Simplex

*1. En el ejemplo de los horarios de autobuses suponga que éstos pueden operar turnos de 8 o de 12 horas. Si un autobús

Views 737 Downloads 47 File size 200KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

*1. En el ejemplo de los horarios de autobuses suponga que éstos pueden operar turnos de 8 o de 12 horas. Si un autobús opera durante 12 horas, al conductor se le pagan horas extra a 150% del salario por hora regular. ¿Recomienda utilizar turnos de 12 horas? Resuelva el nuevo modelo utilizando AMPL, Solver o TORA. 2. Un hospital emplea voluntarios para atender la recepción entre las 8:00 A.M. y las 10:00 P.M. Cada voluntario trabaja tres horas consecutivas, excepto los que entran a las 8:00 P.M., que sólo trabajan 2 horas. Una aproximación a la necesidad mínima de voluntarios es por medio de una función escalonada en intervalos de dos horas, los cuales se inician a las 8:00 A.M. como 4, 6, 8, 6, 4, 6 y 8. Como la mayoría de los voluntarios son pensionados, están dispuestos a ofrecer sus servicios a cualquier hora del día (8:00 A.M. a 10:00 P.M.). Sin embargo, como la mayoría de las instituciones caritativas compiten por sus servicios, la cantidad requerida debe mantenerse lo más baja posible. Determine un programa óptimo (utilice AMPL, Solver o TORA) de la hora de inicio de los voluntarios. 3. En el problema 2, suponga que ningún voluntario iniciará al mediodía o a una hora en que se impliquen el almuerzo y la comida. Desarrolle la PL, y determine el horario óptimo utilizando AMPL, Solver o TORA. 4. En una compañía camionera de cargas pequeñas, los andenes de la terminal incluyen trabajadores eventuales contratados temporalmente para que se encarguen de las cargas pico. En el andén de Omaha, Nebraska, la demanda mínima de trabajadores eventuales durante los 7 días de la semana (a partir del lunes) es de 20, 14, 10, 15, 18, 10 y 12 trabajadores. Cada trabajador es contratado para que labore 5 días consecutivos. Desarrolle el modelo de PL y determine una práctica de contratación semanal óptima de trabajadores eventuales para la compañía utilizando AMPL, Solver o TORA. *5. La mayoría de los departamentos académicos de las universidades contratan estudiantes para que realicen encargos de oficina. La necesidad de ese servicio fluctúa durante las horas hábiles (8:00 A.M. a 5:00 P.M.). En un departamento, la cantidad mínima de estudiantes requeridos es de 2 entre las 8:00 A.M. y las 10:00 A.M.; 3 entre las 10:01 A.M. y las 11:00 A.M.; 4 entre las 11:01 A.M. y la 1:00 P.M., y 3 entre la 1:01 P.M. y las 5:00 P.M. A cada estudiante se le asignan 3 horas consecutivas (excepto a los que inician a las 3:01 P.M. que trabajan 2 horas, y a los que inician a las 4:01 que trabajan 1 hora). Debido al horario flexible de los estudiantes, por lo común pueden iniciar a cualquier hora durante el día de trabajo, excepto a la hora del almuerzo (12:00 del día). Desarrolle el modelo de PL y determine un horario que especifique la hora del día y la cantidad de estudiantes que se reportan al trabajo. Use AMPL, Solver o TORA para determinar la solución. 6. Una gran tienda de departamentos opera 7 días a la semana. El gerente estima que la cantidad mínima de vendedores requeridos para proporcionar un servicio ágil es de 12 el lunes, 18 el martes, 20 el miércoles, 28 el jueves, 32 el viernes, y 40 para el sábado y el domingo. Cada vendedor trabaja 5 días a la semana, con los dos días de descanso escalonados a lo largo de la semana. Por ejemplo, si 10 personas inician el lunes, 2 pueden tomar su día de descanso el martes o el miércoles; 5 el miércoles y jueves, y 3 el sábado y domingo. ¿Cuántos vendedores se deben contratar, y cómo se distribuirán sus días de descanso? Use AMPL, Solver o TORA para determinar la solución. www.FreeLibros.com 52 Capítulo 2 Modelado con programación lineal 2.4.4 Planificación de desarrollo urbano6 La planificación urbana implica atender tres áreas generales: (1) construcción de nuevos desarrollos de vivienda; (2) remodelación de viviendas deterioradas y áreas recreativas, y (3) planificación de edificios públicos (escuelas y aeropuertos). Las restricciones asociadas con estos proyectos son tanto económicas (terreno, construcción y financiamiento) como sociales (escuelas, parques y nivel de ingreso). Los objetivos en la planificación urbana varían. En los nuevos desarrollos de vivienda, la utilidad suele ser el motivo

para emprender el proyecto. En las dos categorías restantes los objetivos implican consideraciones sociales, políticas, económicas y culturales. De hecho, en un caso divulgado en 2004, el alcalde de una ciudad en Ohio deseaba demoler un área vieja de la ciudad para construir departamentos de lujo. El motivo era incrementar la recaudación de impuestos para aliviar la escasez de presupuesto. El ejemplo de esta sección se diseñó con base en el caso de Ohio. Ejemplo 2.4-6 (Modelo de renovación urbana) La ciudad de Erstville enfrenta un grave recorte de presupuesto. Buscando una solución a largo plazo para mejorar la base tributaria, el consejo de la ciudad propone la demolición de un área de viviendas dentro de la ciudad, y su reemplazo con un moderno desarrollo. El proyecto implica dos fases: (1) demolición de casas populares para obtener el terreno para el nuevo desarrollo, y (2) construcción del nuevo de 2.4 Aplicaciones de programación lineal 53 x3 Cantidad de casas triples x4 Cantidad de casas cuádruples x5 Cantidad de casas viejas a demoler El objetivo es maximizar la recaudación total de impuestos de los cuatro tipos de casas, es decir, La primera restricción del problema es la disponibilidad del terreno. A partir de los datos del problema, tenemos Acres necesarios para casas nuevas .18x1 .28x2 .4x3 .5x4 Para determinar la cantidad de acres disponibles, cada casa demolida ocupa un lote de .25 acres, es decir .25x5 acres. Considerando 15% para espacios abiertos, calles y áreas para servicios, la cantidad neta de acres disponibles es de .85(.25x5) .2125x5. La restricción resultante es o bien La cantidad de casas demolidas no puede ser superior a 300, lo cual se expresa como A continuación agregamos las restricciones que limitan la cantidad de casas de cada tipo (Cantidad de casas unifamiliares) $ (20% de todas las casas) (Cantidad de casas dobles) $ (10% de todas las casas) (Cantidad de casas triples y cuádruples) $ (25% de todas las casas) Estas restricciones se expresan matemáticamente como sigue La única restricción restante se refiere a que el costo de demolición y construcción se mantenga dentro del presupuesto permisible, es decir, (Costo de construcción y demolición) # (Presupuesto disponible) Expresando todos los costos en miles de dólares, tenemos (50x1 + 70x2 + 130x3 + 160x4) + 2x5 … 15000 x3 + x4 Ú .25(x1 + x2 + x3 + x4) x2 Ú .1(x1 + x2 + x3 + x4) x1 Ú .2(x1 + x2 + x3 + x4) x5 … 300 .18x1 + .28x2 + .4x3 + .5x4 - .2125x5 … 0 .18x1 + .28x2 + .4x3 + .5x4 … .2125x5 a Acres utilizados para la construcción de casas nuevasb … a Área en acres neta disponibleb Maximizar z = 1000x1 + 1900x2 + 2700x3 + 3400x4 www.FreeLibros.com 54 Capítulo 2 Modelado con programación lineal El modelo completo se escribe entonces como sigue sujeto a Solución: La solución óptima (obtenida utilizando el archivo amplEX2.4-6.txt o solverEx2.4-6.xls) es: Recaudación total de impuestos $343,965 Cantidad de casas unifamiliares x1 35.83 M 36 casas Cantidad de casas dobles x2 98.53 M 99 casas Cantidad de casas triples x3 44.79 M 45 casas Cantidad de casas cuádruples x4 0 unidades Cantidad de casas demolidas x5 244.49 M 245 casas Comentarios. La programación lineal no garantiza una solución entera de manera automática, y ésta es la razón de redondear los valores continuos al entero más próximo. La solución redondeada requiere que se construyan 180 ( 36 99 45) casas y que se demuelan 245 casas viejas, lo cual representa $345,600 en impuestos.Tenga en cuenta, sin embargo, que quizá la solución redondeada no sea factible. De hecho, la solución redondeada actual viola la restricción del presupuesto por $70,000 (¡compruébelo!). No obstante, la solución entera óptima verdadera (con los algoritmos que se presentan en el capítulo 9) es x1 36, x2 98, x3 45, x4 0, y x5 245 con z $343.700. Observe con cuidado que la solución redondeada produce un mejor valor objetivo, lo que parece contradictorio. La razón es que la solución redondeada requiere que se produzca una casa doble adicional, lo cual es factible sólo si al presupuesto se le aumentan $70,000. CONJUNTO DE PROBLEMAS 2.4D