Practica Cuantica

INSTITUTO POLITÉCNICO NACIONAL “ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA” UNIDAD ZACATENCO INGENIERÍA EN COMU

Views 83 Downloads 2 File size 681KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

INSTITUTO POLITÉCNICO NACIONAL “ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA” UNIDAD ZACATENCO INGENIERÍA EN COMUNICACIONES Y ELECTRÓNICA. MATERIA: Mecánica cuántica y Mecánica estadística “SIMULACION DE UN CONTROL REMOTO”

Introducción: Identificar el tipo de semiconductor de un led infrarrojo de un control remoto de un televisor

Marco Teórico: La Teoría de Bandas La teoría de bandas está basada en la mecánica cuántica y procede de la teoría de los orbitales moleculares (TOM). En esta teoría, se considera el enlace metálico como un caso extremo del enlace covalente, en el que los electrones de valencia son compartidos de forma conjunta y simultánea por todos los cationes. Desaparecen los orbitales atómicos y se forman orbitales moleculares con energías muy parecidas, tan próximas entre ellas que todos en conjunto ocupan lo que se franja de denomina una "banda de energía". En los metales, sustancias conductoras, la banda de valencia se solapa energéticamente con la banda de conducción que está vacía, disponiendo de orbitales moleculares vacíos que pueden ocupar con un mínimo aporte de energía, es decir, que los electrones están casi libres pudiendo conducir la corriente eléctrica.

En los semiconductores y en los aislantes, la banda de valencia no se solapa con la de conducción. Hay una zona intermedia llamada banda prohibida. En los semiconductores, como el Silicio o el Germanio, la anchura de la banda prohibida no es muy grande y los electrones con suficiente energía cinética pueden pasar a la banda de conducción, por esa razón, los semiconductores conducen la electricidad mejor en caliente. Sin embargo, en los aislantes, la banda prohibida es tan ancha que ningún electrón puede saltarla. La Banda de conducción está siempre vacía.

Materiales El control remoto usa un led infrarrojo que sirve como emisor y un fotodiodo que sirve como receptor. El material empleado en la composición de un fotodiodo suelen estar compuestos de silicio, sensible a la luz visible (longitud de onda de hasta 1µm); germanio para luz infrarroja (longitud de onda hasta aprox. 1,8 µm); o de cualquier otro material semiconductor.

LED LED viene del inglés Light Emitting Diode que traducido al español es Diodo Emisor de Luz , es uno de los dispositivos fotónicos más sencillos y tiene importantes aplicaciones tanto para visualización como para generar señales ópticas en comunicaciones. Comparado con el diodo láser (LD) su fabricación es mucho más sencilla pues no requiere una cavidad óptica especial para su funcionamiento. Aunque sus desventajas son una baja señal óptica, un espectro muy ancho y de luz no coherente y una respuesta bastante lenta.

Los Diodos Leds tienen dos patillas de conexión una larga y otra corta. Para que pase la corriente y emita luz se debe conectar la patilla larga al polo positivo y la corta al negativo. En caso contrario la corriente no pasará y no emitirá luz. En la imagen siguiente vemos un diodo led por dentro.

La simplicidad del LED lo hace muy atractivo como componente para la visualización y las aplicaciones de comunicación. El LED puede operar hasta frecuencias de modulación de 1GHz. La anchura espectral de la señal óptica de un LED es del orden de kBT lo que se traduce en un margen de longitudes de onda entre 200Å -300Å a temperatura ambiente. Aunque esto es un espectro bastante amplio, para el ojo humano representa un solo color.

¿Cómo funciona? El funcionamiento es muy sencillo. Cuando conectamos con polarización directa el diodo led el semiconductor de la parte de arriba permite el paso de la corriente que circulará por las patillas (cátodo y ánodo) y al pasar por el semiconductor, este semiconductor emite luz.

En la figura de arriba puedes ver un led polarizado directamente e inversamente en serie con una bombilla. Lo mismo ocurre con el led, lo que pasa que no hace falta la bombilla por que el ya emite luz por si solo en polarización directa. Dependiendo del material que este hecho el semiconductor, este emitirá una luz de un color diferente. Así podemos obtener diodos led que emitan luces de colores diferentes (aluminio, galio, indio, fosforo, etc).

Los led RGB son diodos que tienen 3 semiconductores cada uno con un color diferente. Los colores son los colores primarios el rojo, el verde y el azul. Si controlamos esta mezcla de colores, podemos obtener una gama inmensa de colores en los leds. Para controlar los colores solo hace falta hacer pasar más o menos corriente por uno u otro semiconductor. Por ejemplo si solo pasa corriente por el rojo y por el verde el color que obtenemos será el amarillo.

Región infrarroja del espectro electromagnético El espectro electromagnético incluye los rayos gamma, los rayos X, los rayos ultravioletas, la luz visible, los rayos infrarrojos, las microondas y las ondas de radio. La única diferencia entre estos distintos tipos de radiación es su longitud de onda y su frecuencia.

Dentro del espectro electromagnético, la radiación infrarroja se encuentra comprendida entre el espectro visible y las microondas. Las ondas infrarrojas tienen longitudes de onda más largas que la luz visible, pero más cortas que las microondas; sus frecuencias son menores que las frecuencias de la luz visible y mayores que las frecuencias de las microondas. El término infrarrojo cercano se refiere a la parte del espectro infrarrojo que se encuentra más próxima a la luz visible; el término infrarrojo lejano denomina la sección más cercana a la región de las microondas. La fuente primaria de la radiación infrarroja es el calor o radiación térmica. Cualquier objeto que tenga una temperatura superior al cero absoluto (-273,15 °C, o 0 grados Kelvin), irradia ondas en la banda infrarroja. Incluso los objetos que consideramos muy fríos —por ejemplo, un trozo de hielo— , emiten en el infrarrojo. Cuando un objeto no es suficientemente caliente para irradiar ondas en el espectro visible, emite la mayoría de su energía como ondas infrarrojas. Por ejemplo, es posible que un trozo de carbón encendido no emita luz visible, pero que sí emita la radiación infrarroja que sentimos como calor. Se utilizan en muchas aplicaciones diferentes, en muchos campos, como es la comunicación, que utilizan tecnología infrarroja para control remoto en dispositivos domésticos, como los mandos de los TV. El funcionamiento del control remoto, se basa en la emisión de secuencias de pulsos de luz IR, con un código que identifica la tecla pulsada.

Análisis de datos y resultados: Estimar la brecha de energía para un L.E.D infrarrojo de un control remoto de un televisor. 𝜆 = 1𝜇𝑚 𝐸=

ℎ𝑐 𝜆



(6.63 ∗ 10−34 𝐽𝑠) (3 ∗ 𝐸=

1∗

108 𝑚 𝑠 )

10−6 𝑚 𝐸 = 1.24 𝑒𝑉

Tabla de semiconductores y GAP´s

(

1 𝑒𝑉 ) 1.6 ∗ 10−19 𝐽

Observaciones: Conclusiones: