Box Girder Super Structure1

BOX GIRDER SUPER STRUCTURE A3 A2 A A1 T B M D G C P F E L H N O K I J I Q INPUT DIMENSION (mm) (Designation as

Views 151 Downloads 6 File size 2MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

BOX GIRDER SUPER STRUCTURE A3 A2

A

A1

T B

M D G C

P

F E L H N O K I

J

I

Q

INPUT DIMENSION (mm) (Designation as per above figure) A= B= C=

430 200 1800

G= H= I=

100 250 600

M= N= O=

300 315 150

S= T= A1 =

1800 350 350

S

D= E= F=

400 263.5 315

J= K= L=

3000 200 1700

P= Q= R=

150 430 600

A2 = A3 =

330 420

420 330 350

Clear Carriage way = 7500 430

0.065 m Wearing Coat 350

200

300 400 100 1800

150

315 263.5 1700 250 315 150 200 600

400

3000

600

430

300 150

1800

685.16

650

200 GEOMETRY OF END CROSS GIRDER

DATA : 1. C/C of span (mm) 25000 2. Effective Span (mm) = C/C Dist.-2 ( Width of End cross girder) 24200 3. C/C of web for outer box span (mm) = 3936.5 4. Clear Carriage way (mm) =15000 5. Overall width of decking (mm) = 16460 6. Concrete Grade M 30 7. Grade of Steel 4=15 8. Thickness of wearing coat ( in m) = 0.065 9. Permissible stresses in steel 10. Permissible stresses in concrete

sst (kg / cm2) scbc (kg / cm2)

11. Modular Ratio m 12. Density of parapet (t/m)

Notes:

This box indicate INPUT parameter. This indicate UDL load on span.

2000 101.94 10 0.2

16460 OF FOUR LANE BRIDGE

1931.8

7500

7500

CLEAR ROAD WAY

CLEAR ROAD WAY

3936.5 c/c of web of Box girder

4723.5 1800 1700

2200

Elastomeric Bearing RCC Pedestel RCC Pier Cap

2260 mm c/c of

2260 mm c/c of pedestel

pedestel

(All Dimensions are in mm)

25000 mm c/c of Pier

25000 mm c/c of Pier

Elastomeric Bearing RCC Pedestal

RCC Super Structure IN M

30

RCC Pier cap RCC Pier

RCC Sub Structure

Foundation GROUND LEVEL

R

600

25000 mm c/c of Pier

400

200

100

1700

2200

200

C/C of Pier 400

C/C Of Bearing 600 A

SECTIONAL ELEVATION 1-1 2400

9100

OF SYMMETRY

B 263.5

685 315

1

1

3000 c/c of Sofit Box

1843.0 1630

OF BOX GIRDER

315

8660 c/c of Box

685 263.5 25000 Overall Span c/c of Bearing OF PIER

OF bearing A

OF SYMMETRY B

24200 Effective Span c/c of Bearing

PLAN AT SOFFIT LEVEL

JAYESH

DRG-2

BG/DAX/DRG-Section

(2) DESIGN OF CANTILEVER DECK SLAB

430 350

Wearing Coat (m.) 0.065 X

KERB

200

400

1800 X

2.1 DEAD LOAD BENDING MOMENT Dead Load bending moment @ XX, (1) DL due to parapet =

0.2

1.8

0.43 2

(2) Parapet kerb = {A*A1 * 2.40 * (C-A/2)} 0.43 0.35 2.4

1.8

(3) Wearing coat = { (C-A) * Thk. Of wearing coat* (C-A/2)} 1.8 0.43 0.065 2.4 (4) Self weight of slab (a) {(C*B*C/2)*2.40} 1.8 0.2

1.8 2 (b) {1/2*C*(D-B)*(C/3)*2.40} 1 1.8 0.4 2

0.43 2 1.8

0.43 2

2.4

0.2

1.8 3

2.4

TOTAL DEAD LOAD BENDING MOMENT

2.2 LIVE LOAD BENDING MOMENT 2.2.1 CLASS A Vehicle 0.43

Minimum Clarance (IRC - 6:2000) Ground contect Area

0.317

t.m.

0.573

t.m.

0.146

t.m.

0.778

t.m.

0.259

t.m.

2.073

t.m.

0.15

0.5 0.97 1.8

Effective Dispersion width = 1.2 a + b1 (Cl. 305.16.2, IRC-21:2000) a = (C-A) - 0.15 - 0.50/2

=

b1 = 0.25 + 2 (Thk. Of Wearing coat)

0.97 m.

=

Effective Dispersion width bf =1.2 a + b1 1.2 0.97

0.38 m.

0.38

1.544 m.

LIVE LOAD BENDING MOMENT = (Axle load/2) * a * Impact Factor For Class A Axle load 11.40 t Impact factor 50% for cantilever slab as per Fig. 5 Cl. 211.2, IRC-6:2000 LIVE LOAD BENDING MOMENT = (11.40/2) * a * 1.50 11.4 0.97 2

1.5

8.2935 t.m.

2.2.2 CLASS AA Traked Vehicle 0.43

Minimum Clarance in m.(IRC - 6:2000)

Kerb

1.2

Ground contect Area 0.85

1.63

0.17

1.8 As c.g. of loads lying outside, No calculation of B.M. is reqd. Hence class A governs the design. Effective Dispersion width (Cl. 305.16.3, IRC-21:2000) = 0.50(Wheel contact Area) + 2*(Slab thk. + W.C.) Distance between edge to center of load = So, Slab Thk. @ Load center =

0.43

0.2

0.4

0.4

0.2

0.5 2 0.83

0.83 m. 0.292 m.

1.8 Effective Dispersion width = 0.50 + 2 ( Slab thk. + W.C.) 0.50 2 0.292 LIVE LOAD BENDING MOMENT / m. Width

=

0.065 8.294 1.544

1.214 m. 4.423 t.m/m 1.214

When vehicals travels near expansion gap, Eff. Width available across the span. Effective width available across the span, beff. = ( 1.2 x a)/2 + (0.25+W) 1.2 0.97 0.25 0.065 2 LIVE LOAD BENDING MOMENT near expan. gap =

0.897 m. 8.294 0.897

7.613 t.m/m 1.214

(3) SERVICES Service load = 0.2 t/m

(Assumed)

So, B.M. = 0.20 * (Width of Cantilever - Half width of kerb) B.M. 0.20 1.8 0.43 2

TOTAL BENDING MOMENT (D.L. + L.L. + Services)

0.317 t.m/m

=

(L.L.B.M./m. width taken)

2.073

4.423

6.813

t.m.

0.317

For M25 Concrete, m = 10 K=

0.338

j = 1- K/3

=

0.887

Q = 1/2 * scbc * k* j

=

15.272

d reqd. =

21.121 cm.

{d reqd. =

d prov. =

36.2 cm

d Prov. =

d reqd. Hence OK...