Caracteristicas Principales de Eritrocitos

CARACTERISTICAS PRINCIPALES DE: ERITROCITOS Características Son células anucleadas en forma de disco bicóncavo, y las c

Views 164 Downloads 9 File size 188KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

CARACTERISTICAS PRINCIPALES DE: ERITROCITOS

Características Son células anucleadas en forma de disco bicóncavo, y las células más abundantes en sangre; su número varía en función de la edad, el sexo y la altura del hábitat. Por término medio: 4,5- 6 106 /mm3 en el varón 4- 5 106 /mm3 en la mujer 5,9 106 /mm3 en el recién nacido Medidas: 1. Diámetro corpuscular (o globular) medio(DCM, DGM): 7-7,5 μ 2. Volumen corpuscular (o globular) medio (VCM, VGM): 87 ± 5 μ3 3. Área superficial: 142 μ2

Función de los eritrocitos La vida media de un eritrocito es de unos 120 días, durante los cuales recorre de forma aproximada unos 320 kilómetros. Su función básica es el transporte de hemoglobina ya que su citoplasma contiene mayoritariamente esta proteína encontrándose en una concentración aproximada del 35 %. Teniendo en cuenta que en el exterior de la célula la concentración proteica plasmática es de un 7%, su metabolismo mínimo y anaerobio está destinado casi en exclusiva a mantener el equilibrio osmótico, mediante mecanismos de transporte a través de la membrana que impidan la entrada de agua y la correspondiente hemólisis. Al carecer de núcleo y ribosomas no realiza síntesis proteica y su maquinaria enzimática le permite degradar glucosa de forma anaerobia, lo cual le aporta el suficiente ATP para mantener el transporte activo de iones que mantenga su equilibrio osmótico.

HEMOGLOBINA

La hemoglobina es una heteroproteína de la sangre, de masa molecular de 64.000 g/mol (64 kDa), de color rojo característico, que transporta el oxígeno desde los órganos respiratorios hasta los tejidos, el dióxido de carbono desde los tejidos hasta los pulmones que lo eliminan y también participa en la regulación de pH de la sangre, en vertebrados y algunos invertebrados. La hemoglobina es una proteína de estructura cuaternaria, que consta de cuatro subunidades. Esta proteína hace parte de la familia de las hemoproteínas, ya que posee un grupo hemo.

Estructura

La forman cuatro cadenas polipeptídicas (globinas) a cada una de las cuales se une un grupo hemo, cuyo átomo de hierro es capaz de unir de forma reversible una molécula de oxígeno. El grupo hemo está formado por: 1. Unión del succinil-CoA (formado en ciclo de Krebs o ciclo del ácido cítrico) al aminoácido glicina formando un grupo pirrol. 2. Cuatro grupos pirrol se unen formando la protoporfirina IX. 3. La protoporfirina IX se une a un ion ferroso (Fe2+) formando el grupo hemo. La hemoglobina es una proteína tetrámera, que consiste de cuatro cadenas polipeptídicas con estructuras primarias diferentes. La hemoglobina presente en los adultos (HbA) tiene dos cadenas α y dos cadenas β. La cadena α consiste de 141 aminoácidos y una secuencia específica, mientras que la cadena β consiste de 146 aminoácidos con una estructura primaria diferente. Estas cadenas son codificadas por genes diferentes y tienen estructuras primarias diferentes. En el caso de las cadenas δ y γ de otros tipos de hemoglobina humana, como la hemoglobina fetal (HbF) es muy similar a la cadena β. La estructura tetrámera de los tipos comunes de hemoglobina humana son las siguientes: HbA1 tiene α2β2, HbF tiene α2γ2 y HbA2 (tipo menos común en los adultos) tiene α2δ2. Las cadenas α y β de la hemoglobina tienen un 75 % de hélices alfa como estructura secundaria, con 7 y 8 segmentos respectivamente. Cada cadena polipeptídica de la hemoglobina está unida a un grupo hemo para formar una subunidad. Las cuatro subunidades de la hemoglobina en su estructura cuaternaria forman un tetraedro. Y sus subunidades se unen entre ellas por puentes de sal, que estabilizan su estructura. El grupo hemo está localizado en un hoyuelo entre dos hélices de la cadena de la globina y a su vez está protegido por un residuo de valina. Los grupos vinilo no polares del grupo hemo se encuentran en el interior hidrofóbico del hoyuelo, mientras que los grupos profirina polares cargados se encuentran orientados hacia la superficie hidrofílica de la subunidad. También se encuentran residuos de histidina de las cadenas polipeptídicas, que se enlazan al átomo de hierro y se designan como histidinas proximales, ya que están presentes cerca al grupo hemo. Mientras que la histidina distal se encuentra lejos del grupo hemo. LEUCOCITO

Los leucocitos (del griego λευκός [leukós] ‘blanco’, y κýτος [kytos] ‘bolsa’, de ahí que también sean llamados glóbulos blancos) son un conjunto heterogéneo de células sanguíneas que son ejecutoras de la respuesta inmunitaria, interviniendo así en la defensa del organismo contra sustancias extrañas o agentes infecciosos (antígenos). Se originan en la médula ósea y en el tejido linfático. Los leucocitos son producidos y derivados de unas células multipotenciales en la médula ósea, conocidas como células madre

hematopoyéticas. Los glóbulos blancos se encuentran en todo el organismo, incluyendo la sangre y el tejido linfoide.1 Existen cinco2 diferentes y diversos tipos de leucocitos, y varios de ellos (incluyendo monocitos y neutrófilos) son fagocíticos. Estos tipos se distinguen por sus características morfológicas y funcionales. El número de leucocitos en la sangre suele ser un indicador de enfermedad. El recuento normal de glóbulos blancos fluctúa entre 4 y 11 x 11 x 109/L, y suele expresarse como 4000-11 000 glóbulos blancos por microlitro.3 Conforman, aproximadamente, el 1% del volumen sanguíneo total de un adulto sano.4 Al aumento del número de leucocitos por arriba del límite superior se le llama leucocitosis, y al decrecimiento por debajo del límite inferior se le llama leucopenia. da mieloperoxidasa.

Características

Los leucocitos son células móviles que se encuentran en la sangre transitoriamente, así, forman la fracción celular de los elementos figurados de la sangre. Son los representantes hemáticos de la serie blanca. A diferencia de los eritrocitos (glóbulos rojos), no contienen pigmentos, por lo que se les califica de glóbulos blancos. Son células con núcleo, mitocondrias y otros orgánulos celulares. Son capaces de moverse libremente mediante pseudópodos. Su tamaño oscila entre los 8 y 20 μm (micrómetros). Su tiempo de vida varía desde algunas horas, meses y hasta años. Estas células pueden salir de los vasos sanguíneos a través de un mecanismo llamado diapédesis (prolongan su contenido citoplasmático), esto les permite desplazarse fuera del vaso sanguíneo y poder tener contacto con los tejidos del interior del cuerpo humano. Clasificación Todos los leucocitos son células nucleados pero, por otra parte, distintos en forma y función. Los glóbulos blancos se clasifican en dos linajes principales: el mieloide (neutrófilos, monocitos, eosinófilos y basófilos) y el linfoide (linfocitos T, linfocitos B y las células natural killer (células NK).5 Neutrófilos Los neutrófilos defienden al organismo contra infecciones bacterianas o por hongos. Usualmente son los primeros en responder a una infección microbiana; su actividad y muerte en gran número forman la pus. Comúnmente se refiere a

los neutrófilos como leucocitos polimorfonucleares (PMN), aunque, en el sentido técnico, PMS se refiere a todos los granulocitos (que incluyen neutrófilos, eosinófilos y basófilos). Tienen un núcleo multilobulado que puede asemejar múltiples núcleos, por lo tanto el nombre leucocito polimorfonuclear. 8 El citoplasma puede parecer transparente debido a los gránulos que se tiñen color lila pálido. Los neutrófilos se encargan de fagocitar bacterias y están presentes en grandes cantidades en la pus. Estas células no son capaces de renovar sus lisosomas (utilizados durante la digestión de microbios) y mueren después de haber fagocitado unos cuantos patógenos. 9 Los neutrófilos son el tipo celular más encontrado en las fases tempranas de la inflamación aguda. Conforman del 60 al 70% de los leucocitos totales en la sangre del ser humano.4 La vida media de un neutrófilo circulante es de, aproximadamente, 5.4 día.10 Eosinófilos

Los eosinófilos, ante todo, lidian con las infecciones parasitarias. También son las células inflamatorias predominantes durante una reacción alérgica. Las causas más importantes de eosinofilia incluyen alergias como: asma, rinitis alérgica y urticaria; así como infecciones parasitarias. En general, su núcleo es bi-lobulado. El citoplasma está lleno de gránulos que, con tinción de eosina, asumen un color rosáceo-anaranjado característico. Basófilos

Los basófilos son principalmente responsables de las respuestas alérgicas ya que liberan histamina, provocando vasodilatación. Su núcleo es bi- o tri-lobulado, pero es difícil de detectar ya que se oculta por el gran número de gránulos gruesos, estos gránulos son característicamente azules bajo la tinción HyE. 11 Linfocitos

Los linfocitos son más comunes en el sistema linfático que en el torrente sanguíneo. Se distinguen por un núcleo que se tiñe fuertemente y cuya locación puede o no se excéntrica, y por tener poco citoplasma. Los linfocitos incluyen: 

Células B, que producen anticuerpos capaces de unir, bloquear, y promover la destrucción de patógenos así como de activar complemento.



Células T: o

CD4+ cooperadoras: son células T que expresan el co-receptor CD4 y son conocidas como linfocitos T CD4+. Estas células tienen receptores de células T (TCR) y moléculas CD4+ que, en conjunto, reconocen péptidos antigénicos presentados en moléculas del complejo mayor de histocompatibilidad (CMH) clase-II por células presentadoras de antígeno (CPA). Las células T cooperadoras producen citocinas y llevan a cabo otras funciones que ayudan a

coordinar una respuesta inmune adecuada. En una infección por VIH, el conteo de estas células T son el índice principal para identificar la integridad del sistema inmune del individuo. 12



o

CD8+ citotóxicas: son células T que expresan el co-receptor CD8 y son conocidas como linfocitos T CD8+. Estas células unen antígenos presentados en moléculas del CMH clase-I en células infectadas por virus o células tumorales. Casi todas las células nucleadas presentan CMH clase-I.

o

Células γδ T: poseen un receptor de células T alternativo (diferente al receptor de células T αβ que se encuentra en células T CD4 y CD8 convencionales). Se encuentran más comúnmente en tejidos que en sangre. Las células γδ T compartir características con las células cooperadoras, las citotóxicas y las células natural killer.

Célula Natural Killer: célula capaz de matar células del organismo que no presentan moléculas del CMH clase-I, o que presentan marcadores de estrés como MIC-A (MHC class I polypeptide-related sequence A). La disminución de la expresión de CMH clase-I y la regulación positiva de MIC-A se puede llevar a cabo cuando células del organismo están infectadas por un virus o son canceros.

Monocitos

Los monocitos comparten la función de “aspiradora” (fagocitosis) con los neutrófilos, pero son más longevos y además, una función extra: presentar partes de patógenos a linfocitos T para que éstos puedan ser reconocidos de nuevo y ser eliminados. Los monocitos abandonan el torrente sanguíneo para convertirse en macrófagos de tejido, que se encargan de remover restos de células muertas y de atacar microorganismos. A diferencia de los neutrófilos, los monocitos son capaces de reemplazar su contenido lisosomal y se cree que su vida activa es mucho más larga. Su núcleo tiene forma de riñón y no tienen gránulos y contienen abundante citoplasma. Una vez que los monocitos abandonan el torrente sanguíneo y entran a algún tejido corporal, pasan por cambios que permiten la fagocitosis (se diferencian) y se convierten en macrófagos. HEMATIES Características morfológicas:

El hematíe o eritrocito es el elemento más maduro de la eritropoyesis. Su misión fundamental es la captación de oxígeno y su transporte a los tejidos. Los eritrocitos son elementos anucleados, de color rosado y de forma redondeada u oval, con una depresión o zona más clara en el centro. Al corte transversal tiene forma de disco bicóncavo, de unos 2 um de espesor, con un diámetro aproximado de 7 um. Las características de su coloración se deben a la riqueza y distribución hemoglobínica de su interior, a su tamaño y forma. Las alteraciones del tamaño, de la forma y del contenido hemoglobínico de los hematíes pueden

observarse estudiando con detenimiento la sangre periférica tras su tinción panóptica y en las zonas correctamente extendidas, siendo esta observación de gran utilidad en el diagnóstico de diversas hemopatías. Con todo la metodología ideal para el estudio de la forma eritrocitaria es la microscopía electrónica de barrido, ya que con ella los artefactos técnicos se reducen al mínimo. Función de las células de la sangre:

Las células de la sangre son, funcionalmente, de tres tipos principales: las células rojas (eritrocitos), células blancas (leucocitos) y plaquetas (trombocitos). Los eritrocitos participan en el transporte de oxígeno y de dióxido de carbono; los leucocitos constituyen una parte muy importante del sistema inmunitario y de defensa del organismo y las plaquetas son un componente vital en el mecanismo de la coagulación sanguínea. Función de los leucocitos: 

Los leucocitos constituyen una parte importante de los mecanismos defensivos del organismo contra agentes extraños.



Los granulocitos y monocitos tienen una gran capacidad fagocítica y fagocitan microorganismos, restos celulares y partículas. Los monocitos y los neutrófilos son los fagocitos más activos.



Los linfocitos tienen su papel fundamental en la respuesta inmunitaria, que a diferencia de los fagocitos, dirigen su actividad principalmente contra agentes extraños específicos.



En general, los leucocitos realizan su función de defensa en el interior de los tejidos y para ello poseen la capacidad de, mediante movimientos ameboides, abandonar el sistema circulatorio y migrar por los tejidos.

TROMBOCITOS Las plaquetas o trombocitos son fragmentos citoplasmáticos pequeños, irregulares y carentes de núcleo, de 2-3 µm de diámetro,1 derivados de la fragmentación de sus células precursoras, los megacariocitos; la vida media de una plaqueta oscila entre 8 y 12 días. Las plaquetas juegan un papel fundamental en la hemostasia y son una fuente natural de factores de crecimiento. Estas circulan en la sangre de todos los mamíferos y están involucradas en la hemostasia, iniciando la formación de coágulos o trombos. Si el número de plaquetas es demasiado bajo, puede ocasionar una hemorragia excesiva. Por otra parte si el número de plaquetas es demasiado alto, pueden formarse coágulos sanguíneos y ocasionar trombosis, los cuales pueden obstruir los vasos sanguíneos y ocasionar un accidente cerebro vascular,

infarto agudo de miocardio, embolismo pulmonar y el bloqueo de vasos sanguíneos en cualquier otra parte del cuerpo, como en las extremidades superiores e inferiores. Cualquier anormalidad o enfermedad de las plaquetas se denomina trombocitopatía, la cual puede consistir, ya sea en tener un número reducido de plaquetas (trombocitopenia), un déficit en la función (tromboastenia), o un incremento en el número (trombocitosis). Se pueden producir desórdenes que reducen el número de plaquetas, como la púrpura trombocitopénica idiopática (PTI) y causan problemas hemorrágicos. Sin embargo, otros como la trombocitopenia inducida por la heparina pueden causar trombosis, o coágulos, en lugar de hemorragias. Las plaquetas liberan un gran número de factores de crecimiento incluyendo el factor de crecimiento derivado de plaquetas (PDGF, por platelet derived growth factor), un potente agente quimiotáctico, y el factor de crecimiento transformante beta, (TGF-beta, por transforming growth factor) el cual estimula el depósito de matriz extracelular; Estos dos factores de crecimiento han demostrado jugar un papel significativo en la regeneración y reparación del tejido conectivo; Otros factores de crecimiento producidos por las plaquetas y asociados a los procesos curativos incluyen: factor de crecimiento básico del fibroblasto (basic fibroblast growth factor), factor de crecimiento asociado a la insulina (IGF del inglés insulin-like growth factor), factor de crecimiento del epitelio (EGF del inglés epithelial growth factor), factor de crecimiento del hepatocito (HGF del inglés hepatocyte growth factor) y el factor de crecimiento del endotelio vascular (VEGF del inglés vascular endothelial growth factor). La aplicación local de estos factores de crecimiento en altas concentraciones a través del plasma rico en plaquetas (PRP del inglés platelet-rich plasma) ha sido utilizada, por varias décadas, para acelerar el proceso curativo de diferentes lesiones.