Viscosidad FINAL

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA INDUS

Views 68 Downloads 2 File size 267KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS

ESCUELA PROFESIONAL DE INGENIERIA INDUSTRIAL

“Año de la consolidación del Mar de Grau” PRACTICA DE LABORATORIO N°1 CURSO: Físico-Química TEMA:

“Viscosidad de líquidos”

DOCENTE DEL CURSO: Camassi Pariona, Oswaldo INTEGRANTES:    

Cáceres Valle Ayrton Curi Segovia Nick Luis Elguera Bernal Edu Pariona Velasquez Estefany

Callao, 13 de Enero del 2016

INTRODUCCIÓN

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

En el presente informe determinaremos la viscosidad de líquidos por medio del flujo capilar. Para esto definiremos primero que es la viscosidad y su importancia para los fluidos, ya que debe ser considerada en muchas de las fases del trabajo de química y física. Por ejemplo en el diseño de equipos químicos, tales como, bombas y tuberías

La viscosidad de un líquido puede determinarse midiendo su velocidad de flujo por un tubo capilar. La determinación de la viscosidad absoluta es dificultosa, en cambio la relación de viscosidad de dos líquidos, puede determinarse fácilmente con un viscosímetro.

El conocimiento de la viscosidad se emplea mucho en la industria. Por ejemplo en el diseño de equipos químicos, tales como, bombas y tuberías

Ing. Oswaldo Camasi Pariona 2

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

OBJETIVOS

 Conocer y comprender el concepto de viscosidad como propiedad de todo fluido

 Determinación de la viscosidad de líquidos tolueno y glicerina por medio del flujo capilar.  Determinación de la energía de flujo y la entropía de flujo, a partir de las mediciones de viscosidad a diferentes temperaturas.

Ing. Oswaldo Camasi Pariona 3

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

FUNDAMENTO TEORICO La viscosidad es una propiedad física muy importante de los fluidos, que debe ser considerada en muchas de las fases del trabajo de química y física. Por ejemplo en el diseño de equipos químicos, tales como, bombas y tuberías; tanto en los tamaños como en los respectivos costos dependen en gran parte de la viscosidad del fluido que ha de transportase. VISCOSIDAD Se define como la resistencia que al flujo de una capa de fluido ejercen las capas adyacentes y el coeficiente de viscosidad se define como la fuerza por la unidad de superficie, necesario para mantener una gradiente de velocidad unitaria, entre dos planos unitarios que entre si distan 1 cm.

fx=−n

( dVx dz )

De la ec. (1), en el sistema c.g.s. la unidades son: dinc-seg/cm o gr-masa/cm-seg poise. La viscosidad de un líquido puede determinarse midiendo su velocidad de flujo por un tubo capilar. El volumen (V) de un líquido que fluye a través de un tubo capilar de radio (r), durante un tiempo ( Ɵ ), bajo una presión constante (P), viene dado por la ecuación de Poiseuille.

V=

πPθr 8 ln

4

Donde, L: designa la longitud del tubo capilar n: coeficiente de viscosidad Ing. Oswaldo Camasi Pariona 4

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

Si las dimensiones del capilar y el volumen del líquido son constante, la ecuación anterior se reduce a: n=kPθ

π r4 k= 8 VL

Donde,

La determinación de la viscosidad absoluta es dificultosa, en cambio la relación de viscosidad de dos líquidos, puede determinarse fácilmente con un viscosímetro. La presión (P) en virtud de la cual se desplaza el líquido de densidad (ρ) a lo largo del capilar del viscosímetro es hρg donde h: es la diferencia de altura entre las señales del instrumento. g: aceleración de la gravedad. Aunque h, va variando en el curso de la experiencia, los valores inicial y final son siempre constantes por tanto, P es proporcional a la densidad. La relación entre las viscosidades n 0 y n1 de dos líquidos; de referencia y problema respectivamente, de densidades ρ0 y ρ1

n 0 ρ0 θ0 = n 1 ρ 1 θ1

Donde;

θ 0 y θ 1 representan los tiempos de flujo.

Ing. Oswaldo Camasi Pariona 5

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

La variación de la viscosidad de un líquido con la temperatura. Esta dada por la ecuación: E

n=A e RT

Tomamos logaritmos: ln ( n ) =

E +ln ⁡( A) RT

Donde, A: es una constante E: energía de flujo ( ∆ G) R: constante universal de los gases

[ ]

(ρn ) = ∆ H R 1 ∂( ) T

∂ ln ⁡

∆ S=

∆ H −∆ G T

Ing. Oswaldo Camasi Pariona 6

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

MATERIALES

1.- Un viscosímetro de Otswald 2.- Cronómetro 3.- Pipeta de 10 ml. graduada 4.- Tubo de goma y bombilla 5.- Termostato 6.- Soporte y pinzas

REACTIVOS

1.- Aceite lubricante 2.- Tolueno

Ing. Oswaldo Camasi Pariona 7

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

PROCEDIMIENTO EXPERIMENTAL

Lavar el viscosímetro con mezcla sulfocrónica caliente, luego enjuagar con agua destilada, seguido por cetona y seguidamente secado por aspiración de aire seco a través de él. El viscosímetro es colocado verticalmente en el baño termostático a la temperatura de 25 °C con la ayuda de la pipeta se introduce un volumen conocido de agua destilada, dejando luego que alcance la temperara de equilibrio del baño, por succión a través de un tubo de goma, acoplando el viscosímetro, se eleva el líquido en la en la rama capilar hasta que el menisco rebase la marca “a”. Dejando entonces fluir el líquido se anota el tiempo que tarda el menisco en atravesar sucesivamente. Las señales a y b. La experiencia debe repetirse empleando el mismo volumen de benceno, luego aceite lubricante. La experiencia con cada un de los líquidos debe realizarse a las temperaturas de 25 °C, 30°C, 35 °C Y 40°C.

Ing. Oswaldo Camasi Pariona 8

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

CALCULOS Y RESULTADOS



T (°C)

1 2 3

25 30 35



V (ml)

1 2 3

50 50 50

m picnómetro m picnómetro + m picnómetro vacío (gr) m tolueno (gr) + m glicerina (gr) 30.922 30.922 30.922 θ H2O

(seg)

3.86 3.66 3.40

73.00814 73.90385 73.62080 θ toleno

(seg)

4.166 3.800 3.400

92.2418 92.2108 91.9615 θ glice .

(seg)

180.100 137.533 96.730

TOLUENO Ing. Oswaldo Camasi Pariona 9

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

1.- DETERMINACION DE LA DENSIDAD DEL TOLUENO

ρTOLUENO =

( m picnómetro + m tolueno ) – m picnómetro vacío V

1° ρTOLUENO =

(73.00814) – 30.922 50

= 0.8417228 gr/ml

2° ρTOLUENO =

(73.90385) – 30.922 50

= 0.8596370

gr/ml

= 0.8539760

gr/ml

(73.62080) – 30.922

3° ρTOLUENO = 50



ρTOLUENO (gr/ml)

T (°C)

T (°K)

1/T (°K)

1 2 3

0.8417228 0.8596370 0.8539760

25 30 35

298.15 303.15 308.15

3.354016435x10-3 3.298697015x10-3 3.245172805x10-3

DATOS: John Perry



T (°C)

nH2O (cP)

ρH2O (gr/ml)

1 2 3

25 30 35

0.8950 0.8007 0.7225

0.997100 0.995678 0.994061

2.- VISCOSIDAD A DIFERENTES TEMPERATURA

Ing. Oswaldo Camasi Pariona 10

UNIVERSIDAD NACIONAL DEL CALLAO n tolueno =







Laboratorio: FisicoQuimica

n H2O ρ tolueno θ Tolueno ρ H2O θ H2O

n tolueno =

(0.8950)(0.8417228)(4.166) ( 0.997100 ) (3.86)

= 0.8154275327

cP

n tolueno =

(0.8007)(0.8596370)(3.800) ( 0.995678 ) (3.66)

= 0.7177422773

cP

n tolueno =

(0.7225)(0.8539760)(3.400) ( 0.994061 ) (3.40)

= 0.6206839017

cP

3.- HALLAR E Y A PARA EL TOLUENO ln ( n ) =

E 1 + ln (A) R T

( )

Donde; R = 1.98588

N° 1 2

molg k} cal IT ¿

n tolueno (cP)

0.8154275327 0.7177422773

ln(n)

ln(n/ ρ )

-0.2040427233 -0.3316447196

-0.03173818819 -0.18039964780

Ing. Oswaldo Camasi Pariona 11

UNIVERSIDAD NACIONAL DEL CALLAO 3

0.6206839017

Laboratorio: FisicoQuimica

-0.4769333416

-0.31908115300

GRAFICA ln(n) vs 1/T

De la gráfica hallamos

ln (A)

ln (A) = 7.94

⇒A=¿ 3.5620647x10-4

PENDIENTE DE ln(n) vs 1/T Ing. Oswaldo Camasi Pariona 12

UNIVERSIDAD NACIONAL DEL CALLAO m =

Quimica

E R

E = mR

entonces:

m=

Laboratorio: Fisico-

( -0.2040427233 - ( -0.3316447196 ) ) = 2306.640169 ( 3.354016435x10-3 - 3.298697015x10 -3 )

HALLAMOS E ( ∆ G ¿ 2306.640169)(1.98588) = 4580.710579 E=¿

4.- ENTALPIA ∆H (cal)

[ ]

(ρn ) = ∆ H R 1 ∂( ) T

∂ ln ⁡

Ing. Oswaldo Camasi Pariona 13

UNIVERSIDAD NACIONAL DEL CALLAO GRÁFICA

(ρn )

ln ⁡

Laboratorio: FisicoQuimica

VS 1/T

Ing. Oswaldo Camasi Pariona 14

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

PENDIENTE m =

m=

∆H R

⇒∆ H = mR

( -0.03173818819 - (−0.18039964780 ) ) = 2687.328602 ( 3.354016435x10 -3 - 3.298697015x10 -3 )

HALLAMOS (

∆H¿ ∆ H=(2687.328602)(1.98588) = 5336.712124 cal

5.- ENTROPIA ∆ S

∆ S=

∆ H −∆ G T

∆S=

5336.712124 - 4580.710579 (298.15)

= 2.535641607

∆S=

5336.712124 - 4580.710579 (303.15)

= 2.493820040

Ing. Oswaldo Camasi Pariona 15

UNIVERSIDAD NACIONAL DEL CALLAO ∆S=

5336.712124 - 4580.710579 (308.15)

Laboratorio: FisicoQuimica

= 2.453355655

GLICERINA

1.- DETERMINACION DE LA DENSIDAD DE LA GLICERINA

ρGLICERINA =

( m picnómetro + m glicerina ) – m picnómetro vacío V

(92.2418) – 30.922

1° ρGLICERINA = 50

(92.2108) – 30.922

2° ρGLICERINA = 50 3° ρGLICERINA =

(91.9615) – 30.922 50

= 1.226396 gr/ml = 1.225776

gr/ml

= 1.220790

gr/ml



ρGLICERINA (gr/ml)

T (°C)

T (°K)

1/T (°K)

1 2 3

1.226396 1.225776 1.220790

25 30 35

298.15 303.15 308.15

3.354016435x10-3 3.298697015x10-3 3.245172805x10-3

DATOS: John Perry



T (°C)

nH2O (cP)

ρH2O (gr/ml)

1 2 3

25 30 35

0.8950 0.8007 0.7225

0.997100 0.995678 0.994061

Ing. Oswaldo Camasi Pariona 16

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

2.- VISCOSIDAD A DIFERENTES TEMPERATURA

n glicerina =







n H2O ρ glicerina θ glicerina ρ H2O θ H2O

n glicerina =

(0.8950)(1.226396)(180.100) ( 0.997100 ) (3.86)

= 51.36194395

cP

n glicerina =

(0.8007)(1.225776)(137.533) ( 0.995678 ) (3.66)

= 37.04144003

cP

n glicerina =

(0.7225)(1.220790)(96.730) ( 0.994061 ) (3.40)

= 25.24341167

cP

3.- HALLAR E Y A PARA LA GLICERINA:

ln ( n ) =

E 1 + ln (A) R T

( )

Donde; R = 1.98588

N° 1 2 3

molg k} cal IT ¿

n glicerina (cP) 51.36194395 37.04144003 25.24341167

ln(n)

ln(n/ ρ )

3.938897508 3.612037287 3.228565198

3.734817721 3.408463174 3.029067008

GRAFICA ln(n) vs 1/T

Ing. Oswaldo Camasi Pariona 17

UNIVERSIDAD NACIONAL DEL CALLAO

De la gráfica hallamos

Laboratorio: FisicoQuimica

ln (A)

ln (A) =

⇒A=¿

PENDIENTE DE ln(n) vs 1/T m =

E R

entonces:

m=

E = mR

( 3.938897508 - 3.612037287 ) = 5908.59812 ( 3.354016435x10-3 - 3.298697015x10 -3 )

HALLAMOS E ( ∆ G ¿

Ing. Oswaldo Camasi Pariona 18

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

5908.59812)(1.98588) = 11733.76683 E=¿

∆ H (cal)

4.- ENTALPIA

[ ]

(ρn ) = ∆ H R 1 ∂( ) T

∂ ln ⁡

GRÁFICA

( nρ )

ln ⁡

VS 1/T

Ing. Oswaldo Camasi Pariona 19

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

PENDIENTE m =

m=

∆H R

⇒∆ H = mR

( 3.734817721 - 3.408463174 ) = 5899.457135 ( 3.354016435x10 -3 - 3.298697015x10 -3 )

HALLAMOS (

∆H¿

∆ H=(5899.457135)(1.98588) = 11715.61393 cal Ing. Oswaldo Camasi Pariona 20

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

5.- ENTROPIA ∆ S

∆ S=

∆ H −∆ G T

∆S=

11733.76683 - 11715.61393 (298.15)

= 0.06088512494

∆S=

11733.76683 - 11715.61393 (303.15)

= 0.05988091704

∆S=

11733.76683 - 11715.61393 (308.15)

= 0.05890929742

CONCLUSIONES



Con el viscosímetro de Oswald se pueden determinar adecuadamente los tiempos en que los que el liquido va a pasar de un punto A un punto B.

Ing. Oswaldo Camasi Pariona 21

UNIVERSIDAD NACIONAL DEL CALLAO 

Laboratorio: FisicoQuimica

Los líquidos con viscosidades bajas fluyen fácilmente y cuando la viscosidad es elevada el líquido no fluye con mucha facilidad.



A mayor temperatura el valor de la viscosidad va a disminuir.



La viscosidad y la densidad de las soluciones que se estudian van a depender de las concentraciones que tengan dichas soluciones.



El log(n) vs 1/T va a tender para los líquidos a formar una línea recta.

RECOMENDACIONES

Ing. Oswaldo Camasi Pariona 22

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

Tratar de mantener la temperatura constante cuando se trabaja con el viscosímetro Oswald, para la determinación de las viscosidades de las diversas soluciones que se van a estudiar. Se deben tomar los tiempos de manera exacta cuando el líquido que se estudia pasa de un punto A un punto B en el viscosímetro. Los materiales que se utilizan para las diversas mediciones se deben lavar y secar por completo en la estufa. El picnómetro debe ser llenado completamente hasta el capilar: luego del baño se debe de secar por completo el picnómetro antes de ser pesado.

Ing. Oswaldo Camasi Pariona 23

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

APÉNDICE DEDUCCIÓN DE LA FÓRMULA DE POISEUILLE: Consideremos un fluido moviéndose en el interior de un cilindro de radio R. Tomemos el eje del cilindro como eje OX. Aislemos la capa de fluido comprendida entre dos cilindros de radios r y r+dr y longitud l. El fluido en contacto con el interior del cilindro tiende a acelerar su movimiento mientras que, por el contrario, el fluido en contacto con la superficie del cilindro tiende a retardarlo.

Sean F1 y F2 las correspondientes fuerzas de viscosidad. De acuerdo con (1) se tiene:

Ing. Oswaldo Camasi Pariona 24

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

Así pues, la fuerza tangencial sobre la capa vale:

Si el movimiento es estacionario esta fuerza debe equilibrarse con la fuerza debida a la diferencia de presión existente entre los extremos del tubo. Si llamamos p1 y p0 respectivamente a estas presiones se tiene:

Integrando queda:

Volviendo a integrar:

que se puede escribir de la forma:

Ing. Oswaldo Camasi Pariona 25

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

Para determinar C’ y C2 aplicaremos las condiciones en los límites. La velocidad de la capa que está en contacto con la pared es cero, de forma que v es cero cuando r = R. Cuando r= 0 la velocidad es máxima. Por consiguiente:

y por tanto,

El volumen del fluido que atraviesa cualquier superficie transversal del cilindro en la unidad de tiempo es:

FÓRMULA DE POISEUILLE

Ing. Oswaldo Camasi Pariona 26

UNIVERSIDAD NACIONAL DEL CALLAO

Laboratorio: FisicoQuimica

BIBLIOGRAFÍA

-

Daniels and Others, “Experimental Physical Chemistry” (Sixth edition) Kogakusha Company, Ltd., Tokyo, 1962cp.147.

-

Findlay, Alexander, “Practicas de Fisico-Química” (versión en castellano de la octava edición inglesa). Editorial Médico Quirúrjica, Buenos Aires, 195, p. 113.

-

Moore, W, “Physical Chemistry” (Fourth Edition), Logmans Gre. P. 772.

Ing. Oswaldo Camasi Pariona 27