Oxidacion de Alimentos

================= OXIDACION DE ALIMENTOS ================ El nombre de la reacción química, "oxidación", se deriva del h

Views 88 Downloads 7 File size 2MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

================= OXIDACION DE ALIMENTOS ================ El nombre de la reacción química, "oxidación", se deriva del hecho que en la mayoría de los casos, la transferencia de electrones se lleva a cabo adquiriendo átomos de oxígeno, pero es importante recalcar que también se da la oxidación sin involucrar el intercambio de oxígeno. En términos simples, durante la reacción una sustancia cede electrones y otra los gana (reducción), por lo que es más conveniente el término "redox" para referirnos al proceso. La oxidación en los alimentos, como por ejemplo las manzanas, se debe a que el oxigeno presente en el aire entra en contacto con ellos. Cuando se oxida esta manzana (liberando electrones) siempre produce simultáneamente otra que se reduce (capta los electrones liberados). Este concepto electrónico ha sugerido el desarrollo de métodos que estudian en forma cuantitativa los procesos de oxidación-reducción reversibles que son vitales para las células vivas. La medida del potencial de electrodo permite determinar el grado de reducción o de oxidación de una dada sustancia alimenticia. Esta medida sugiere la posibilidad de clasificar los sistemas oxidantes y reductores de los alimentos en base a su intensidad. Los alimentos llegarán a modificar sus propiedades de distinta manera debido a los intercambios de composición mediante la captación o liberación de radicales libres con el aire. ¿por qué son tan importantes los antioxidantes? Los antioxidantes están presentes en muchos productos alimentarios. Todos, en algún momento, hemos oído hablar de ellos o los hemos visto enumerados como aditivos en los envases de los alimentos. ¿Qué efecto tienen sobre los alimentos? Y, ¿por qué tienen un papel tan importante en muchos productos? La oxidación es un proceso químico que, en la mayoría de los casos, ocurre debido a la exposición al aire (oxígeno), o a los efectos del calor o la luz. Los antioxidantes desempeñan un papel fundamental garantizando que los alimentos mantengan su sabor y su color, y puedan consumirse durante más tiempo. Su uso resulta especialmente útil para evitar la oxidación de las grasas y los productos que las contienen. Cuando los antioxidantes se añaden a la grasa o aceite, se retrasa el comienzo de las últimas etapas de la autoxidación, cuando la ranciedad el desarrollo de olores y sabores desagradables se hace evidente. Otra función relevante es que ciertas vitaminas y algunos aminoácidos se destruyen con facilidad debido a la exposición al aire, y los antioxidantes sirven para protegerlos. Asimismo, contribuyen a retrasar la decoloración de las frutas y verduras.

================= OXIDACION DE ALIMENTOS ================  OXIDACION EN LIPIDOS

================= OXIDACION DE ALIMENTOS ================

================= OXIDACION DE ALIMENTOS ================

================= OXIDACION DE ALIMENTOS ================

================= OXIDACION DE ALIMENTOS ================  OXIDACION EN CARBOHIDRATOS METABOLISMO DE CARBOHIDRATOS La necesidad de un aporte constante de energía a la célula se debe a que ella lo requiere para realizar varias funciones, entre las que destacan: (a) la realización de un trabajo mecánico, por ejemplo, la contracción muscular y movimientos celulares, (b) el transporte activo de iones y moléculas y (c) la síntesis de moléculas. Para la mayoría de los animales, incluyendo al hombre, la energía útil para la célula es la energía química, la cual se encuentra contenida en los nutrientes (carbohidratos y lípidos, principalmente) que se consumen. A través de un conjunto procesos enzimáticos bien definidos, la célula extrae dicha energía y la hace disponible para que se realicen una gran variedad de procesos celulares, entre los que destacan los encaminados a la síntesis de (anabolismo) y degradación (catabolísmo) de biomoléculas, a la suma de ambos procesos se le identifica como Metabolismo. La célula ha diseñado para la glucosa, los ácidos grasos y los aminoácidos un proceso metabólico único (metabolismo de carbohidratos, de lípidos y de proteínas, respectivamente), acompañado cada uno de ellos de un estricto mecanismo de regulación (control metabólico). A continuación, se hará una breve descripción de los procesos anabólico y catabólico de la glucosa. Las vías enzimáticas relacionadas con el metabolismo de la glucosa son: (1) oxidación de la glucosa, (2) formación de lactato (3) metabolismo del glucógeno, (4) gluconeogénesis y (6) vía de las pentosas fosfato. OXIDACIÓN DE LA GLUCOSA La oxidación de la glucosa involucra un conjunto de reacciones enzimáticos, ligadas una de la otra y vigiladas por un estricto control metabólico, todo con el único fin, de hacer disponible para célula, la energía química contenida en la glucosa. La reacción global es:

Glucosa

CO2 + H2O + ATP

La formación de CO2 + H2O + ATP a partir de la glucosa, se lleva a cabo, porque existe una disponibilidad de O2 y que aunado a la necesidad de energía, se inducen los procesos enzimáticos claramente definidos por sustratos y productos, ellos son: (1) glucólisis, (2) transformación del piruvato en acetil CoA, (3) ciclo de Krebs y (4) fosforilación oxidativa. Glucólisis. La glucólisis se realiza en el citosol y comprende la conversión de glucosa en piruvato, cuya reacción global es:

Glucosa + 2 Pi + 2 ADP + 2 NAD+

2 Piruvatos + 2 ATP + 2 NADH + 2+ + H2O

En este proceso participan 10 enzimas diferentes que catalizan diez reacciones secuénciales, las cuales podríamos dividir en tres etapas: a) formación de fructosa 1,6- bisfosfato a partir de glucosa, b) formación de triosas fosfato (gliceraldehido 3-fosfato y dihdrixiacetona fosfato) a partir de fructosa 1,6-bisfosfato y c) formación de piruvato a partir de gliceraldheido 3-fosfato. En la primer etapa se consumen dos ATP´s, uno con la enzima hexoquinasa y después de una reacción de isomerización, se emplea el segundo ATP, con la enzima fosfofructoquinasa , reacciones que dan origen a la fructosa 1,6-bisfosfato, con la que se inicia la segunda etapa, al convertirse la fructosa 1,6-bisfosfato en sustrato

================= OXIDACION DE ALIMENTOS ================ de la enzima aldolasa y cuyos productos son las dos triosas fosfato (gliceraldehido 3-fosfato y dihidroxiacetona fosfato), seguidamente se inicia la tercer etapa, la que se caracteriza por la isomerización de la dihidroxiacetona fosfato en gliceraldehido 3-fosfato por lo que al finalizar esta etapa, contamos con dos moléculas de gliceraldehido 3-fosfato, mismas que servirán de sustrato para la formación de piruvato, uno por cada una de ellas. Las mitocondrias albergan la enzima piruvato deshidrogenasa, las enzimas del ciclo de Krebs, las enzimas que catalizan la oxidación de los ácidos grasos y las enzimas y proteínas involucradas en el transporte de electrones y síntesis de ATP, por lo que las hace ser, los centros del metabolismo oxidativo en eucariontes. Transformación del piruvato en acetil CoA. Una ves formado el piruvato, este se transloca hacia el interior de la mitocondria, en donde será transformado por acción del complejo enzimático piruvato deshidrogenasa (piruvato dehisrogenasa, dihidrolipoil deshidrogenasa y dihidrolipoil transacetilasa) en Acetil CoA, vía un reacción de tipo descarboxilación oxidativa.

Piruvato + Co A + NAD+

Acetil Co A + CO2 + NADH

Las coenzimas y grupos protéticos requeridos en esta reacción son pirofosfato de tiamina (TPP), dinucleótido de flavina y adenina (FAD), dinculeótido de niacina y adenina (NAD+) y lipoamida (ácido lipóico). La descarboxilación oxidativa del piruvato, dirige a los átomos de carbono de la glucosa a su liberación como CO2 en el ciclo de Krebs (ciclo del ácido cítrico) y por consiguiente, la producción de energía. El ciclo de Krebs. Este proceso, se inicia con la condensación irreversible de las moléculas de Acetil-CoA y oxaloacetato, esta reacción es catalizada por la enzima citrato sintasa y su producto es el citrato. A partir de citrato, se despliega una serie de reacciones irreversibles, que culminan con la generación de otra molécula de -cetoglutarato y su tranformación en succinil CoA + NADH + CO2, reacción catalizada por un complejo enzimático denominado complejo del -cetoglutarato deshidrogenasa que requiere como coenzimas y grupos prostéticos a TPP, FAD, NAD+ y lipoamida, igual a los requeridos por el complejo de la piruvato deshidrogenasa. Otros intermediarios son: la formación de succinato y liberación de un GTP a partir de succinil CoA y por consiguiente la síntesis de fumarato a partir de succinato, reacción el la cual se libera un FADH2, existe también en el ciclo de Krebs un sitio mas de descarboxilación oxidativa, en donde se forma NADH + CO2 y otro donde únicamente se libera NADH. La estiquiometría del ciclo de Krebs es:

Acetil-CoA + 3 NAD+ + FAD + GDP + Pi + 2H2O

2CO2 + 3NADH + FADH2 + GTP + 2H+ + CoA

El ciclo de Krebs es la vía común para la oxidación aeróbica de los sustratos energéticos, condición que convierte a este proceso enzimático en la vía degradativa más importante para la generación de ATP. Los 3NADH y el FADH2 liberados en el ciclo de Krebs, son reoxidados por el sistema enzimático transportador de electrones (Figura 1), estableciendo así un flujo de electrones, los cuales son dirigidos hacia el O2 como aceptor final, los productos de este proceso son una molécula de agua y una gran cantidad de energía liberada, energía que es utilizada para sintetizar ATP. Al acoplamiento entre la oxidación de los equivalentes reductores (NADH, FADH 2) y la síntesis de ATP (ATP sintetasa) se les conoce como fosforilación oxidativa.

================= OXIDACION DE ALIMENTOS ================

Figura 1. Cadena respiratoria y ATP sintasa Cadena transportadora de electrones. La cadena transportadora de electrones es una serie de cuatro complejos (I, II, III, IV) a través de los cuales pasan los electrones. Los electrones son llevados del Complejo I y II al Complejo III por la coenzima Q (CoQ o ubiquinona) y del Complejo III al Complejo IV por la proteína citocromo c. Los electrones del NADH mitocondrial son transferidos al FMN uno de los grupos prostéticos de la NADH-Q oxidorreductasa (Complejo I), posteriormente los electrones se transfieren a un segundo tipo de grupo prostético el de las proteínas hierro-azufre y de aquí pasarán a la coenzima Q (QH2 o ubiquinol), quien también recibe electrones de la succinato-Q reductasa (Coplejo II) a este complejo pertenece la enzima del ciclo de Krebs succinato deshidrogenasa la que genera FADH2, quien cede sus electrones a proteínas hierro-azufre y de aquí a la coenzima Q para formar QH2 . La función del Complejo III identificado como Q-citocromo c oxidorreductasa es catalizar la transferencia de electrones desde QH2 al citocromo c oxidado (cyt c). La etapa final de la cadena transportadora de electrones consiste en la oxidación del cyt c reducido generado por el Complejo III y la consiguiente reducción del O2 a dos moléculas de H2O. Esta reacción es catalizada por la citocromo c oxidasa (Complejo IV). Durante el flujo de electrones por la cadena respiratoria se realiza una transferencia de protones (H+) vía los Complejos I, III y IV que va desde la matriz de la mitocondria hacia la zona localizada entre la mambrana mitocondrial interna y externa (espacio intermembranal). Figura 2.

================= OXIDACION DE ALIMENTOS ================

Figura 2. Complejos de la cadena respiratoria

================= OXIDACION DE ALIMENTOS ================

 OXIDACION EN PROTEINAS OXIDACION DE PROTEINAS: DETERMINACION DE GRUPOS CARBONILO. El metabolismo origina daños celulares. Oxidantes derivados del metabolismo normal daña el DNA, proteínas y lípidos. Estos daños parecen los principales responsables del envejecimiento y de algunas enfermedades como el cáncer, enfermedades cardiovasculares, cataratas, etc. Muchos de los daños oxidativos los producen especies reactivas de oxígeno, como el anión superóxido (O2 -), el peróxido de oxígeno (H2O2) y el radical hidroxilo( OH). El radical hidroxilo es el radical libre mas reactivo y, generalmente se produce como consecuencia de una reacción de Fenton, en la que el H2O2 reacciona con hierro libre presente en el medio.

 CÓMO RETRASAR EL PROCESO DE OXIDACIÓN EN LAS FRUTAS.

La mayoría de las frutas tienen una vida útil relativamente corta. Desde que las adquirimos en el mercado tenemos poco tiempo para consumirlas antes de que se pongan marrones y se echen a perder. Sin embargo,

================= OXIDACION DE ALIMENTOS ================ poniendo en práctica unos trucos muy sencillos, podemos lograr que las frutas se conserven mejor por más tiempo. Lo primero que debemos tener en cuenta es que la fruta no debe ser cortada hasta el momento en el que se va a consumir. Una vez que cortamos la fruta estará expuesta al oxígeno y esto acelera el proceso de volverse marrón. Esto se aplica a cualquier tipo de fruta, sólo debemos lavarlas y colocarlas en el refrigerador sin hacer ningún corte. Es muy importante colocar las frutas en el refrigerador, sobre todo las fresas, las uvas, las ciruelas y los cítricos. Otros tipos de frutas como las peras, los plátanos, los aguacates y los melones, deben ser madurados a temperatura ambiente y luego se los puede guardar en el refrigerador. Resulta fundamental colocar las frutas en un compartimento aislado del resto de los alimentos en la heladera, para evitar que absorban sus sabores.

La única manera de guardar frutas cortadas en trozos es en un recipiente hermético y lleno de jugo de cítricos como naranja o limón. El jugo de estos cítricos ayuda a conservar la frescura de las frutas rebanadas y retardar el proceso de oxidación por el cual se vuelven marrones. ANTIOXIDANTES NATURALES. Por ejemplo, un modo sencillo de evitar que las manzanas se pongan marrones es rociarlas con un poco de zumo de limón. El ácido ascórbico (vitamina C) presente en muchos cítricos es un antioxidante natural, de ahí su frecuente uso en la producción de alimentos (E-300 - E-302) La vitamina C y sus distintas sales se añaden a refrescos, mermeladas, jamón, leche condensada y embutidos, para su protección. Otros antioxidantes naturales son los tocoferoles (E-306 - E-309), pertenecientes a la familia de la vitamina E. Se encuentran fundamentalmente en los frutos secos, las semillas de girasol y los brotes de soja y maíz, y se utilizan esencialmente para conservar aceites vegetales, margarina y productos derivados del cacao. Dado que ambos compuestos son antioxidantes muy populares y su demanda no puede ser totalmente satisfecha mediante fuentes naturales, hace tiempo que el ácido ascórbico y los tocoferoles se producen artificialmente. Hoy en día se puede copiar la estructura molecular de estos compuestos con tal precisión que no hay diferencias en la estructura ni en los efectos de la copia. Esto significa que estas sustancias "idénticas a las naturales" son en esencia iguales que las originales.

ANTIOXIDANTES ARTIFICIALES. Además de los antioxidantes naturales, también se utilizan antioxidantes artificiales. Entre ellos, los más importantes pertenecen al grupo de los galatos (E-310 - E-312) Dichas sustancias se añaden principalmente a los aceites vegetales y la margarina para evitar que se pongan rancios y preservar su sabor. Otras dos sustancias que no pertenecen a ninguno de los grupos anteriores son el BHA (butilhidroxianisol, E-320) y el BHT (butilhidroxitolueno, E-321). AGUA DESTILADA.

================= OXIDACION DE ALIMENTOS ================ El agua destilada es aquella cuya composición se basa en la unidad de moléculas de H2O. Es aquella a la que se le han eliminado las impurezas e iones mediante PROCESOS DE PURIFICACION.. ZUMO DE LIMÓN. El zumo (o jugo) de limón es el líquido obtenido del endocarpio de los limones al ser exprimido (generalmente se hace con un aparato exprimidor de limones). Suele ser aproximadamente el 30% del peso del fruto. Se suele extraer de forma casera directamente de los limones (a mano o con un exprimidor), aunque existen zumos envasados o en forma de extractos (liofilización o secados) de zumo de limón. El zumo de un limón rinde aproximadamente 48 g de jugo. VINAGRE. El vinagre (del latín vinum acre, "vino agrio") es un líquido miscible en agua, con sabor agrio, que proviene de la fermentación acética del vino y manzana (mediante las bacterias Mycoderma aceti). El vinagre contiene una concentración que va de 3% al 5% de ácido acético en agua. Los vinagres naturales también contienen pequeñas cantidades de ácido tartárico y ácido cítrico

================= OXIDACION DE ALIMENTOS ================

================= OXIDACION DE ALIMENTOS ================