Citation preview

H301 Compressor Shelter Calculation Sheets

14.2 DESIGN OF CRANE GIRDER CRG -2 (Span 7.65m, 7.5m, 7.1m)

For built up

CRANE LOAD DATA:

Total Depth Plate Girder:

Project :

OPaL DFCU & AU

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

1

Crane capacity (A) :

100 T

Depth in Centre (mm)

2

Crane duty :

Electric over head cran

Size of Top Flange Plate:

3

Crane span (L) :

18.5 m

Width of Flange (bf)top (mm) = 400 Flange Thickness (tf)top (mm) =32

4

No. of wheel per end carriage :

4 Nos

Size of Bottom Flange Plate:

C/C wheel distance (L1b) :

0.9 m

5

C/C wheel distance (L1a) :

4.0 m

Width of Flange (bf)bot. (mm) =400 Flange Thickness (tf)bot. (mm) =32

6

Overall buffer distance (L2) :

7.0 m

Size of Web Plate:

7

Weight of crane excluding crab (B) :

80.0 T

Web Thickness tw (mm) =

25

8

Weight of crab (C) :

30.0 T

Thickness of weld w (mm) =

6

9

Nearest approach of crab to crane rail (L3) :

1.2 m

10

Span of crane girder (Lg) :

7.65 m

11

Weight of girder including crane rail & walkway 500 Kg/m

Out stand width = 186 mm

12

Width of walkway :

1.50 m

Thickness =

13

Live load from walkway :

###

14

Steel yield stress (fy) :

Depth near support (mm800

15

Spacing of lateral support (bracing)

1.50 m

16

Axial force from structure (Fa)

3T

17

Bending moment in X direction (Mx)

0 T-m

From STAAD

18

Bending moment in Y direction (My)

0 T-m

for Surge Beam Thickness =

19

Hook Type

Rope Type Hook

Depth of Web

dw (mm) = 1036

For end bearing stiffener

250 MPa

20 Crane Speed, V

1100

32 mm

[Non confirmed against Table 3 of IS 2062 : 1999]

For intermediate stiffener Width =

Spacing =

80 m/min

186 mm 16 mm 750 mm Max Allowed Stiffener Spaci 1554.0 mm Min Allowed Stiffener Spacin 242.9 mm

SUMMARY OF DESIGN RESULTS

CRANE GIRDER OK

End Bearing stiffener

In Slenderness

Flange Plate Size OK

Stiffener Size is OK SAFE

In Bearing OK

Web Plate Thickness OK OK

Strength Ratio

OK

Shear ratio = 0.414

OK

In Vertical Deflection

OK

In Lateral Deflection

x

Intermediate Stiffener

In Slenderness OK

0.65

In Axial Compression OK

Stiffners is not rquired Stiffener Size is OK Stiffener Spacing is OK

Against Torsion OK

L3

Trolley Trolley Bridge

( 100 Ton Crane )

R1

L

R2

Hook

C

H301 Compressor Shelter Calculation Sheets

Project :

OPaL DFCU & AU

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

CL Girder

CRANE GIRDER DESIGN 1 Maximum static wheel load at one end carriage (Dw1) Corresponding static wheel load at other end carriage (Dw2)

=

B/8+(C+A)x(1-L3/L)x0.25

=

40.4 T

=

Dw1 =

=

12.1 T

=

25% of Wheel load

Transverse load due to impact

=

5% of Wheel load

Longitudinal load due to impact

=

5% of Wheel load

=

5% of (C+A)/8

=

1.6 T

L1 =

0.9 m

4.00 m

4 40.4 T

0.9 m

L1a/4 L1a/4 L1a/2 L 1b

L1b

0.725 T/M

(IS 875/2 :6.3) Lg =

R1 Crane surge load (transverse) per wheel, Csl

Dw1 =

40.4 T

L1/4 =

(A+B+C-4Dw1)x0.25

Vertical load due to impact

CL Crane 3

2

7.65 m

R2

WHEEL LOAD POSITION FOR MAX BENDING MOMENT FROM VERTICAL LOAD & SURGE LOAD

Calculation of maximum reaction at the end of girder Taking moment about R1 R1 x Lg = Dw1x(Lg/2+L1a/4+L1b)+Dw1(Lg/2+L1a/4)+Dw1(Lg/2-L1a/4-L1a/2)+Dw1(Lg/2-L1a/4-L1a/2-L1b) R1 R2 =

4*Dw1-R1

=

59.7 T

=

101.9 T

CALCULATION OF MAJOR AXIS BENDING MOMENT Impact of vertical load on crane girder (fi)

=

25%

Span of crane girder (Lg)

=

7.65 m

Weight of girder including crane rail & walkway

=

500 Kg/m

Width of walkway

=

1.50 m

Live load from walkway

=

###

Live load on crane girder

=

225 Kg/m

Bending Moment at Wheel -2

Mx1 =

R2x(Lg/2+L1a/4)-Dw3x(Lg/2-L1a/4-La1/2)-Dw4x(Lg/2-L1a/4-La1/2-L1b)

=

132.2T-m

Bending Moment at Wheel -3

Mx2 =

R2x(Lg/2-L1a/4-La1/2)-Dw4x(Lg/2-L1a/4-La1/2-L1b)

=

87.1T-m

Max Bending Moment

Mx3 =

max(Mx1, Mx2) x fi

=

C

165.2T-m

1 w1

Total UDL from dead load & live load

Bending moment from dead load & live load Mx4 w1 . Lg2/8

=

725 Kg/m

=

5.3T-m

Total bending moment due to vertical load (Mx= Mx3 + Mx4) =

C

2

40.4 T

L1/4 =

170.6T-m

3

4 40.4 T

L1b L1a/4 L1a/4 L1a/2 L 1b

0.725 T/M

CALCULATION OF AXIAL COMPRESSION Crane surge load (transverse) per wheel, Csl

=

1.6 T

Taking moment about R1 R1 x Lg = Dw1x(Lg/2+L1a/4+L1b)+Dw1(Lg/2+L1a/4)+Dw1(Lg/2-L1a/4-L1a/2)+Dw1(Lg/2-L1a/4-L1a/2-L1b) R1 4*Dw1-R1 Mx1 =

5.3T-m

Mx2 =

R2x(Lg/2-L1a/4-La1/2)-Dw4x(Lg/2-L1a/4-La1/2-L1b)

= Max Bending Moment

3.5T-m

Mx3 =

max(Mx1, Mx2) x fi

= Depth of girder Axial compression (Pc)

Mx3/ Z

4.1 T

6.6T-m =

1.50 m

MAX BENDING MOMENT FROM VERTICAL LOAD & SURGE LOAD ON CRANE GIRDER

=

4.43 T

Surge Boom

1.50 m Spacing of lateral support

Crane Girder

TOP VIEW OF SURGE GIRDER

CALCULATION OF AXIAL BENDING (local) Surge load per wheel

87.1T-m

R2x(Lg/2+L1a/4)-Dw3x(Lg/2-L1a/4-La1/2)-Dw4x(Lg/2-L1a/4-La1/2-L1b)

= Bending Moment at Wheel -3

=

132.2T-m

1.50 m

Bending Moment at Wheel -2

2.4 T

Depth of Girder Z

R2 =

=

=

1.6 T

H301 Compressor Shelter Calculation Sheets

Spacing of lateral support (bracing) Ly = C/C wheel distance (L1b) : if Ly L1b

Project :

OPaL DFCU & AU

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

1.50 m 0.90 m

My = (Csl/Ly)(Ly-L1b/2)(Ly/2-L1b/4)

Maximum local bending moment due to surge (My)

=

0.6T-m

(bf)top

(tf)top

y 550

6

Mx

=

170.55T-m

Bending moment due to surge

My

=

0.60T-m

Axial compression

Pc

=

4.43T-m

Section chosen for Crane girder

518

Bending moment due to vertical load

tw To be taken by top flange plate only

Builtup S/C

(tf)bottom

Moment of inertia (Ixx)

=

961871 cm^4

Moment of inertia (Iyy)

=

34268 cm^4

Section Modulus (Zxx)

=

17489 cm^3

Section Modulus (Zyy)

=

1713 cm^3

Total area of member (A) Depth of Section (D)

= =

515.0 cm^2 1100 mm

Width of Section (B) Thickness of Web (tw) Thickness of Top Flange (tf top) Thickness of Bottom Flange (tf bottom) Radius of gyration (r yy)

= = = = =

400.0 mm 25.0 mm 32.0 mm 32.0 mm 8.16 cm

Radius of gyration (r xx)

=

43.22 cm

Clear depth of web d1 = D - 2 x tf

=

1036.0 mm

Top flange area (Af)

=

128.0 cm^2

Top flange section modulus (Zyyf)

=

853.3 cm^3

ac calculated = P/Af

=

3.40 MPa

bcx calculated = Mx / Zxx

=

95.67 MPa

bcy calculated = My / Zyyf

=

6.87 MPa

Slenderness Ratio in Major Direction lx = Lx/rxx [ (fcb)n + (fy)n ] 1/n Slenderness Ratio in Minor Direction ly = Ly/ryy [ (fcb)n + (fy)n ] 1/n Maximum Slenderness Ratio Lmax

=

17.70

=

18.39

=

18.39

Elastic Critical Stress in major Direction fccx = p2 E / lx2

=

6299.65 MPa

(IS:800-1984:5.1.1 E= 2x105 Mpa)

Elastic Critical Stress in major Direction fccy = p2 E / ly2

=

5837.56 MPa

(IS:800-1984:5.1.1 E= 2x105 Mpa)

Minimum Elastic Critical Stresses( fcc)

=

5837.56 MPa

Steel yield stress (fy) :

=

250 MPa

=

148.71 MPa

(IS:800-1984:5.1.1) & n=1.4

=

0.023

(IS:800-1984:5.1.1)

=

7836.96 MPa

(IS:800-1984:6.2.4)

=

7892.83 MPa

(IS:800-1984:6.2.4)

Distance Between NA & Top Extreme Fiber (C1)

=

550.0

mm

Distance Between NA & Bottom Extreme Fiber (C2)

=

550.0

mm

y

=

1

(IS800-1984Table 6.3) y taken as Taken as 1.0

K1

=

1.0

(IS800:1984Table 6.4) for y = 1, k1 = 1

Calculation of Actual Stresses

Calculation of Permissible Stresses

Permissible Axial Stress ac = 0.6 Ratio of Axial Compression =

fcc . fy [ (fccy) + (fy) ] n

n

1/n

OK In Slenderness

Bending Stress Y= 26.5 x 105 ( L / ry )2 1+

1 ` 20

LTz ry D

2

y (bf)bottom

550

dw

Design forces:

X=Y

1100

STRENGTH CHECKING

H301 Compressor Shelter Calculation Sheets

w

=

0.50

w taken as 0.5

K2

=

0.00

for w = 0.5 , K2 = 0.0

fcbx = K1 x ( X + K2 Y) x (C1/C2)

=

7892.83 MPa

(IS:800-1984:6.2.4)

tf/tw

=

1.28

d1/tw

=

41.44

=

0.03

=

7892.83 MPa

T = tf/D Elastic Critical Stress (fcbx)

IF tf/tw is not>2 and d1/tw is not> 1344/ √¯( fy )

Project :

OPaL DFCU & AU

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

(IS:800-1984:6.2.4.1)

THEN fcb shall be increased by 20%

1344/sqrt( fy)

=

85.00

fy is taken as 250 N.mm2

Final fcbx

=

9471.40 MPa

=

164.28 MPa

(IS:800-1984:6.2.3 & n=1.4)

=

165.00 MPa

(IS:800-1984:6.2.5)

Cmx

=

0.85

(IS:800-1984:7.1.3)

Cmy

=

0.85

(IS:800-1984:7.1.3)

Maximum Permissible Bending Compressive Stress bcx = 0.66 bcy

fcb . fy 0.66 fy

[ (fccy)n + (fy)n ]

Check For Combined Stresse(IS:800-1984:6.2.5)

Combined Axial Compression & Bending

Stress Ratio for Axial Compression =

=

0.02




1

sbcy

+

----- Equation -2

Cmy . sbcy cal

sbcx 1 - sac cal sbcy 0.6 fccy

=

0.647 OK

Case -1 : Shear force V1 =(Dw1 (Lg - L1)/Lg) + Dw1 + (UDL x Lg/2)

=

78.80 T

Case -2 :

L Girder

Shear force V2 =(Dw1+Dw2+Dw3+Dw4)-1/Lg[Dw4x(L1bx2+L1a)+Dw3x(L1b+L1a)+Dw2x(L1b)]

Maximum Design Shear V = max(V1, V2)

=

103.09 T

=

103.09 T

Dw1=

40.4 T

0.90 Dm

C

Over all Depth near support, D2 =

=

800 mm

Clear depth of web near support d2 = D2 - 2 x Tf =

=

736.0 mm

Thickness of Web tw

=

25 mm

=

200.0 cm^2

=

Shear Force/Area

=

50.57 MPa

=

Area = Thickness of Web x Overall Depth

va,cal

C

=

w1

L1b

6.75 m

Lg - L1b =

Check For Shear Stress:

Calculated shear stress

40.4 T

L Crane

UDL =

0.725 T/M

7.65 m

Lg = CASE-1 :WHEEL LOAD POSITION FOR MAX SHEAR

H301 Compressor Shelter Calculation Sheets

Dw1

OPaL DFCU & AU

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

Dw2 L1b

Allowable Shear Stress :-

Project :

Dw3 L1a

Dw4 L1b

(IS:800-1984:6.2.3 & n=1.4)

For Unstiffened Web = 0.4 Fy

=

Lg

100 MPa

CASE-2 :WHEEL LOAD POSITION FOR MAX SHEAR

if Ss < d2,tva =

fy C tw

0.4 fy 1.3 -

fy

if Ss > d2,tva = Where,

122.2 MPa

=

122.1 MPa

C 2 d2

1 4000 1+ 2

For Stiffened Web

=

d2

0.4 fy 1.3 -

tw

1 4000 1+ 2

d2 C

2

Vertical stiffeners spacing Ss750 mm

This is the case o StiffenedWeb

Hence Permissible Shear Stress

With Ss > d2

tv =122.1 MPa

Actual Shear / Permissible Shear =

0.41

(IS 800: 6.4.2 (b))

OK in Shear

DEFLECTION CHECK Longitudinal deflection (longitudinal) =

= 2x

Allowable longitudinal deflection (Lxallowed)

Dw1 x Lg3

3a Lg

4a3 L g3

5 x udl x L4

+

=

48 EI 3.98 mm XX

=

L /1000 for capacity over 50 tons L /750 for capacity less than 50 tons

=

7.7 mm

OK

L

384 EI

C 40.4 T

Dw1 mm = 1375

40.4 T

Dw1mm = 4000

In Vertical Deflection a=

1375 mm

a=

UDL =

Member is sustain againest longitudinal deflection Lateral deflection (lateral) =

= 2x

Allowable lateral deflection (Lyallowed)

Csl x Lg3

3a Ly

4a3 Ly3

=

48 EI 0.0186 mmYY

=

L /1000 for capacity over 50 tons

1.38m 7650 mm

L /750 for capacity less than 50 tons =

1.5 mm

WELD DESIGN Horizontal shear per unit length = V x A xY/Ixx

=

710.6 N/m

Thickness of weld (w)

=

6 mm

Weld strength per unit length = 2x108X0.707X0.8Xtw

=

733.0 N/m

Weld size is OK

END BEARING STIFFENER DESIGN Maximum end reaction (R )

=

103.09 T

Allowable bearing stress (0.75 X fy)

=

187.50 MPa

OK

In Lateral Deflection

WHEEL LOAD POSITION FOR MAX DEFLECTION

0.725 T/M

H301 Compressor Shelter Calculation Sheets

=

25 mm

Thickness of end bearing stiffner(St)

=

32 mm

Outstand width of end bearing stiffener Swo

=

186 mm

=

384 mm

=

397 mm

Minimum of (256 St /√fy) and 12.St

Width of end bearing stiffener (Sw) Area of end bearing stiffener (Sa)

Stiffener Size is OK

= Sw X St

=

12704 mm^2

=

500 mm

Effective cross section of stiffener (Sef= Sa + tw X Weff

=

25204 mm^2

Bearing stress coming over the stiffeners (bcal) =R/Seff

=

41 MPa

Effective length of stiffeners (Leff)

=

515.2 mm

Moment of inertia of stiffeners (SI xx)

=

707305090 mm^4

Radius of gyration of stiffeners (Sryy)

=

168 mm

Slenderness Ratio = Max of Leff/Sryy& d2/tX√ 3

=

39.84

n n 1/n + (fy) ] Elastic[ (fcb) Critical Stress in major Direction fccy = p2 E / ly2

=

1243.81 MPa

Minimum Elastic Critical Stresses( Sfcc)

=

1243.81 MPa

Permissible Axial Stress Ssac = 0.6

=

139.60 MPa

=

0.29

Ratio of Axial Compression = Total load on supports (W)

Sfcc . fy

[ (Sfccy)n + (fy)n ] 1/n

=

(D3 T/250 ) X (R/W)

=

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

(IS:800-1984:6.7.4.4)

Cx = 147.9 mm

Effective length of web in load bearing (Weff) = 20 X tw

=0.7 X d2

OPaL DFCU & AU

Bearing Stiffener

L of support OK In Bearing

397 mm

Thickness of Web of Beam (tw)

Project :

500 mm

Cx = 147.9 mm

OK In Slenderness (IS:800-1984:5.1.1 E= 2x105 Mpa)

C

(IS:800-1984:5.1.1) & n = 1.4 OK In Axial Compression

80.8 T

(IS:800-1984:6.7.5.3.g)

217416454 mm^4

OK Against Torsion

D=

Overall Depth of Girder

T=

Maximum Thickn of compres. Flange

R=

Reaction of the Beam at support

W=

Total load on the girder b/w support

INTERMEDIATE STIFFENERS : Stiffners is not rquired,However if provided it shall fullfill following perameters Clear depth of web d1 =

=

1036.0 mm

Clear depth of web d2 =

=

736.0 mm

Unstiffened Web Min( 256 tf/√fy, 20tf)

=

518 mm

=

640 mm

Flange criteria : Stiffened Web,

This is the case o StiffenedWeb

Web criteria :

20 tf

=

Flange projection beyond web =

Min( 800 T1/√fy, 50T1) =1250 mm

Minimum thickness of web for >25T crane girde

>

1036.0 mm

640

OK

>

200 mm

OK

(IS 800: 3.5.2.2 (a))

8


1344/ √¯( fy )

(IS:800-1984:6.2.4.1)

THEN fcb shall be increased by 20%

1344/sqrt( fy)

=

85.00

Final fcbx

=

3946 MPa

Maximum Permissible Bending Compressive Stress

fy is taken as 250 N.mm2

H301 Compressor Shelter Calculation Sheets

bcx = 0.66

=

163 MPa

(IS:800-1984:6.2.3 & n=1.4)

=

165 MPa

(IS:800-1984:6.2.5)

Cmx

=

0.85

(IS:800-1984:7.1.

Cmy

=

0.85

(IS:800-1984:7.1.

fcb . fy [ (fccy) + (fy) ] n

bcy

n

Project :

OPaL DFCU & AU

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

Check For Combined Stresse(IS:800-1984:6.2.5)

Combined Axial Compression & Bending

sac cal sac

+ Cmx . s cal bcx 1-

sac cal

0.6 fccx

+Cmy . sbcy cal

=

0.250

sbcx 1 - sac cal sbcy 0.6 fccy

4.0 m UDL OF 0.725 Tons

Check For Shear Stress:

Case -1 : Shear force V1 =(Dw1 (Lg - L1)/Lg) + Dw1

=

3.1 T

Case -2 :

3.8 m

Shear force V2 =(Dw1+Dw2+Dw3+Dw4)-1/Lg[Dw4x(L1bx2+L1a)+Dw3x(L1b+L1a)+Dw2x(L1b= Maximum Design Shear V = max(V1, V2) Area of girder

va,cal

Calculated shear stress

va

Allowable shear stress

=

4.0 T

=

58.7 cm^2

=

Shear Force/Area

=

7 MPa

=

100 MPa

4.0 T

0.725 T/M

Member is sustain for shear UDL

DEFLECTION CHECK

3.8 m

Longitudinal deflection (longitudinal) =

=

5/384XwXLg4/EXIxx

Allowable longitudinal deflection (Lxallowed)

=

L /325

Member is sustain againest longitudinal deflection

=

=

2.21 mm

12 mm

SAFE IN DEFLECTION

[ (fcb)n + (fy)n ] 1/n

SURGE TRUSS DESIGN =

ISA 75X75X6

Length of the member

=

1.50 m

Effective Length of the member in X -dir (Lx)

=

1.50 m

Effective Length of the member in X -dir (Ly)

=

1.50 m

Axial Load (P)

=

1.6 T

Moment of inertia (Ixx)

=

45.7 cm^4

Moment of inertia (Iyy)

=

73.1 cm^4

Section Modulus (Zxx)

=

8.4 cm^3

Section Modulus (Zyy)

=

0.0 cm^3

Total area of member (A)

=

8.66000 cm^2

Depth of Section (D)

=

75 mm

Width of Section (B)

=

75 mm

=

6.0 mm

=

7.0 mm

=

7.0 mm

Radius of gyration (r yy)

=

2.30 cm

Radius of gyration (r xx)

=

18400.00 cm

Thickness of Web (tw) Thickness of Top Flange (tf

top)

Thickness of Bottom Flange (tf

bottom)

Surge truss

1.50 m

Longitudinal member

Depth of Girder

Surge Boom

Inclined member Longitudinal member

1.50 m

Spacing of lateral support

Crane Girder

H301 Compressor Shelter Calculation Sheets

Project :

OPaL DFCU & AU

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

Calculation of Actual Stresses ac calculated = P/A

=

19 MPa

Slenderness Ratio in Major Direction lx = Lx/rxx [ (fcb)n + (fy)n ] 1/n Slenderness Ratio in Minor Direction ly = Ly/ryy [ (fcb)n + (fy)n ] 1/n Maximum Slenderness Ratio Lmax

=

0.01

=

65.22

=

65.22

Elastic Critical Stress in major Direction fccx = p2 E / lx2

=

29701806809.19 MPa

(IS:800-1984:5.1.1 E= 2x105 Mpa)

Elastic Critical Stress in major Direction fccy = p E / ly

=

464 MPa

(IS:800-1984:5.1.1 E= 2x105 Mpa)

Minimum Elastic Critical Stresses( fcc)

=

464 MPa

=

116.73 MPa

Inclined member

=

ISA 75X75X6

Length of the member

=

2.12 m

Effective Length of the Column in X -dir (Lx)

=

2.12 m

Effective Length of the Column in X -dir (Ly)

=

2.12 m

Axial Load (P)

=

1.6 T

Moment of inertia (Ixx)

=

45.7 cm^4

Moment of inertia (Iyy)

=

73.1 cm^4

Section Modulus (Zxx)

=

8.4 cm^3

Section Modulus (Zyy)

=

0.0 cm^3

Total area of member (A)

=

8.7 cm^2

Depth of Section (D)

=

75 mm

Width of Section (B)

=

75 mm

Thickness of Web (tw)

=

6.0 mm

=

7.0 mm

=

7.0 mm

Radius of gyration (r yy)

=

2.30 cm

Radius of gyration (r xx)

=

18400.00 cm

=

24.50 MPa

Slenderness Ratio in Major Direction lx = Lx/rxx [ (fcb)n + (fy)n ] 1/n Slenderness Ratio in Minor Direction ly = Ly/ryy [ (fcb)n + (fy)n ] 1/n Maximum Slenderness Ratio Lmax

=

0.01

=

92.23

=

92.23

Elastic Critical Stress in major Direction fccx = p2 E / lx2

=

14850903404.60 MPa

(IS:800-1984:5.1.1 E= 2x105 Mpa)

Elastic Critical Stress in major Direction fccy = p E / ly

=

232.05 MPa

(IS:800-1984:5.1.1 E= 2x105 Mpa)

Minimum Elastic Critical Stresses( fcc)

=

232.05 MPa

=

88.00 MPa

Calculation of Permissible Stresses

2

Permissible Axial Stress ac = 0.6

2

fcc . fy

SAFE IN SLENDER

OK

(IS:800-1984:5.1.1)

[ (fccy) + (fy) ] n

n

1/n

Thickness of Top Flange (tf

top)

Thickness of Bottom Flange (tf

bottom)

(Conservatively)

Calculation of Actual Stresses ac calculated = P/A Calculation of Permissible Stresses

2

Permissible Axial Stress ac = 0.6

fcc . fy [ (fccy) + (fy) ] n

1/n

n

2

SAFE IN SLENDER

OK

(IS:800-1984:5.1.1)

H301 Compressor Shelter Calculation Sheets

14.5 DESIGN OF CRANE GIRDER CRG -5 (Span 6.7m, 6.25m)

For built up

CRANE LOAD DATA:

Total Depth Plate Girder:

Project :

OPaL DFCU & AU

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

1

Crane capacity (A) :

60 T

Depth in Centre (mm)

2

Crane duty :

Electric over head cran

Size of Top Flange Plate:

1100

3

Crane span (L) :

19.5 m

Width of Flange (bf)top (mm) = 400 Flange Thickness (tf)top (mm) =25

4

No. of wheel per end carriage :

2 Nos

Size of Bottom Flange Plate:

5

C/C wheel distance (L1) :

4.5 m

Width of Flange (bf)bot. (mm) =400 Flange Thickness (tf)bot. (mm) =25

6

Overall buffer distance (L2) :

6.5 m

Size of Web Plate:

7

Weight of crane excluding crab (B) :

75.0 T

Web Thickness tw (mm) =

16

8

Weight of crab (C) :

24.0 T

Thickness of weld w (mm) =

6

9

Nearest approach of crab to crane rail (L3) :

1.2 m

10

Span of crane girder (Lg) :

6.70 m

Depth of Web

dw (mm) = 1050

For end bearing stiffener

11

Weight of girder including crane rail & walkway 500 Kg/m

Out stand width = 186 mm

12

Width of walkway :

1.50 m

Thickness =

13

Live load from walkway :

###

14

Steel yield stress (fy) :

250 MPa

15

Spacing of lateral support (bracing)

1.50 m

16

Axial force from structure (Fa)

3T

17

Bending moment in X direction (Mx)

0 T-m

18

Bending moment in Y direction (My)

0 T-m

Thickness =

19

Hook Type

Rope Type Hook

Spacing =

20 Crane Speed, V

Depth near support (mm800

25 mm

[Non confirmed against Table 3 of IS 2062 : 1999]

For intermediate stiffener From STAAD

Width =

80 m/min

186 mm 16 mm 750 mm Max Allowed Stiffener Spaci 1575.0 mm Min Allowed Stiffener Spacin 247.5 mm

SUMMARY OF DESIGN RESULTS

CRANE GIRDER OK

End Bearing stiffener

In Slenderness

Intermediate Stiffener

Stiffener Size is OK

Flange Plate Size OK

SAFE

In Bearing OK

Web Plate Thickness OK OK

Strength Ratio = 0.58

OK

Shear ratio = 0.52

OK

In Vertical Deflection

OK

In Lateral Deflection

x

In Slenderness OK In Axial Compression OK

Stiffner Required Stiffener Size is OK Stiffener Spacing is OK

Against Torsion OK

L3

R1

Trolley Trolley Bridge

L

R2

Hook

C

H301 Compressor Shelter Calculation Sheets

Project :

OPaL DFCU & AU

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

CRANE GIRDER DESIGN

CL Girder CL Crane

Maximum static wheel load at one end carriage (Dw1)

=

Corresponding static wheel load at other end carriage (Dw2)

B/4+(C+A)x(1-L3/L)x0.5

=

58.2 T

=

(A+B+C-2Dw1)x0.5

Dw1 =

L1 =

=

21.3 T

=

25% of Wheel load

Transverse load due to impact

=

5% of Wheel load

Longitudinal load due to impact

=

5% of Wheel load

5% of (C+A) X 0.5

=

2.1 T

Impact of vertical load on crane girder (fi)

=

25%

Span of crane girder (Lg)

=

6.70 m

Weight of girder including crane rail & walkway

=

500 Kg/m

Width of walkway

=

1.50 m

Live load from walkway

=

###

=

225 Kg/m

4.50 m

0.0 m 0.725 T/M

(IS 875/2 :6.3) Lg/2 - L1/4 =2.23m

4.5m

Lg = =

58.2 T

1.13m

L1/4 =

Vertical load due to impact

Crane surge load (transverse) per wheel, Csl

Dw1 =

58.2 T

6.70 m

WHEEL LOAD POSITION FOR MAX BENDING MOMENT FROM VERTICAL LOAD & SURGE LOAD

CALCULATION OF MAJOR AXIS BENDING MOMENT

Live load on crane girder Maximum bending moment from wheel load (Mmax) =

Bending moment from dead load & live load

58.2 T

58.2 T 4.5 m 0.725 T/M

(Dw1/Lg) (Lg - L1/2) . (Lg/2 - L1/4).(1+fi/100)

w1

Total UDL from dead load & live load

(IS 875/2 :6.3)

w1 . Lg /8 2

Total bending moment due to vertical load (Mx)

=

107.4T-m

=

725 Kg/m

=

4.1T-m

=

111.5T-m

107.4T-m

MAX BENDING MOMENT FROM VERTICAL LOAD & SURGE LOAD ON CRANE GIRDER

CALCULATION OF AXIAL COMPRESSION 2.1 T

Maximum bending moment from surge load

=

3.10T-m

Depth of girder

=

1.50 m

Axial compression (Pc)

=

2.07 T

Surge Boom

}=(Csl/Lg)(Lg-L1/2)(Lg/2-L1/4)

Spacing of lateral support (bracing) Ly = C/C wheel distance (L1) :

2.1 T

=

1.50 m

= and if Ly > L1

TOP VIEW OF SURGE GIRDER

4.50 m

My = (Csl/Ly)(Ly-L1/2)(Ly/2-L1/4)

Maximum local bending moment due to surge (My)

=

Crane Girder

(bf)top

(tf)top

y

0.79T-m

550

6

STRENGTH CHECKING

Mx

=

###

Bending moment due to surge

My

=

0.788T-m

Axial compression

Pc

=

2.069T-m

Section chosen for Crane girder

Builtup S/C

Moment of inertia (Ixx)

=

732267 cm^4

Moment of inertia (Iyy)

=

26703 cm^4

Section Modulus (Zxx)

=

13314 cm^3

tw To be taken by top flange plate only

(tf)bottom

y (bf)bottom

525

Bending moment due to vertical load

1100

dw

Design forces:

550

if Ly 2 and d1/tw is not> 1344/ √¯( fy )

(IS:800-1984:6.2.4.1)

THEN fcb shall be increased by 20%

1344/sqrt( fy)

=

85.00

Final fcbx Maximum Permissible Bending Compressive Stress bcx = 0.66 fcb . fy [ (fccy)n + (fy)n ]

=

10296.29 MPa

fy is taken as 250 N.mm2

=

164.36 MPa

(IS:800-1984:6.2.3 & n=1.4)

H301 Compressor Shelter Calculation Sheets

[ (fccy)n + (fy)n ]

=

165.00 MPa

Check For Combined Stresse(IS:800-1984:6.2.5) Cmx

=

0.85

(IS:800-1984:7.1.3)

Cmy

=

0.85

(IS:800-1984:7.1.3)

=

0.01 < 0.15 Use Equation 2 for Stress Ratio

bcy

0.66 fy

Project :

OPaL DFCU & AU

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

(IS:800-1984:6.2.5)

Combined Axial Compression & Bending Stress Ratio for Axial Compression =

sbcx cal

sac Cal + sac

sac Cal sac

+

+

sbcx

Cmx . sbcx cal

1-

sac cal 0.6 fccx

sbcy cal

>

1

----- Equation -1

sbcy

Cmy . sbcy cal

+

----- Equation -2

sbcx 1 - sac cal sbcy 0.6 fccy

Combined Stress Ratio

=

0.584 OK

CL Girder Dw1 = Lg - L1 =2.20 m UDL =

L1 =

CL Crane Dw1 =

58.2 T

58.2 T

4.50 m

0.725 T/M

Check For Shear Stress: Shear force =(Dw1 (Lg - L1)/Lg) + Dw1 + (UDL x Lg/2)

=

79.69 T

Over all Depth near support, D2 =

=

800 mm

Clear depth of web near support d2 = D2 - 2 x Tf =

=

750.0 mm

Thickness of Web tw

=

16 mm

=

128.0 cm^2

=

Shear Force/Area

=

61.08 MPa

=

Area = Thickness of Web x Overall Depth

va,cal

Calculated shear stress

Allowable Shear Stress :-

Lg =

WHEEL LOAD POSITION FOR MAX SHEAR

(IS:800-1984:6.2.3 & n=1.4)

For Unstiffened Web = 0.4 Fy

=

100 MPa

if Ss < d2,tva =

fy C tw

0.4 fy 1.3 -

1 4000 1+ 2

=

117.6 MPa

=

117.6 MPa

C 2 d2

For Stiffened Web fy

if Ss > d2,tva =

Where,

0.4 fy 1.3 -

Vertical stiffeners spacing Ss750 mm

This is the case o StiffenedWeb

With Ss > d2

6.70 m

d2 tw

1 d2 4000 1+ 2 C

2

H301 Compressor Shelter Calculation Sheets

Hence Permissible Shear Stress

tv =117.6 MPa

Actual Shear / Permissible Shear =

Project :

OPaL DFCU & AU

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

(IS 800: 6.4.2 (b))

0.52

OK in Shear

DEFLECTION CHECK Longitudinal deflection (longitudinal) =

=

Allowable longitudinal deflection (Lxallowed)

2x

Dw1 x Lg3

3a

4a3

48 EIXX

Lg

L g3

5 x udl x L4

+

=

2.33 mm

=

L /1000 for capacity over 50 tons

384 EI

Dw1 =

6.7 mm

=

2x

=

0.03 mm

=

L /1000 for capacity over 50 tons

Member is sustain againest longitudinal deflection Lateral deflection (lateral) =

Allowable lateral deflection (Lyallowed)

OK

Csl x Lg3 48 EIYY

Dw1 =

58.2 T

a = 1100 mm

L /750 for capacity less than 50 tons =

CL

4500 mm

58.2 T

a=

1100 mm

In Vertical Deflection 3a Ly

UDL =

0.725 T/M

4a3 Ly3 1100m 6700 mm

L /750 for capacity less than 50 tons =

1.5 mm

OK

Horizontal shear per unit length = V x A xY/Ixx

=

571.4 N/m

Thickness of weld (w)

=

6 mm

Weld strength per unit length = 2x108X0.707X0.8Xtw

=

733.0 N/m

In Lateral Deflection

WHEEL LOAD POSITION FOR MAX DEFLECTION

WELD DESIGN

Weld size is OK

END BEARING STIFFENER DESIGN =

79.69 T

Allowable bearing stress (0.75 X fy)

=

187.50 MPa

Thickness of Web of Beam (tw)

=

16 mm

Thickness of end bearing stiffner(St)

=

25 mm

Outstand width of end bearing stiffener Swo

=

186 mm

=

300 mm

=

388 mm

= Sw X St

=

9700 mm^2

Effective length of web in load bearing (Weff) = 20 X tw

=

320 mm

Effective cross section of stiffener (Sef= Sa + tw X Weff

=

14820 mm^2

Bearing stress coming over the stiffeners (bcal) =R/Seff

=

54 MPa

Effective length of stiffeners (Leff)

=

525.0 mm

Moment of inertia of stiffeners (SI xx)

=

143913446 mm^4

Radius of gyration of stiffeners (Sryy)

=

99 mm

=

51.96

Elastic Critical Stress in major Direction fccy = p E / ly

=

731.08 MPa

Minimum Elastic Critical Stresses( Sfcc)

=

731.08 MPa

Sfcc . fy Permissible Axial Stress Ssac = 0.6 [ (Sfccy)n + (fy)n ]

=

129.94 MPa

=

0.41

Minimum of (256 St /√fy) and 12.St

Width of end bearing stiffener (Sw) Area of end bearing stiffener (Sa)

=0.7 X d2

[ (fcb)n +Ratio (fy)n =] 1/n Slenderness Max of Leff/Sryy& d2/tX√ 3 2

Ratio of Axial Compression =

1/n

2

Total load on supports (W)

=

(D3 T/250 ) X (R/W)

=

Stiffener Size is OK

(IS:800-1984:6.7.4.4)

Cx = 72.1 mm Bearing Stiffener

L of support OK In Bearing

320 mm

Beam Web

Cx = 72.1 mm

OK In Slenderness

C

(IS:800-1984:5.1.1 E= 2x105 Mpa)

(IS:800-1984:5.1.1) & n = 1.4 OK In Axial Compression

116.3 T 91181096 mm^4

388 mm

Maximum end reaction (R )

(IS:800-1984:6.7.5.3.g) OK Against Torsion

D=

Overall Depth of Girder

H301 Compressor Shelter Calculation Sheets

Project :

OPaL DFCU & AU

Doc No :

6987-LEPC1-SE-11-GC-CS 3701

T=

Maximum Thickn of compres. Flange

R=

Reaction of the Beam at support

W=

Total load on the girder b/w support

INTERMEDIATE STIFFENERS : Stiffner Required Clear depth of web d1 =

=

1050.0 mm

Clear depth of web d2 =

=

750.0 mm

Unstiffened Web Min( 256 tf/√fy, 20tf)

=

405 mm

=

500 mm

Flange criteria : 20 tf

Stiffened Web,

This is the case o StiffenedWeb

Web criteria :

=

Flange projection beyond web =

Min( 800 T1/√fy, 50T1) =800 mm

Minimum thickness of web for >25T crane girde Allowable unstiffen web criteria :


1344/ √¯( fy )

(IS:800-1984:6.2.4.1)

THEN fcb shall be increased by 20%

1344/sqrt( fy)

=

85.00

fy is taken as 250 N.mm2

Final fcbx

=

3946 MPa

=

163 MPa

(IS:800-1984:6.2.3 & n=1.4)

=

165 MPa

(IS:800-1984:6.2.5)

Cmx

=

0.85

(IS:800-1984:7.1.

Cmy

=

0.85

(IS:800-1984:7.1.

Maximum Permissible Bending Compressive Stress bcx = 0.66

fcb . fy [ (fccy)n + (fy)n ]

bcy Check For Combined Stresse(IS:800-1984:6.2.5)

Combined Axial Compression & Bending Cmy . sbcy cal Cmx . sbcx cal sac cal sac + sac cal s + 1 - sac cal 1sbcy bcx 0.6 fccx

=

0.203

0.6 fccy

11.683/140.809 + 19.228/160.254 + 0/163.609

=

0.203

0.203