Casos de Armazones

Ey Dx Mecánica Analítica – DR – TALLER DE ARMAZONES de octubre de 2014 1.Determine las componentes de las reacciones

Views 75 Downloads 0 File size 512KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Ey

Dx

Mecánica Analítica – DR – TALLER DE ARMAZONES de octubre de 2014

1.Determine las componentes de las reacciones en D y E si se sabe que cada polea tiene un radio de 250 mm. Determine las fuerzas internas en el punto medio entre los puntos A y B.

Dy

Dx

COMENTARIOS: Tenemos 3 ecuaciones: ∑M=0; ∑Fx=0 y ∑Fy=0. Con 4 incognitas. Para este caso como hay dos apoyos en D y E con Dy y Ey colineales podemos considerarlas iguales y repartir las fuerza

aplicada en Y planteando ∑Fy=0 donde Ey+Dy-4800 =0 con Ey =Dy

Cx

Cy

Dy

Ex

2.Determine las fuerzas internas en el punto J de la estructura que se muestra en la figura

Prof. Wilson Tafur Preciado Sede de Villa del Rosario

Universidad de Pamplona

Mecánica Analítica – DR – TALLER DE ARMAZONES de octubre de 2014

Tenemos 3 ecuaciones: ∑M=0; ∑Fx=0 y ∑Fy=0. Con 4 incognitas. Para este caso como hay dos apoyos en C y D con Cx y Ex colineales pero sin fuerza aplicada en X. En este caso se elabora el diagrama de cuerpo libre para cada uno de los elementos y se resuelven ecuaciones de momentos usando el DCL de cada elemento dejando como incognitas Bx y By ( el punto en común a los dos elementos, pues cada elemento presenta también 4 incognitas y 3 ecuaciones disponibles).

Hy Gx

Gy

Del diagrama general al lado también se pueden plantear ∑M D=0 y calcula Cy ( pues se cancelan Cx,Dx y Dy) y también ∑M C=0 y calcular Dy (pues se cancelan Dx, Cx y Cy) 3.Para el marco y la carga que se muestran en la figura, determine las componentes de las fuerzas que actúan sobre el elemento DABC en B y D. Determine las fuerzas internas en el punto medio entre los puntosa A y D.

Tenemos 3 ecuaciones: ∑M=0; ∑Fx=0 y ∑Fy=0. Con 3 incognitas. En este caso se plantean normalmente las 3 ecuaciones comenzando con la ∑MG=0, luego ∑Fx=0 y ∑Fy=0. Se elabora el diagrama de cuerpo libre para cada uno de los elementos y se resuelven ecuaciones de momentos usando el DCL de cada elemento dejando como incognitas Prof. Wilson Tafur Preciado Sede de Villa del Rosario

Universidad de Pamplona

Mecánica Analítica – DR – TALLER DE ARMAZONES de octubre de 2014

las reacciones de los puntos en común entre dos elementos pues los 3 elementos presentan cada uno de a 4 incognitas. Por ejemplo, entre la barra GDEF y HEB el punto en común es E, por lo tanto en la primera barra se plantea ∑MD=0 para dejara Ex y Ey en la ecuación y en la segunda barra se plantea ∑MB=0 para deja Ex y Ey como incognitas, luego resuelte el sistema de 2 ecuaciones y 2 incognitas obtenido.

Dy Fx

W

W

2

1

J

Dx

Fy

4. El elevador de tijera consiste de dos conjuntos de miembros transversales y dos cilindros hidráulicos, DE, simétricamente colocados a cada lado de la plataforma. La plataforma tiene una masa uniforme de 60 Kg, con centro de gravedad en G1. La carga de 85 Kg con centro de gravedad en G2. A) determine la fuerza ejercida por los cilindros hidráulicos para mantener el sistema en equilibrio. B) Determine las fuerzas internas en el punto J. En B y D hay dos rodillos.

Prof. Wilson Tafur Preciado Sede de Villa del Rosario

Universidad de Pamplona

Mecánica Analítica – DR – TALLER DE ARMAZONES de octubre de 2014

Tenemos 3 ecuaciones: ∑M=0; ∑Fx=0 y ∑Fy=0. Con 4 incognitas. Para este caso hay dos apoyos en F y D con Fx y Dx colineales pero sin fuerza aplicada en X. Se elabora el diagrama de cuerpo libre para cada uno de los elementos y se resuelven ecuaciones de momentos usando el DCL de cada elemento dejando como incognitas las reacciones de los puntos en común entre dos elementos pues los 2 elementos presentan cada uno de a 4 incognitas. Por ejemplo, entre la barra ACD y BCF el punto en común es C, por lo tanto en la primera barra se plantea ∑MA=0 para dejar Cx y Cy en la ecuación y en la segunda barra se plantea ∑MF=0 para dejaR Cx y Cy como incognitas, luego resuelte el sistema de 2 ecuaciones y 2 incognitas obtenido. Antes de hacer esto hay que tener en cuenta que es recomendable comenzar por el elemento que tenga las fuerzas aplicadas, en este caso la plataforma en cuyo DCL podremos calcular Ax, Ay y By. 5.Dos elementos, que consisten cada uno en una porción recta y una parte con forma de un cuarto de círculo, soportan una carga de 75 lb en A y se conectan de la forma mostrada en la figura. Determine las fuerzas internas en el punto J.

Tenemos 3 ecuaciones: ∑MC=0; ∑Fx=0 y ∑Fy=0. Con 3 incognitas. Planteamos estas 3 ecuaciones, caculamos incognitas y luego hacemos DCL para cada elemento.

Prof. Wilson Tafur Preciado Sede de Villa del Rosario

Universidad de Pamplona

Ay

Bx Mecánica Analítica – DR – TALLER DE ARMAZONES de octubre de 2014

Bx

6. Si se sabe que el radio de cada polea es de 200 mm y no se toma en cuenta el efecto de la fricción, By determine las fuerzas internas en el punto J del marco que se muestra en la figura. Tenemos 3 ecuaciones: ∑M=0; Ax ∑Fx=0 y ∑Fy=0. Con 4 incognitas. Para este caso como hay dos apoyos en A y B con Ay y By colineales podemos considerarlas iguales y repartir las fuerza aplicada en Y planteando ∑Fy=0 donde

Ay

Ay+By-360 =0 con Ay =By 7.Una tubería de 5 pulg de diámetro se sostiene cada 9 pies mediante un marco pequeño, el cual consiste en dos elementos, como se muestra en la figura. Si se sabe que el peso combinado por unidad de longitud de la tubería y su contenido es de 10 lb/pie y no se toma en cuenta el efecto de la fricción, determine la magnitud y la ubicación del momento flector máximo en el elemento AC. Tenemos 3 ecuaciones: ∑M=0; ∑Fx=0 y ∑Fy=0. Con 4 incognitas. Para este caso como hay dos apoyos en C y D con Cx y Ex colineales pero Prof. Wilson Tafur Preciado Sede de Villa del Rosario

Universidad de Pamplona

Mecánica Analítica – DR – TALLER DE ARMAZONES de octubre de 2014

sin fuerza aplicada en X. En este caso se elabora el diagrama de cuerpo libre para cada uno de los elementos. Comenzando por el elemento con la carga conocida, en este caso el tubo de 90 lb.

FBD=250 N

Mc Cy

8. Si se sabe que el radio de cada polea es de 150 mm, α = 20° y FBD = 250 N estando la barra ABC empotrada en C, determine las fuerzas internas a) en el punto J y b) en el punto K.

Tenemos 3 ecuaciones: ∑MC=0; ∑Fx=0 y ∑Fy=0. Con 3 incognitas. Planteamos estas 3 ecuaciones, caculamos incognitas y luego hacemos DCL para cada elemento.

Cx

9. Un tanque cilíndrico para almacenamiento de combustible es apoyado sobre un armazón como el mostrado en la figura. El peso del tanque es de 1100 N y tiene un radio R de 30 cm. A) Calcule las reacciones en el apoyo A y la tensión en la cuerda BC. B) determine las cargas internas en el intermedio del segmento AD. El segmento DB mide 80 cm.

Prof. Wilson Tafur Preciado Sede de Villa del Rosario

Universidad de Pamplona

Mecánica Analítica – DR – TALLER DE ARMAZONES de octubre de 2014

10.Una fuerza F se aplica a una barra MR articulada a una corredera AB y se desliza sobre la varilla AR. El armazón formado es usado para soportar el peso de una carga P de 800 N. Para L=2 m; l=0.95 m; Ѳ=33° y α=20° calcule: a) la fuerza normal de la varilla AR sobre el apoyo en R y las reacciones en A. b) Las cargas internas en el punto medio de la barra MR.

Prof. Wilson Tafur Preciado Sede de Villa del Rosario

Universidad de Pamplona

Mecánica Analítica – DR – TALLER DE ARMAZONES de octubre de 2014

Prof. Wilson Tafur Preciado Sede de Villa del Rosario

Universidad de Pamplona