1 - Metalurgia de La Soldadura

[Tecnología de la Soldadura] U.N.J.F.S.C. - HUACHO METALURGIA DE LA SOLDADURA La Metalurgia Física es la ciencia que

Views 97 Downloads 0 File size 545KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

[Tecnología de la Soldadura]

U.N.J.F.S.C. - HUACHO

METALURGIA DE LA SOLDADURA

La Metalurgia Física es la ciencia que trata sobre la estructura interna de los metales y las relaciones entre las estructuras y las propiedades que exhiben los metales. Cuando se refiere a la metalurgia de la soldadura, concierne a los distintos cambios que ocurren en los metales cuando se unen por soldadura, especialmente aquellos que afectan las propiedades mecánicas. El entender las bases de la metalurgia de la soldadura ayuda frecuentemente a muchas funciones de inspección. Una razón para esto es que las propiedades mecánicas de los metales, tales como resistencia, dureza, ductilidad, tenacidad, resistencia a la fatiga, y resistencia a la abrasión son todas afectadas por las transformaciones metalúrgicas como resultado de la soldadura. Estas propiedades son afectadas por distintos factores metalúrgicos, incluyendo el agregado de aleantes, tratamientos térmicos y tratamientos mecánicos. El tener una mejor comprensión de estas propiedades se tendrá una mejor percepción sobre la razón de la necesidad de ciertas operaciones de fabricación. Algunos requerimientos de fabricación, tales como el precalentamiento, post calentamiento, control de temperatura entre pasadas, control de aporte de calor, granallado (peening), alivio térmico de tensiones, y otros tratamientos térmicos pueden producir algún tipo de cambio metalúrgico el cual, afectará las propiedades mecánicas del metal. La metalurgia de la soldadura incluye numerosas facetas, limitaremos la cobertura a los cambios más importantes que puedan ocurrir durante la operación de soldadura. Estos cambios pueden ser resumidos y ser divididos en dos categorías. 

La primera categoría incluye aquellos cambios que ocurren en un metal cuando se calienta desde la temperatura ambiente hasta una temperatura mayor.



La segunda categoría es el efecto en las propiedades del metal versus la velocidad a la ocurren dichos cambios de temperatura. Más específicamente, nos interesa que tan rápido se enfría un metal caliente hasta la temperatura ambiente; esto es la velocidad de enfriamiento del metal.

Debe notarse que la soldadura presenta problemas muy diferentes debido a que la operación de soldadura tiende a calentar áreas muy localizadas del metal. En consecuencia, estas velocidades de calentamiento/enfriamiento no uniformes crean la necesidad ce ciertas consideraciones adicionales. 1

Metalurgia de la Soldadura

Ing. Luis E. LUNA QUITO

ESTRUCTURA BASICA DE LOS METALES El entendimiento de las propiedades metalúrgicas de los metales, es necesario para comenzar describiendo algunas propiedades de las partículas que comprenden todas las formas de materia. Estas partículas básicas que se combinan para formar un material sólido, líquido o gaseoso, se conocen como átomos. Una de las propiedades importantes de estos átomos, es que, en ciertos rangos de temperatura, tienden a formar sustancias con formas específicas. Esto es debido a hay fuerzas definidas que actúan entre estos átomos individuales cuando están ubicados dentro de cierta distancia uno de otro. Estas fuerzas tienden tanto a rechazar, o a atraer, los átomos uno hacia el otro, mientras que al mismo tiempo otro átomo es expulsado o rechazado. Los átomos no están estacionarios están. En realidad, tienden a vibrar alrededor de una posición de equilibrio para mantener un espacio balanceado. A una temperatura dada se mantendrán con una separación equilibrada para dicha temperatura particular. Cuando hay un balance entre las fuerzas de repulsión y de atracción, decimos que la energía interna del metal está en un mínimo. Cualquier intento de forzar los átomos más cerca uno de otro tendrá la oposición de fuerzas repulsivas que se incrementan en la medida que son llevados más cerca. Este comportamiento se evidencia por el hecho que los metales muestran resistencias a la compresión excesivamente altas. Igualmente, cualquier intento por de separar los átomos, dará como resultado una fuerza opositora de atracción. Estas fuerzas de atracción, sin embargo, tienden a decrecer en la medida que los átomos son llevados muy lejos. Los átomos de los metales exhiben una separación muy específica a una temperatura dada, o energía interna. Debido a que el calor es una forma de energía, la energía interna del metal se incrementa cuando aumenta la temperatura. Esta energía adicional tiende a hacer que los átomos vibren más, lo que incrementa la distancia entre los átomos. Podemos observar el resultado de dicha energía adicional, visualmente, debido a que el tamaño total de la pieza de metal se incrementará en la medida que se separan los átomos individualmente. Inversamente, cualquier disminución en la temperatura del metal hará que los átomos se juntan; en cambio, se observa como contracción del metal. A medida que se agrega calor adicional al metal, la vibración de los átomos se continúa incrementando causando que se aumente el espacio y, que en consecuencia se expanda 2

[Tecnología de la Soldadura]

U.N.J.F.S.C. - HUACHO

el metal. Esto sucederá hasta un cierto punto en que la distancia entre los átomos es tan grande que ya no se atraen en forma suficiente para exhibir una estructura específica. El metal sólido se transforma en líquido. La temperatura asociado con este cambio se conoce como punto de fusión. Los distintos procesos de soldadura introducen calor dentro del metal; este calentamiento provocará una expansión del metal. Si estuviéramos considerando un calentamiento uniforme del metal, podríamos medir el cambio de longitud, o de tamaño, de una pieza de metal en la medida que esta se calienta. Cada aleación de metal tiene asociada consigo un coeficiente específico de dilatación térmica. Esto es, hay un cierto valor numérico que describe cuanto se dilatará un metal para un incremento de temperatura dado. Con la soldadura, sin embargo, el calor no se aplica en forma uniforme. Esto es, parte del metal se lleva hasta una temperatura muy alta, mientras que el metal adyacente a la zona de soldadura se mantiene a una temperatura menor. Esto provoca diferentes cantidades de expansión del metal en distintas ubicaciones relativas a la zona de soldadura. La parte del metal que se calienta en forma directa, tenderá a dilatarse, y esta dilatación es resistida por el metal que esta a una temperatura menor. a. Barra recta se calienta de un solo lado por una soldadura de arco. b. Se establece el arco y comienza a calentar la barra bajo la influencia del calor. c. La parte que se calienta se expande debido a que está parcialmente embridado por la parte de la barra que no se calentó, la barra tiende a flexionarse en un arco en cada extremo fuera de la fuente de calor. Debido a que la parte caliente es más débil (parte de esta en realidad está líquida y es muy débil) no tiene éxito para forzar a la barra a flexionarse demasiado. La parte caliente está menos restringida en las direcciones laterales, entonces tiende a ensancharse en el lado donde se aplicó el calor. d. Cuando se extingue el arco la porción caliente y fundida comienza a enfriarse y contraerse. El calor siempre fluye desde el área caliente hacia el área fría, entonces durante el enfriamiento, el calor fluye dentro del área previamente fría calentándola. 3

Metalurgia de la Soldadura

Ing. Luis E. LUNA QUITO

e. Ahora, en la medida que la parte dilatada comienza a enfriarse, se contrae, revirtiendo la dirección de las fuerzas de deformación que finalmente causan que la longitud de la zona superior de la barra se acorte y los extremos de la barra se levanten dándole a la barra un perfil cóncavo cuando se enfría. f. Entonces, cuando aplicamos el calor a una pieza en manera no uniforme, como en el caso para la soldadura, el resultado es un cambio dimensional por los esfuerzos térmicos desarrollados causando que la parte se distorsione o encorve cuando se enfría. La Figura f representa la barra resolidificada con un cierto nivel de tensiones residuales que permanecen en ella, denotada por la representación de un resorte.

ESTRUCTURAS CRISTALINAS En un metal sólido, los átomos tienden ellos mismos a alinearse en líneas ordenadas, filas, y capas para formar estructuras cristalinas tridimensionales.

Por definición, los metales son cristalinos. Cuando un metal solidifica, normalmente lo hace en una estructura cristalina. El número más pequeño de átomos que puede describir un arreglo ordenado se conoce como “celda unitaria”. Es importante darse cuenta que las celdas unitarias no existen como unidades independientes, sino que comparten átomos con las celdas unitarias vecinas en una matriz tridimensional. Las estructuras cristalinas más comunes, o fases, son cúbica de cuerpo centrado (BCC), cúbica de caras centradas (FCC), tetragonal centrada en el cuerpo (BCT), y hexagonal compacta (HCP).

4

[Tecnología de la Soldadura]

U.N.J.F.S.C. - HUACHO

Algunos metales tales como el hierro, existen como una fase sólida a temperatura ambiente y como otra fase sólida a temperaturas elevadas. Este cambio con la temperatura de una fase a otra en un metal sólido se conoce como transformación alotrópica, o transformación en fase sólida.

SOLIDIFICACION DE LOS METALES Un metal solidifica en una estructura cristalina por un proceso conocido como nucleación y crecimiento. En el enfriamiento, grupos de átomos se nuclean (solidifican) sobre impurezas o en lugares del límite líquido - sólido, tales como la interface entre el metal de soldadura fundido y una zona más fría, sin fundir, la zona afectada por el calor. Tales grupos se llaman núcleos y aparecen en gran número. En el metal de soldadura, los núcleos tienden a fijarse a si mismos a granos existentes de la zona afectada por el calor en la interface de soldadura. Los átomos continúan solidificándose y se fijan a los núcleos. Cada núcleo crece a lo largo de una dirección preferencial, con los átomos que se alinean en la forma descrita mediante la celda unitaria apropiada para formar un grano de forma irregular, o cristal.

La Figura muestra como se forman los granos de metal de soldadura a medida que este metal solidifica. a. Se comienzan a formar en la interface de soldadura. b. Granos sólidos formados cuando crecen dichos núcleos originales. Debido a que dichos núcleos tienen distintas orientaciones, cuando los granos adyacentes crecen juntos se forman los bordes de grano. c. La solidificación completa del metal de soldadura. Los bordes de grano se consideran como discontinuidades, debido a que representan una interrupción en el arreglo uniforme de los átomos. 5

Metalurgia de la Soldadura

Ing. Luis E. LUNA QUITO

Las propiedades mecánicas pueden depender del tamaño de grano del metal. Un metal que muestra tamaño de grano pequeño tendrá mejor resistencia a la tracción a temperatura ambiente, debido a que los bordes de grano tienden a inhibir la deformación de los átomos individualmente cuando el metal se encuentra bajo tensión. Sin embargo, a temperaturas elevadas, los átomos de los bordes se pueden mover fácilmente y desplazarse, y así reducir la resistencia a altas temperaturas. Por esto los metales de grano fino, se prefieren para servicio a temperatura ambiente o baja. Los metales de grano fino generalmente dan una mejor ductilidad, tenacidad a la entalla, y propiedades de fatiga. Los materiales con grano grande son preferibles para el servicio a elevadas temperaturas. Como una revisión rápida los metales son estructuras cristalinas formadas por átomos en matrices ordenadas. Estas matrices ordenadas, o arreglo, se conocen como fase y se describen por una celda unitaria. Los metales solidifican a partir de muchos lugares a la vez y crecen en direcciones preferenciales para formar granos o cristales. La unión entre granos individuales se conoce como borde de grano. El tamaño de grano dictará la cantidad de área de borde de grano presente en un metal que, en cambio, determina en cierto grado las propiedades mecánicas del metal.

ALEANTES Las propiedades de los elementos metálicos pueden ser alteradas por el agregado de otros elementos, que pueden ser o no metálicos. Tal técnica se conoce como aleación. El metal que resulta de esta combinación se conoce como aleación. Por ejemplo, se agrega el elemento metálico zinc al metal cobre para formar la aleación latón. El elemento no metálico carbón es uno de los elementos aleantes agregados al hierro para formar la aleación acero. Los elementos aleantes son incluidos en la red del metal base en distintas formas que dependen en los tamaños relativos de los átomos. Los átomos más pequeños, tales como el carbono, nitrógeno e hidrógeno, tienden a ocupar lugares entre los átomos que forman la estructura de la red del metal base. Estas se conocen como aleaciones intersticiales.

6

[Tecnología de la Soldadura]

U.N.J.F.S.C. - HUACHO

Por ejemplo, pequeñas cantidades de carbón pueden ocupar sitios intersticiales entre los átomos de hierro en el acero. Los elementos aleantes con átomos de tamaños cercanos al de aquel del metal base tienden a ocupar lugares sustitucionales. Esto es, reemplazan uno de los átomos del metal base en la estructura de la red. Esta se llama aleación sustitucional.

Los ejemplos de esto son tanto el cobre en el níquel y el níquel en cobre. Como la presencia de los bordes de grano, el agregado de elementos aleantes produce irregularidades en la estructura cristalina. La presencia de elementos aleantes ejerce distintos grados de atracción y repulsión para dar un arreglo de la estructura cristalina que de alguna manera esta distorsionada. Esto tiende a incrementar la energía interna del metal y puede dar como resultado un incremento de las propiedades mecánicas. Casi todos los metales de ingeniería son aleaciones que consisten en un elemento principal y cantidades variables de uno o más elementos adicionales. Si existe más de una fase, cada una tendrá su propia estructura cristalina característica.

7

Metalurgia de la Soldadura

Ing. Luis E. LUNA QUITO

CONSIDERACIONES METALURGICAS PARA LA SOLDADURA Debido a que la soldadura puede producir cambios significativos tanto en la temperatura del metal como en la velocidad de enfriamiento desde esa temperatura elevada, es importante entender que cambios metalúrgicos pueden resultar de la operación de soldadura.

La Figura ilustra la relación entre las temperaturas pico exhibidas en las distintas regiones de la zona de soldadura y el diagrama de equilibrio hierro – cementita. Como se puede ver, dependiendo de la ubicación del punto dentro o cercano a la soldadura, pueden producirse varias estructuras metalúrgicas. Dentro de la soldadura, la región de temperaturas más altas, el metal puede enfriarse desde el estado líquido a través de distintas regiones de fase mostradas anteriormente. Adyacente a la soldadura, en la zona afectada por el calor (ZAC), no se llega a la fusión pero se alcanzan temperatura extremadamente altas. La ZAC es simplemente la región del metal base adyacente al metal de soldadura que ha sido elevado a temperaturas justo por debajo de la temperatura de transformación al punto de fusión del acero. Las velocidades de enfriamiento de esta zona afectada por el calor son de las más rápidas debido al fenómeno conocido como temple por contacto. 8

[Tecnología de la Soldadura]

U.N.J.F.S.C. - HUACHO

Los cambios en las condiciones de soldadura pueden tener un efecto muy significativo en la formación de las distintas fases, porque las condiciones de soldadura tienen un efecto muy importante en la velocidad de enfriamiento resultante para la soldadura. Algunas de las condiciones de soldadura que pueden producir cambios incluyen la cantidad de aporte de calor, el uso de precalentamiento, el carbono equivalente del metal base, y el espesor de metal base. A medida que se incrementa el aporte de calor, decrece la velocidad de enfriamiento. El uso de electrodos de soldadura de menor diámetro, menores corrientes de soldadura, y velocidades de avance mayores tenderá a disminuir el aporte de calor, y entonces incrementar la velocidad de enfriamiento. Para cualquier proceso de soldadura, puede calcularse fácilmente el aporte de calor. Sólo depende de la corriente de soldadura aparente, voltaje del arco y velocidad de avance, según se mide a lo largo del eje longitudinal de la junta de soldadura. La fórmula para el aporte de calor es:

Para esta fórmula, el aporte de calor se expresa en términos de joules por pulgada, y la velocidad de avance en pulgadas por minuto. Los Joules también se pueden expresar como wattsegundo. Entonces el 60 que aparece en el numerador de la fórmula simplemente convierte los minutos de la velocidad de avance en segundos. La finalidad de registrar el aporte de calor de la soldadura es para controlar las propiedades microestructurales resultantes que aparecen en la zona afectada por el calor. Otro punto que tiene un efecto significativo en la microestructura resultante es el uso de precalentamiento. En general, el uso de precalentamiento tenderá a reducir la velocidad de enfriamiento en la soldadura y en la ZAC dando una mejora en la ductilidad. Cuando no se usa el precalentamiento, la zona afectada por el calor es relativamente angosta y muestra su mayor dureza. En algunos casos, dependiendo del contenido de aleantes, puede formarse martensita. Sin embargo, cuando se incluye el precalentamiento, la zona afectada por el calor es más ancha y la dureza resultante es significativamente menor debido a una velocidad de 9

Metalurgia de la Soldadura

Ing. Luis E. LUNA QUITO

enfriamiento menor que permite la formación de perlita, ferrita y posiblemente bainita, en lugar de martensita. Otro factor importante para la soldadura de acero es el carbono equivalente. Debido a que el carbono tiene el efecto más pronunciado en la templabilidad del acero, nos interesa cuánto de este se encuentra presente en una aleación particular. Cuanto mayor contenido de carbono, mayor templabilidad del acero. Otros elementos de aleación también promoverán la templabilidad, en distinto grado. Un contenido de carbono equivalente es entonces una expresión empírica que se usa para determinar como los efectos combinados de los distintos aleantes se encuentran presentes en la templabilidad del acero.

Está fórmula está dirigida a aceros al carbono y aleados que no contienen más que 0,5% Carbono, 1.5% de Manganeso, 3.5% Níquel, 1% de Cromo, 1% de Cobre, y 0.5% de Molibdeno. Una vez que se determinó un contenido de carbono, podemos predecir el rango aproximado de precalentamiento que será necesario para los mejores resultados. La tabla debajo resume algunas de las temperaturas de precalentamiento sugeridas para distintos rangos de carbono equivalente. CARBONO EQUIVALENTE

Tº DE PRECALENTAMIENTO SUGERIDA

Hasta 0.45 0.45 a 0.60 Mas de 0.60

Opcional 94 ºC a 205 ºC 205 ºC a 372 ºC

El espesor del metal base también tiene un efecto en la velocidad de enfriamiento; generalmente las soldaduras en metal base de mayor espesor se enfrían más rápidamente que las soldaduras en secciones delgadas. La mayor capacidad calorífica, o disipación del calor, asociada con las secciones de mayor espesor producen un enfriamiento más veloz en el cordón de soldadura. Entonces cuando se sueldan secciones de mayor espesor, pueden especificarse distintos requerimientos de soldadura, tales como precalentamiento, para reducir la velocidad de enfriamiento con el objeto de mejorar las propiedades mecánicas resultantes de la zona afectada por el calor. Entonces, cuando se sueldan secciones de mayor espesor, normalmente se incrementan los requerimientos de precalentamiento y entre pasadas para ayudar a disminuir la velocidad de enfriamiento resultante. 10