Rosca Redondeada Se utiliza en tapones para botellas y bombillos, donde no se requiere mucha fuerza, es bastante adecuada cuando las roscas han de ser moldeadas o laminadas en chapa metálica. P

P/2

P/2

P/2

R=P/4

Rosca Nacional Americana Unificada Esta la forma es la base del estándar de las roscas en Estados Unidos, Canadá y Gran Bretaña. P / 5

P/8

Redondeado o plano 17P/24

60°

P/2

Rosca Cuadrada Esta rosca puede transmitir todas las fuerzas en dirección casi paralela al eje, a veces se modifica la forma de filete cuadrado dándole una conicidad o inclinación de 5° a los lados. P P P/2

P/2

P/2

Rosca Acme Ha reemplazado generalmente a la rosca de filete truncado. Es más resistente, más fácil de tallar y permite el empleo de una tuerca partida o de desembrague que no puede ser utilizada con una rosca de filete cuadrado. Las roscas Acme se emplean donde se necesita aplicar mucha fuerza. Se usan para transmitir movimiento en todo tipo de máquinas herramientas, gatos, prensas grandes “C”, tornillos de banco y sujetadores. Las roscas Acme tienen un ángulo de rosca de 29° y una cara plana grande en la cresta y en la Raíz. Las roscas Acme se diseñaron para sustituir la rosca cuadrada, que es difícil de fabricar y quebradiza. Hay tres clases de rosca Acme, 2G, 3G y 4G, y cada una tiene holguras en todas dimensiones para permitir movimiento libre. Las roscas clase 2G se usan en la mayor parte de los conjuntos. Las clases 3G y 4G se usan cuando se permite menos juego u holgura, como por ejemplo en el husillo de un torno o de la mesa de una maquina fresadora. 3P/8

P

P/2

29°

P

0.422P

0.3P

29°

Rosca Whitworth Utilizada en Gran Bretaña para uso general siendo su equivalente la rosca Nacional Americana. P

P/8

Redondeada o plana a

55°

0.137

0.640P

Rosca Sin Fin Se utiliza sobre ejes para transmitir fuerza a los engranajes sinfín.

0,335P

P

P/2

0,31P

0,68166P

29°

Rosca Trapezoidal Este tipo de rosca se utiliza para dirigir la fuerza en una dirección. Se emplea en gatos y cerrojos de cañones.

0,163P 7 °

0,66P

45°

P

TORNILLOS Definición: Pieza cilíndrica de metal cuya superficie tiene un resalte en espiral de separación constante; este se emplea como elemento de

unión, suele enroscarse en una tuerca y el mismo puede terminar en punta, planos o cualquier otra forma estandarizada. Tipos de Tornillos:  Tornillo De Unión: Se utiliza para la unión de dos piezas y se hace a través de un agujero pasante (sin rosca) de una de ellas y roscando en la otra, como la tuerca.  Tornillo Pasante: Es un tornillo que atraviesa las piezas a unir sin roscar en ninguna de ellas. Se usan para piezas de fundición o aleaciones ligeras  Espárragos. Es una varilla roscada en los dos extremos sin variación de diámetro. Un extremo va roscando en la pieza mientras que el otro tiene rosca exterior, no tiene cabeza y la sujeción se logra por medio de una tuerca.  Tornillo Autoroscante: Estos se usan para uniones que deban saltarse raramente, se recomienda para metales blandos o aceros de menos 50 Kg. de resistencia, en carrocerías, en mecánica fina y electrónica.  Tornillo Prisionero: Es una varilla roscada por uno o dos extremos, su colocación se realiza entre la tuerca y el tornillo, taladrado previamente. MECANICA DE LOS TORNILLOS DE FUERZA O POTENCIA Los tornillos de Potencia son un dispositivo para cambiar movimiento lineal y usualmente para transmitir potencia. En forma mas específica las tornillos de potencia se usan: 1. Para obtener una ventaja mecánica mayor con objeto de levantar pesos, como es el caso de los gatos tipo tornillos de lo automóviles. 2. Para ejercer fuerzas de gran magnitud, como en los compactadores caseros o en una prensa. 3. Para obtener un posicionamiento preciso de un movimiento axial, como en el tornillo de un micrómetro o en el tornillo de avance de un torno. En cada una de estas aplicaciones se utiliza un par de torsión en los extremos de los tornillos por medio de conjuntos de engranajes, creando de esta forma una carga sobre el dispositivo. En los tornillos de potencia se usa el perfil de rosca Acme. El ángulo de la rosca es de 29° y sus dimensiones se pueden determinar fácilmente después que se conoce el paso:

0,335P

P

P/2

0,31P

0,68166P

29°

Con el diámetro de la cresta, el número de roscas por pulgada, y las áreas de esfuerzo de tensión y compresión (Tabuladas) para las roscas de los tornillos de potencia Acme. Calculamos el área del es fuerzo de tensión, mediante la siguiente formula:

At 

  dr  d p  * 4 

2

2

 

En el caso de los tornillos de fuerza o potencia, la rosca Acme no es tan eficiente como la rosca cuadrada debido al rozamiento extra ocasionado por la acción de cuña; pero suele preferírsela porque es mas fácil de de formar a máquina y permite el empleo de una tuerca partida, que puede ajustarse para compensar el desgaste.

ELEVACION DE LA CARGA El momento (T) requerido para avanzar el tornillo (o la tuerca) contra una carga (W) viene dado por:

  tan   f / cosn     fc * rc  T  W * rm  1  f * tan  / cosn  

Donde: T = momento aplicado para girar el tornillo o la tuerca, cualquiera que sea el que este girando. W = carga paralela al eje del tornillo. rm = radio medio del a rosca. rc = radio efectivo del a superficie de rozamiento contra la cual sea poya la carga, llamado también radio del collar. f = coeficiente de rozamiento entre las roscas del tornillo y la tuerca. fc = coeficiente de rozamiento en el collar. α = ángulo del a hélice en la rosca en el radio medio. θn = ángulo entre la tangente al perfil del diente (sobre el lado cargado) y una línea radial, medido en un plano norma la la hélice del a rosca en un radio medio. El momento requerido para avanzar el tornillo (o la tuerca) en el sentido de la carga (o descendiendo la carga) es   tan   f / cosn     fc * rc  T  W * rm  1  f * tan  / cosn  

Este momento puede ser positivo o negativo. Si es positivo, debe efectuarse trabajo para avanzar el tornillo. Si es negativo, el significado es que, en equilibrio, el momento debe retardar la rotación, esto es, la carga axial aisladamente producirá rotación (situación de taladro de empuje). Se dice en este caso que el tornillo debe sobrecargarse o sufrirá arrastre.

COEFICENTES DE ROZAMIENTO EN LOS TORNILLOS DE POTENCIA

Si las superficies de los hilos de rosca son lisas y estan bien lubricadas, el coeficiente de rozamiento puede ser tan bajo como f=0.10, pero con materiales d emano de obra de calidad promedio, Ham y Ryan (*) recomienda f=0.125. Si la ejecución es de calidad dudosas e puede tomar f=0.15. Para el aumento en el arranques e aumentan estos valore sen 30-35%. (*)

Ham y Ryan en base a sus experimentos dedujeron que el coeficiente de rozamiento es independiente de la carga axial; que esta sometido a cambios despreciables debido a la velocidad para la mayoría de los intervalos de ésta que se emplean en la práctica; que disminuye algo con lubricantes espesos; que la variación es pequeña para los diferentes combinaciones de materiales comerciales , siendo menor la correspondiente al aceros obre bronce, y que las ecuaciones teóricas dan una buena predicción sobre las ecuaciones reales.

EFICIENCIA DE UN MECANISO DE TORNILLO Es la relación entre el trabajo de salida y el trabajo de entrada. Eficiencia 

100 * W * (avance) % 2 * *T

100 * tan  % f tan   cosn )  fc * rc ( tan  rm 1 f * cosn

LOS ESFUERZOS EN LA ROSCA Se calculan considerando que la rosca es una viga corta en voladizo proyectada desde el núcleo. La carga sobre la viga se toma como la carga axial sobre el tornillo W, concentrada en el radio medio, esto es la mitad de la altura h del a rosca. El ancho de la viga es la longitud de la rosca (medida en el radio medio) sometida a la carga. Con estas hipótesis el esfuerzo de flexión en la base de la rosca es muy aproximadamente,

sb 

3 *W * h 2 *  * n * rm * b 2

y el esfuerzo cortante transversal medio es ss 

W 2 *  * n * rm * b

donde n es el numero de vueltas de la rosca sometidas a la carga y b es el ancho del a sección del a rosca en el núcleo.

LA PRESION DE CONTACTO Entre las superficies del tornillo puede ser un factor crítico en el diseño, especialmente para tornillos de potencia. Esta dada aproximadamente por: P

W 2 *  * n * rm * h

Este calculo es bajo porque: 1.

2.

Las holguras entre la raiz y las roscas interna y externa significan que la cargan o es soportadas obre la profundidad total de h. La carga no esta distribuida uniformemente sobre la longitud del a rosca. LOS ESFUERZOS EN EL NÚCLEO DEL TORNILLO

Pueden calcularse considerando que las cargas y los momentos son soportados por el cilindro desnudo (despreciando el aumento de resistencia por presencia de la rosca). El esfuerzo cortante torsional es:

ss 

2 *T

 * ri 3

donde ri es el radio de fondo del tornillo. T es el momento apropiado, esto es, el momento de torsión al cual esta sometida la sección considerada. Este puede ser el momento total aplicado, el momento por fricción en el collar únicamente, o el momento del tornillo solamente (total menos momento por fricción en el collar). Cada caso debe examinarse con cuidado para ver cual se aplica. El esfuerzo directo, puede ser de tracción o compresión, es: sn 

W W  áreabase  * ri 2

Una modificación de la fórmula anterior se utiliza frecuentemente en los cálculos de los sujetadores roscados para tener en cuenta, aproximadamente el esfuerzo del aumento de resistencia producido por la rosca. Básicamente la modificación consiste en suponer que el cilindro tiene un radio mayor que el real. Entonces: sn 

W áreadeesfuerzo

Tanto lasa reas de esfuerzo como las áreas de la base, se encuentran tabuladas en muchos textos y manuales.

SUJETADORES ROSCADOS Un sujetador es un dispositivo que sirve para sujetar o unir dos o más miembros. La denominación que se da a los sujetadores roscados depende de la función para la que fueron hechos y no de cómo se emplean realmente en casos específicos. Si se recuerda este hecho básico, no será difícil distinguir entre un tornillo y un perno. Si un elemento esta diseñado de tal modo que su función primaria sea quedar instalado dentro de un agujero roscado, recibe el nombre de tornillo. Por tanto, un tornillo se aprieta aplicando un par torsor en su cabeza.

Si un elemento esta diseñado para ser instalado con una tuerca, se denomina perno. Así, los pernos se aprietan aplicando una par torsor a la tuerca.

Un esparrago (o perno con doble rosca, birlo) e suna varilla con rosca en sus dos extremos; uno entra en un agujero roscado ye l otro recibe una tuerca.

Los sujetadores roscado incluyen pernos pasantes, tornillos de cabeza, tornillos de máquina, tornillos prisioneros y una variedad de implementos especiales que utilizan el principio del tornillo.

Roscas y su tallado Las roscas se pueden emplear para:

a) Unir piezas de manera permanente o temporal, éstas pueden tener movimiento o quedar fijas. La unión se hace por medio de tornillos y tuercas, elementos que contienen una rosca. Para que un tornillo sea acoplado con su tuerca ambos deben tener las medidas adecuadas y el mismo tipo de rosca.

b) Generar movimiento en máquinas o en transportadores. Los mejores ejemplos de esta aplicación se tiene en los tornos, en los que por medio de un tornillo sinfín se puede mover el carro o en los elevadores de granos en los que por medio de un gusano se transportan granos de diferentes tipos.

¿Por qué funciona una rosca? La forma más sencilla de entender y explicar el funcionamiento de una rosca es la siguiente: Imagine que enrolla en un perno

cilíndrico recto un triángulo rectángulo de papel. La trayectoria que sigue la hipotenusa del triángulo es una hélice que se desarrolla sobre la superficie del cilindro, esa es la rosca que nos sirve para fijar o transportar objetos.

El mismo papel que se enrolló sobre el cilindro del tornillo nos indica que las roscas actúan como un plano inclinado, pues al deslizarse la tuerca por las orillas de la rosca se está siguiendo la trayectoria de un plano inclinado, del cual su fórmula elemental es:

PxL=Wx h P = fuerza aplicada L = longitud del plano inclinado W = fuerza generada h = altura del plano inclinado Lo anterior se puede reflejar en la fuerza que se generaría en una prensa de husillo como se puede observar a continuación.

Las orillas de la rosca en el tornillo actúan como el plano inclinado. Por cada vuelta que se da a la la manivela se logra un avance de "h", generando una fuerza de "W", todo esto producto de la fuerza aplicada en la manivela "P" en una trayectoria igual al perímetro "2Pi x r". Con lo anterior se puede construir la siguiente expresión. P x 2Pi x r = W x h Por ejemplo: si se aplica en una prensa como la mostrada, con avance "h" en cada vuelta de 2 mm, brazo de palanca "r" de 200 mm y si se aplica una fuerza "P" de 15 kg, se tendrá. Sustituyendo en la ecuación de la prensa (15) (2)(3.14)(200) = W (2) Despejando "W" W = 9,420 kg Como la fricción en la rosca genera una pérdida de la fuerza de un 40% se tendrá: W = 9,420 x 0.6 = 5,652 kg Lo anterior implica que con nuestra pequeña prensa y 15 kg, se obtengan más de 5.5 toneladas de fuerza. Tipos de rosca

En el mercado existen diferentes tipos de roscas, su forma y características dependerán de para qué se quieren utilizar. La primera diferencia que se puede distinguir es su forma, ya que hay de cinco tipos de roscas: a) agudas o de filete triangular b) trapeciales c) de sierra d) redondas o redondeadas f) de filete cuadrado Las roscas de filete triangular o agudas se usan en tornillos de fijación o para uniones de tubos. Las trapeciales, de sierra y redondas se utilizan para movimiento o trasporte y las cuadradas casi nunca se usan.

Las roscas agudas o triangulares quedan definidas por los diámetros exterior (d), del núcleo (d1) y del de los flancos (d2), así como por el ángulo de los flancos (alfa) y su paso (h)

El sentido de las roscas es otra de sus características. Hay roscas derechas e izquierdas. La rosca derecha se tiene si al girar el tornillo de acuerdo a las manecillas del reloj este tiene penetración y la rosca izquierda se tiene si al girar al tornillo en contra de las manecillas del reloj este avanza penetrando también.

Las roscas pueden tener una sola hélice (un sólo triángulo enrollado) o varios, esto indica que las roscas tendrán una o varias entradas.

A) Rosca sencilla

B) Rosaca doble

C) Rosca triple

Las roscas están normalizadas, en términos generales se puede decir que existen dos tipos fundamentales de roscas las métricas y las Whitworth. Las normas generales son las siguientes: Sistema métrico BS 3643: ISO Roscas métricas BS 4827: ISO Roscas miniatura o finas BS 4846: ISO Roscas trapeciales o trapezoidales BS 21: Roscas para conexiones y tubos de paredes delgadas

Sistema inglés BS84: Roscas Whitworth BS93: Roscas de la British Assiciation (BA) La mayoría de las normas se pueden encontrar en el manual Machinery's Screw Thread Book. Las principales características y dimensiones proporcionales de las roscas triangulares métricas y Whitworth se observan en los siguientes dibujos.

Rosca métrica en la que su altura (t1) es igual a 0.6495h y el radio de giro (r) del fondo es igual a 0.1082h

Rosca Whitworth en la que la profundidad (t1) de la rosca es igual a 0.64033h y el radio de giro (r) de su fondo y extrremos es de 0.13733h

Como se puede observar las principales diferencias entres los dos tipos de roscas son: Métrica. Los ángulos de los las espiras son de 60°, en tornillos se redondea el fondo de la rosca y las puntas son planas, en el caso de las tuercas mientras que en las Whitworth es de 55°. Otra gran diferencia es que mientras en las roscas métricas su parte externa de los filetes es chata a una altura t1=0,64595h y la interna redonda con r = 0.1082h, en las Whitworth tanto la punta exterior como la parte interna son redondas, con altura de t1 = 0.64033h y r = 0.13733h. En las roscas métricas el paso se indica por el avance en milímetros por cada vuelta, mientras en las Whitworth se da por número de hilos por pulgada. Mecanizado o tallado de roscas Las roscas pueden fabricarse por medio de diferentes procesos de manufactura. El procedimiento seleccionado dependerá del número de piezas a fabricar, la exactitud y la calidad de la superficie de la hélices, el tallado más común de roscas es por medio de: a) machuelos o terrajas (manuales o de máquina) b) útilies de roscar en torno c) fresado d) laminado

a) Roscas con machuelo b) Roscas con terraja c) Rosacas con útil de roscar d) Fresado de roscas e) Rosacado por esmeril f) Laminado de roscas

Uso de machuelos o terrajas en torno para hacer una rosca Algunas veces se usan roscas fundidas o prensadas. Fabricación de roscas por medio de machuelos y terrajas Es el método más sencillo y económico, se utiliza para roscas triágulares. El tallado se logra por medio de una herramienta de acero de alta calidad, que si es para hacer una rosca exterior o macho (como la de un tornillo) se llama terraja y cuando se requiere hacer una rosca interior o hembra (como la de una tuerca) se utilizan unas herramientas llamadas machuelos.

Machuelos

Terraja

El tallado de una rosca con terraja está limitado por las dimensiones del perno a roscar, en las roscas Whitworth el diámetro máximo es de 1 1/4 " y en las métricas es de 30 mm. Cualquier rosca mayor a 16 mm o 5/8 de pulgada debe iniciarse con un roscado previo, para evitar que se rompan los filetes. En el caso de roscas interiores fabricadas con machuelos, es muy importante hacer el barreno previo a la rosca con el diámetro adecuado, para definirlo de acuerdo a la rosca que se va a fabricar, existen normas como la DIN 336, de la cual se presenta un extracto a continuación. Roscas métricas

Rosca M M3 M M M M M1 M1 M1 M1 M1 M2 M2 M2 M2 * 3 .5 4 5 6 8 0 1 4 6 8 0 2 4 7 Para 2. 3. 4. 6. 11. 13. 15. 17. 19. 20. 23. 2.9 5 8.4 10 acero 5 3 2 7 75 75 25 25 25 75 75 Para fundici 2. 3. 4. 4. 6. 11. 13. ón 2.8 8.2 9.9 15 4 2 1 8 5 5 5 gris y laton

17

19

20. 23. 5 5

*En las roscas métricas su diámetro en mm se indica después de la letra "M" Roscas Whitworth Rosca*

1/4" 5/16" 3/8" 1/2"

Para acero

5.1 6.5 7.9 10.5 13.5 16.5 19.25

Para fundición 5 gris y laton

5/8"

3/4"

6.4 7.7 10.25 13.25 16.25

7/8"

19

1"

22

1 1/8"

1 1 1 1 1 2" 1/4" 3/8" 1/2" 5/8" 3/4"

24.75 27.75 30.5 33.5 35.5 39 44.5

21.75 24.50 27.50 30

33

Todos los diámetros están dados en milímetros. Recomendaciones para elaborar roscas con machuelos y terrajas Uso de machuelos 1. deben estar bien afilados 2. se debe hacer girar en redondo al machuelo, evitando el cabeceo 3. cuándo se va a realizar una rosca grande, se debe iniciar con un machuelo menor y en otras pasadas con machuelos de mayor tamaño, se debe aproximar al tamaño adecuado. 4. debe haber lubricación abundante.

35 38.5 44

5. se debe hacer la penetración de una vuelta y el retroceso del machuelo para que la viruta salga y no se tape la rosca. Uso de terrajas 1. el dado de la terraja debe estar limpio y bien lubricado. 2. se debe hacer girar a la terraja en redondo y sin cabeceo. 3. el perno a roscar deberá estar preparado con un chaflán en la punta a 45° 4. la terraja debe colocarse de manera perpendicular a el perno a roscar. 5. se debe hacer girar la terraja una vuelta y regresarla para desalojar la viruta. 6. debe haber lubricación abundante. Fabricación de roscas por medio del torno Se puede utilizar un torno de plantilla con husillo de trabajo movil, como el que se muestra en la figura.

Como se puede observar en el extremo izquierdo del husillo principal se coloca una plantilla con la rosca que se quiere fabricar (a), ésta se acopla a una tuerca (b) que sirve de guía al husillo principal del torno. Observe que el husillo es el que se desplaza o avanza de acuerdo a lo que requiere la plantilla, como lo demandaría un tornillo acoplándose a su tuerca, mientras que el útil de roscar está inmóvil.

En este tipo de tornos se pueden utilizar como útiles con varias puntas como los peines de roscar.

Peines de roscar para rosca exterior e interior Por lo regular las roscas en los tornos se realizan por medio de varias pasadas no se recomienda desbastar en reversa.

Para el tallado de roscas también se pueden utilizar tornos de tipo horizontal, para ello se debe usar el husillo de guía y la tuerca matriz de los tornos horizontales. Observe en el dibujo, como se acoplan el husillo de roscar y el husillo principal por medio de los engranes de velocidades y como funciona la tuerca que cierra las mordazas. Esto hace que el carro del torno se mueva de acuerdo a el husillo de roscar.

a) Tuerca de fijación b) tuerca de fijación cerrada Para lograr la fabricación de una rosca con el paso requerido, es necesario que se guarde la relación de revoluciones adecuada entre el husillo guía o de roscar y las de la pieza. Por ejemplo si se requiere tallar una rosca con paso de 4 mm el carro deberá tener un avance de 4 mm por cada revolución, si el husillo de roscar en cada vuelta avanza 4 mm la relación será de uno a uno. Pero si el husillo de roscar avanza 8 mm en cada revolución, éste deberá sólo dar media vuelta, mientras el husillo principal debe dar una vuelta, por lo que puede decirse que se requiere una relación de dos a uno, pues por cada vuelta de 8 mm que dé el husillo de roscar, la pieza deberá haber dado una, avanzando 4 mm. El ajuste de las relaciones se logra por medio del cambio de las ruedas dentadas que transmiten el movimiento del husillo principal al husillo de roscar. Lo anterior se puede observar en el siguiente dibujo.

Gs = paso de la rosca a tallar Ls = paso del husillo de roscar Z1 = número de dientes del engrane del husillo principal Z2 = número de dientes del engrane del husillo de roscar Z = rueda intermedia sin influencia en el cambio de revoluciones Ejemplo del cálculo del tallado de una rosca en un torno con engranes intercambiables. Se requiere una rosca con paso (Gs) de 2 mm y se tiene un torno con un husillo de roscar ( Ls) de 6 mm. ¿qué engranes Z1 y Z2 debemos utilizar, para fabricar esta rosca? Lo primero que se debe hacer es establecer la relación que se requiere entre los dos pasos si el paso de la pieza debe ser 2 y el del husillo de roscar es 6 se tendrá que la relación es 2/6 = 1/3. Por lo que cualquier par de engranes que den esta relación servirán, así se pueden tener un engrane Z1 de 20 dientes y un Z2 con 60 dientes, como la relación de 20/60 es igual a 1/3 funcionará bien, como también lo hará con una relación de un Z1= 15 y un Z2=45. Si se requiere una relación muy pequeña se pueden poner más engranes entre el husillo principal y el husillo de roscar. Por ejemplo si se necesita hacer una rosca con paso de 1 mm y se tiene un husillo de roscar con paso de 12 mm, se tiene que la relación es de 1/12, como las ruedas dentadas con estas relaciones son difíciles de obtener, pues con una Z1de 10 dientes (la que es muy pequeña) se requerirá una Z2 de 120 dientes, la que es muy grande, por lo que se buscan dos quebrados que multiplicados nos den la relación de 1/12, por ejemplo 1/4 por 1/3, lo que nos indica que podemos utilizar una doble reducción en nuestro torno, en la que se pueden usar las siguientes relaciones 20/80 y 20/60. Por lo que se pueden usar los siguientes engranes: Uno engrane motriz Z1 de 20 dientes, acoplado a uno de 80, a ese de 80 dientes se junta con uno de 20, con lo que ahora funcionará como motríz con esos 20 dientes, los que transmitirán su movimiento a uno de 60 dientes, el que es engrane Z4 que transmite el movimiento al husillo de roscar. Lo anterior se observa en el siguiente dibujo.

Existen juegos de engranes intercambiables en los tornos horizontales, por ejemplo es común encontrar juegos con los siguientes engranes: 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 125, 127. Los husillos de roscar normalizados tienen los siguientes pasos: 4, 6, 12, 15, 24 en milímetros y 1/4 y 1/2 pulgadas. El hacer el cambio de las ruedas dentadas en los tornos es muy tardado y molesto, por lo que ya existen transmisiones que permiten las relaciones adecuadas, sin necesidad de los cambios físicos. En la mayoría de los tornos se instalan tablas con las que se obtienen las relaciones de las ruedas dentadas con las que cuentan las transmisiones. Para mayor información sobre este tema consultar:  Alrededor de las Máquinas-Herramientas, de Heinrich Gerling, editorial Reverté. Páginas 185 a 209.  Principios de Ingeniería de Manufactura, de Stewart C. Black, Vic Chiles et al. de la Compañía Editorial Mexicana. Páginas 434 a 451.  Procesos de Manufactura, versión Si, de B. H. Amstead. P Ostwald y M. Begeman. Compañía Editorial Continental. Páginas 749 a 765.  Ingeniería de Manufactura, de U. Scharer, J. A. Rico, J. Cruz, et al. Companía Editorial Continental. Páginas 278 a 280.  Materiales y procesos de manufactura para ingenieros. Lawrence E. Doyle et al.. Prentice Hall. Páginas 884 a 904. Se recomienda recurrir al taller ULSA y solicitar la realización de una práctica de tallado de roscas con machuelo, terrajas y torno.