Resumen Del Video Termodinamica

Integrantes: William López Facultad: Ingeniería Mecánica Fecha: 07 de mayo de 2012 Resumen del video de calor, temperatu

Views 147 Downloads 0 File size 364KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Integrantes: William López Facultad: Ingeniería Mecánica Fecha: 07 de mayo de 2012 Resumen del video de calor, temperatura y termodinámica LA TEMPERATURA ¿Qué es? Todos sabemos intuitivamente de qué estamos hablando. Por medio del tacto notamos la temperatura al tocar un cuerpo ya que unas terminaciones nerviosas situadas en la piel se encargan de ello. Los gatos poseen termosensores en la nariz que les permiten distinguir variaciones de 0.2ºC. Vamos estudiar el comportamiento de un gas para tratar de asociar esta sensación a una magnitud (algo que podemos medir) y para comprender qué cualidades de la materia manifiesta. Toda la materia está formada por partículas en continua agitación:. incluso los sólidos, que a simple vista parecen estar en reposo, la tienen. En los sólidos las vibraciones son pequeñas. Si la energía de agitación es muy grande, se pueden llegar a romper los enlaces entre las moléculas y entre los átomos. Las partículas se desenlazan y vibran libres, rotan, chocan entre si y contra las paredes del recipiente. Este estado de la materia se llama gaseoso. El gas trata de ocupar todo el volumen del recipiente que lo contiene: trata de expandirse. No todas las partículas se mueven en la misma dirección y con la misma velocidad. A cada estado concreto se le puede asignar una velocidad media. En esta animación puedes ver las moléculas de un gas en continua agitación. En un gas la temperatura es una magnitud (algo que podemos medir) que se relaciona con la medida de la velocidad media con que se mueven las partículas (por lo tanto con su energía cinética o nivel de agitación).

La temperatura no depende del número de partículas que se mueven sino de su velocidad media: a mayor temperatura mayor velocidad media. No depende por tanto de la masa total del cuerpo: si dividimos un cuerpo con una temperatura "T" en dos partes desiguales las dos tienen la misma temperatura. La temperatura es una magnitud que refleja el nivel térmico de un cuerpo (su capacidad para ceder energía calorífica) y el calor es la energía que pierde o gana en ciertos procesos (es un flujo de energía entre dos cuerpos que están a diferentes temperaturas). Nivel térmico es el nivel de agitación. Comparando los niveles térmicos sabemos hacia donde fluye el calor. La temperatura refleja el nivel térmico de un cuerpo e indica el sentido en que fluye el calor. La temperatura está relacionada con la presión

¿Cómo se mide la temperatura? Nuestro tacto detecta la temperatura, pero carece de la capacidad de medirla con rigor.

Realizando esta experiencia lo comprenderás: Introduce una mano en un recipiente frío y la otra en uno caliente, y luego las dos manos juntas en otro recipiente con agua templada. La primera mano la encontrará caliente y la otra fría.

Del cuerpo que está a mayor temperatura decimos que "está más caliente" y a veces, erróneamente, se dice "que tiene más calor". Los cuerpos no tienen calor, tienen energía interna y tienen temperatura. Reservamos el término "calor" para la energía que se transfiere de un cuerpo a otro. Esta energía es fácil de medir, pero la energía total que tiene el cuerpo no. Si un cuerpo recibe energía calorífica aumenta la agitación de las partículas que lo forman (átomos, moléculas o iones) y se pueden producir también cambios en la materia: dilatación, cambios de color (piensa en una barra de metal al calentarla), variación de su resistencia a la conducción, etc. Estos cambios se pueden utilizar para hacer una escala de temperatura. Al poner en contacto dos sustancias la agitación de las partículas de una se transmite, mediante choques, a las partículas de la otra hasta que se igualan sus velocidades. Las partículas de la

sustancia más caliente son más rápidas y poseen más energía. En cada impacto ceden parte de la energía a las partículas más lentas con las que entran en contacto. Las partículas de la sustancia que está a mayor T se frenan un poco, pero al mismo tiempo hacen que la más lentas aceleren. Finalmente las partículas de las dos sustancias alcanzan la misma velocidad media y por lo tanto la misma temperatura: se alcanza el "equilibrio térmico". Para diseñar un instrumento que mida la temperatura debemos escoger una cualidad de la materia que sea fácilmente observable, que varíe de manera importante con la agitación de sus partículas, que sea fácil de medir y que nos permita relacionar su variación con la agitación que tiene el cuerpo. La cualidad elegida en los termómetros de mercurio es la dilatación, pero existen otros tipos de termómetros basados en otras cualidades. Se utiliza el mercurio para construir termómetros porque es un metal que es líquido entre -20 ºC y 100ºC y porque se dilata mucho. Encerramos el metal dentro de un tubo fino (capilar) para que al dilatarse un poco avance mucho por el tubo (cuanto más fino sea el tubo más centímetros avanza). Midiendo longitudes de la columna podemos establecer una relación entre la dilatación y el nivel de agitación de la sustancia a medir.

¡Medimos la temperatura midiendo una longitud! Se pueden tomar como base para medir las temperaturas otras propiedades que cambien con ella como el color, la resistencia eléctrica, etc. Aparatos basados en las anteriores propiedades son el pirómetro óptico, el termopar.... Esto posibilita el medir en distintos rangos de temperaturas. Piensa en lo que pasaría si midieras la temperatura de un alto horno con un termómetro de mercurio. Calibrado del termómetro. Escala Celsius de temperatura Celsius, eligió como cero de temperatura para su escala la temperatura del hielo en contacto con agua. Las temperaturas inferiores, por lo tanto, serán negativas. Para marcar ese punto en el termómetro, lo introducimos en una mezcla de agua y hielo y esperamos hasta que se estabilice la posición del mercurio de la columna. Marcamos ese punto en el vidrio (es el extremo de la columna de mercurio en ese momento) como punto 0.

Calentamos agua en un Erlenmeyer cerrado con un tapón bihoradado. Por un agujero del tapón sale un tubo y por él vapor, por el otro introducimos el termómetro. Se inserta hasta que el bulbo quede en un punto próximo a la superficie del agua. La columna de mercurio sube pero cuando el agua empieza a hervir se para y no sube más. Marcamos el vidrio en ese punto como punto 100. Si la presión no es 1 atm. la temperatura de ebullición no será 100 ºC.

Dividimos la longitud del vidrio entre 0 y 100 en 100 partes iguales. A cada división le corresponde 1 grado centígrado. Con el termómetro de mercurio medimos la temperatura del aire. Este es el dato climatológico más conocido. El termómetro recibe el calor trasmitido por conducción del aire que lo rodea. ¡No debemos exponer el termómetro al Sol para medir la temperatura del aire! No debemos exponer un bulbo del termómetro a los rayos del Sol porque, en este caso, además del calor que recibe del aire recibe la radiación solar y recibe más cuanto mayor sea el bulbo del termómetro.

No sería correcta la lectura puesto que dos termómetros correctamente calibrados colocados en el mismo sitio y expuestos al Sol no marcan lo mismo: el que tenga el bulbo más grande marca una temperatura mayor.

Esacalas de temperatura A lo largo de los años se establecieron diferentes escalas. Ver historia de la temperatura En 1967 se adoptó la temperatura del punto triple del agua como único punto fijo para la definición de la escala absoluta de temperaturas y la separación centígrada de la escala Celsius. El nivel cero quedaba a -273,15 K del punto triple y se definía como el cero absoluto o 0 K. Esta escala sustituyó a la escala centígrada o Celsius al definir el cero como el punto más bajo posible e inalcanzable en la práctica. A la temperatura del cero absoluto no hay movimiento y desde él no se puede sacar calor. En ese estado todo el movimiento atómico y molecular se detiene, es la temperatura más baja posible. Todos los objetos tienen una temperatura más alta que el cero absoluto y por lo tanto emiten energía térmica o calor. El espacio interestelar casi vacío tiene temperatura ligeramente superior al 0 K. En este esquema comparativo puedes ver las escalas más importantes:

Conversión de valores de temperaturas La escala Celsius y la escala Kelvin tiene una transformación muy sencilla: grados K=273.15 + grados C En la transformación de grados centígrados a grados Fahrenheit debes tener en cuenta que cada grado centígrado vale 1,8 ºF ( 0 - 100 en la escala centígrada equivale a 32 - 210 en la escala

Fahrenheit). Por lo tanto debes multiplicar los grados centígrados por 1,8 que equivale a 9/5 . Como el cero Celsisus corresponde al 32 Fahrenheit debes sumar 32: gradosF=(9/5)*gradosC+32 Para la transformación inversa se despeja y queda: gradosC=(5/9)*( grados F-32)

Termodinámica Los sistemas físicos que encontramos en la Naturaleza consisten en un agregado de un número muy grande de átomos. La materia está en uno de los tres estados: sólido, líquido o gas: En los sólidos, las posiciones relativas (distancia y orientación) de los átomos o moléculas son fijas. En los líquidos, las distancias entre las moléculas son fijas, pero su orientación relativa cambia continuamente. En los gases, las distancias entre moléculas, son en general, mucho más grandes que las dimensiones de las mismas. Las fuerzas entre las moléculas son muy débiles y se manifiestan principalmente en el momento en el que chocan. Por esta razón, los gases son más fáciles de describir que los sólidos y que los líquidos. El gas contenido en un recipiente, está formado por un número muy grande de moléculas, 6.02·1023 moléculas en un mol de sustancia. Cuando se intenta describir un sistema con un número tan grande de partículas resulta inútil (e imposible) describir el movimiento individual de cada componente. Por lo que mediremos magnitudes que se refieren al conjunto: volumen ocupado por una masa de gas, presión que ejerce el gas sobre las paredes del recipiente y su temperatura. Estas cantidades físicas se denominan macroscópicas, en el sentido de que no se refieren al movimiento individual de cada partícula, sino del sistema en su conjunto. Conceptos básicos Denominamos estado de equilibrio de un sistema cuando las variables macroscópicas presión p, volumen V, y temperatura T, no cambian. El estado de equilibrio es dinámico en el sentido de que los constituyentes del sistema se mueven continuamente. El estado del sistema se representa por un punto en un diagrama p-V. Podemos llevar al sistema desde un estado inicial a otro final a través de una sucesión de estados de equilibrio. Se denomina ecuación de estado a la relación que existe entre las variables p, V, y T. La ecuación de estado más sencilla es la de un gas ideal pV=nRT, donde n representa el número de moles, y R la constante de los gases R=0.082 atm·l/(K mol)=8.3143 J/(K mol).

Se denomina energía interna del sistema a la suma de las energías de todas sus partículas. En un gas ideal las moléculas solamente tienen energía cinética, los choques entre las moléculas se suponen perfectamente elásticos, la energía interna solamente depende de la temperatura.

Trabajo mecánico hecho por o sobre el sistema. Consideremos, por ejemplo, un gas dentro de un cilindro. Las moléculas del gas chocan contra las paredes cambiando la dirección de su velocidad, o de su momento lineal. El efecto del gran número de colisiones que tienen lugar en la unidad de tiempo, se puede representar por una fuerza F que actúa sobre toda la superficie de la pared.

Si una de las paredes es un émbolo móvil de área A y éste se desplaza dx, el intercambio de energía del sistema con el exterior puede expresarse como el trabajo realizado por la fuerza F a lo largo del desplazamiento dx. dW=-Fdx=-pAdx=-pdV Siendo dV el cambio del volumen del gas. El signo menos indica que si el sistema realiza trabajo (incrementa su volumen) su energía interna disminuye, pero si se realiza trabajo sobre el sistema (disminuye su volumen) su energía interna aumenta. El trabajo total realizado cuando el sistema pasa del estado A cuyo volumen es VA al estado B cuyo volumen es VB.

El calor El calor no es una nueva forma de energía, es el nombre dado a una transferencia de energía de tipo especial en el que intervienen gran número de partículas. Se denomina calor a la energía intercambiada entre un sistema y el medio que le rodea debido a los choques entre las moléculas del sistema y el exterior al mismo y siempre que no pueda expresarse macroscópicamente como producto de fuerza por desplazamiento. Se debe distinguir también entre los conceptos de calor y energía interna de una sustancia. El flujo de calor es una transferencia de energía que se lleva a cabo como consecuencia de las diferencias de temperatura. La energía interna es la energía que tiene una sustancia debido a su temperatura, que es esencialmente a escala microscópica la energía cinética de sus moléculas.

El calor se considera positivo cuando fluye hacia el sistema, cuando incrementa su energía interna. El calor se considera negativo cuando fluye desde el sistema, por lo que disminuye su energía interna. Cuando una sustancia incrementa su temperatura de TA a TB, el calor absorbido se obtiene multiplicando la masa (o el número de moles n) por el calor específico c y por la diferencia de temperatura TB-TA. Q=nc(TB-TA) Cuando no hay intercambio de energía (en forma de calor) entre dos sistemas, decimos que están en equilibrio térmico. Las moléculas individuales pueden intercambiar energía, pero en promedio, la misma cantidad de energía fluye en ambas direcciones, no habiendo intercambio neto. Para que dos sistemas estén en equilibrio térmico deben de estar a la misma temperatura. Primera ley de la Termodinámica La primera ley no es otra cosa que el principio de conservación de la energía aplicado a un sistema de muchísimas partículas. A cada estado del sistema le corresponde una energía interna U. Cuando el sistema pasa del estado A al estado B, su energía interna cambia en U=UB-UA Supongamos que el sistema está en el estado A y realiza un trabajo W, expandiéndose. Dicho trabajo mecánico da lugar a un cambio (disminución) de la energía interna de sistema U=-W También podemos cambiar el estado del sistema poniéndolo en contacto térmico con otro sistema a diferente temperatura. Si fluye una cantidad de calor Q del segundo al primero, aumenta su energía interna en U=Q Si el sistema experimenta una transformación cíclica, el cambio en la energía interna es cero, ya que se parte del estado A y se regresa al mismo estado, U=0. Sin embargo, durante el ciclo el sistema ha efectuado un trabajo, que ha de ser proporcionado por los alrededores en forma de transferencia de calor, para preservar el principio de conservación de la energía, W=Q.       

Si la transformación no es cíclica U 0 Si no se realiza trabajo mecánico U=Q Si el sistema está aislado térmicamente U=-W Si el sistema realiza trabajo, U disminuye Si se realiza trabajo sobre el sistema, U aumenta Si el sistema absorbe calor al ponerlo en contacto térmico con un foco a temperatura superior, U aumenta. Si el sistema cede calor al ponerlo en contacto térmico con un foco a una temperatura inferior, U disminuye.

Todo estos casos, los podemos resumir en una única ecuación que describe la conservación de la energía del sistema. U=Q-W Si el estado inicial y final están muy próximos entre sí, el primer principio se escribe dU=dQ-pdV

Transformaciones La energía interna U del sistema depende únicamente del estado del sistema, en un gas ideal depende solamente de su temperatura. Mientras que la transferencia de calor o el trabajo mecánico dependen del tipo de transformación o camino seguido para ir del estado inicial al final. Isócora o a volumen constante

No hay variación de volumen del gas, luego W=0 Q=ncV(TB-TA) Donde cV es el calor específico a volumen constante

Isóbara o a presión constante

W=p(vB-vA) Q=ncP(TB-TA) Donde cP es el calor específico a presión constante

Calores específicos a presión constante cP y a volumen constante cV

En una transformación a volumen constante dU=dQ=ncVdT En una transformación a presión constante dU=ncPdT-pdV Como la variación de energía interna dU no depende del tipo de transformación, sino solamente del estado inicial y del estado final, la segunda ecuación se puede escribir comoncVdT=ncPdT-pdV Empleando la ecuación de estado de un gas ideal pV=nRT, obtenemos la relación entre los calores específicos a presión constante y a volumen constante cV=cP-R

Para un gas monoatómico

Para un gas diatómico La variación de energía interna en un proceso AB es U=ncV(TB-TA)

Se denomina índice adiabático de un gas ideal al cociente Isoterma o a temperatura constante pV=nRT La curva p=cte/V que representa la transformación en un diagrama p-Ves una hipérbola cuyas asíntotas son los ejes coordenados.

U=0 Q=W

Adiabática o aislada térmicamente, Q=0

La ecuación de una transformación adiabática la hemos obtenido a partir de un modelo simple de gas ideal. Ahora vamos a obtenerla a partir del primer principio de la Termodinámica. Ecuación de la transformación adiabática Del primer principio dU=-pdV

Integrando

Donde el exponente de V se denomina índice adiabático  del gas ideal

Si A y B son los estados inicial y final de una transformación adiabática se cumple que

Para calcular el trabajo es necesario efectuar una integración similar a la transformación isoterma.

Como podemos comprobar, el trabajo es igual a la variación de energía interna cambiada de signo Si Q=0, entonces W=-U=-ncV(TB-TA)