nose

5.6 Cambio de bases Problemas 5.6 ¥ x´ En los problemas 1 al 8 escriba ¦ µ P R2 en términos de la base dada. § y¶ ¯© 7

Views 383 Downloads 69 File size 2MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

5.6

Cambio de bases

Problemas 5.6 ¥ x´ En los problemas 1 al 8 escriba ¦ µ P R2 en términos de la base dada. § y¶ ¯© 7 ¹ © 3 ¹ ¿ 1. °ª º ,ª º À ±²« 212 » « 6» Á²

© 1¹ © 1¹ 2. ª º , ª º « 1» « 1»

¯© 27 ¹ © 4¹ ¿ 7. °ª º , ª º À ±²« 29» « 10 » Á²

© 1¹ © 1¹ 6. ª º , ª º « 2 » « 2»

© 5¹ © 3¹ 5. ª º , ª º « 7» «  4 »

¯© 0 ¹ © 28¹ ¿ 4. °ª º , ª º À ±²« 27 » « 7 » Á²

© 2¹ © 3¹ 3. ª º , ª º « 23 » « 22 »

© a¹ © b ¹ 8. ª º , ª º , donde ad 2 bc Z 0 « c» « d » ¥ x´ De los problemas 9 al 15 escriba ¦¦ y µµ P R3 en términos de la base dada. ¦§ z µ¶ ¯© 25¹ © 1¹ © 5 ¹ ¿ ² ² 9. °ª 0 º , ª 2 º , ª 2 º À ª º ª º ª º ²ª« 3º» ª« 22 º» ª« 0 º» ² ± Á © 0 ¹ © 0 ¹ © 1¹ 13. ª 0 º , ª 1º , ª 1º ª º ª º ª º ª« 1º» ª« 1º» ª« 1º»

© 1¹ © 0 ¹ © 1¹ 10. ª 0 º , ª 1 º , ª 1º ª º ª º ª º ª« 21º» ª« 0 º» ª« 1º»

© 1¹ © 1¹ © 1¹ 11. ª 0º , ª 1º , ª 1º ª º ª º ª º ª« 0º» ª« 0º» ª« 1º»

© 2 ¹ © 1¹ © 3¹ 14. ª 1 º , ª 4º , ª 2 º ª º ª º ª º ª« 3º» ª« 5º» ª« 4 º»

¯© 24¹ © 21¹ © 0 ¹ ¿ ² ² 12. °ª 21º , ª 21º , ª 2 º À ª º ª º ª º ²ª« 2 º» ª« 1º» ª« 1 º» ² ± Á

¯© 3¹ © 22¹ © 4¹ ¿ ² ² 15. °ª 0 º , ª 25º , ª 4º À ª º ª º ª º ²ª« 4º» ª« 22 º» ª« 25º» ² ± Á

De los problemas 16 al 20 escriba los polinomios a0 1 a1x 1 a2x2 en P2 en términos de la base dada. 16. 1, x 21, x2 21 17. {1 1 x 1 4x2, 23 1 4x 2 2x2, 3 22x 1 4x2} 18. {22 2 4x 2 x2, 24 1 4x 2 4x2, 21 1 5x 1 5x2, 21 1 5x 1 152} 19. {(4x 2 3x2), (x 1 4x), (x 2 5x 2 2x2)} 20. x 1 1, x 21, x2 21 ¯²© ⎛ 2 −1⎞ ¹ ©2 en términos de la base °ª 21. En M22 escriba la matriz ⎜ ⎟ º,ª ⎠ ⎝ ±²« 1 0» « 3

¹ © 0 2 ¹ ¿² 0¹ © , ,ª º º» À 1» « 1 0º» ª« ²Á

© 26¹ 22. En R2 suponga que (x)B1 5 ª º , donde B15 « 23» ¯© 22 ¹ © 22 ¹ ¿ base B25 °ª º , ª º À . ²±« 2 » « 2 » ²Á

¯© 22 ¹ © 25¹ ¿ °ª º , ª º À . Escriba x en términos de la ²±« 3» « 21» ²Á

⎛ 2⎞ 23. En R2 suponga que (x)B1 5 ⎜ ⎟ , donde B1 5 ⎝ −1⎠ ⎧⎪⎛ 0⎞ ⎛ 5⎞ ⎫⎪ B2 5 ⎨⎜ ⎟ , ⎜ ⎟ ⎬ . ⎩⎪⎝ 3⎠ ⎝ −1⎠ ⎭⎪

⎧⎪⎛ 1⎞ ⎛ 2 ⎞ ⎫⎪ ⎨⎜ ⎟ , ⎜ ⎟ ⎬ . Escriba x en términos de la base ⎩⎪⎝ 1⎠ ⎝ 3⎠ ⎭⎪

373

374

CAPÍTULO 5

Espacios vectoriales

24. En P3 exprese el polinomio 4x2 2x 1 5 en términos de la base polinomial 1, 1 2x, (1 2x)2, (1 2x)3. ¯© 21¹ © 1¹ © 25 ¹ ¿ © 4¹ ² ² 2 ª º 25. En R suponga que (x)B1 5 3 , donde B15 °ª 1º ª 23º , ª 22 º À . Escriba x en términos de ª ºª º ª º ª º ²ª« 0 º» ª« 22 º» ª« 23 º» ² ª« 4º» ± Á ¯© 22 ¹ © 3¹ © 23¹ ¿ ² ² la base B25 °ªª 22 ºº , ªª 25ºº , ªª 22 º À. º ²ª« 22 º» ª« 1º» ª« 1º» ² Á ± Cálculo

⎛ 4⎞ 26. En R2, ( x ) B1 = ⎜ ⎟ donde B2 5 ⎝ −1⎠

⎧⎪⎛ 1⎞ ⎛ 21⎞ ⎫⎪ ⎨⎜ ⎟ , ⎜ 1⎟ ⎬ . Escriba x en términos de la base ⎩⎪⎝ 21⎠ ⎝ ⎠ ⎭⎪

⎧⎪⎛ −2 ⎞ ⎛ −3⎞ ⎫⎪ B2 5 ⎨⎜ ⎟ , ⎜ ⎟ ⎬ . ⎪⎩⎝ 1⎠ ⎝ 2⎠ ⎪⎭ ©1 ¹ 27. En R suponga que (x)B1 5 ª 0 º , donde B15 ª º ª« 1 º» 2

¯© 22 ¹ © 21¹ © 23¹ ¿ ² ² la base B25 °ªª 23ºº , ªª 24ºº , ªª 25ºº À. ²ª« 22 º» ª« 25º» ª« 24º» ² Á ±

¯© 1¹ © 0 ¹ © 1¹ ¿ ²ª º ª º ª º ² °ª 4º ª 3º , ª 25º À . Escriba x en términos de ²ª« 25º» ª« 2 º» ª« 22 º» ² ± Á

© 4¹ 28. En R suponga que (x)B1 5 ª 0 º , donde B15 ª º ª« 21º» ¯© 24¹ © 23¹ © 22 ¹ ¿ ²ª º ª º ª º ² de la base B25 °ª 22 º , ª 1º , ª 22 º À . ²ª« 24º» ª« 1º» ª« 25º» ² Á ± 2

¯© 3¹ © 0 ¹ © 23¹ ¿ ²ª º ª º ª º ² °ª 24º ª 1º , ª 2 º À . Escriba x en términos ²ª« 3º» ª« 24º» ª« 25º» ² ± Á

¥ 2´ 29. En P2, (x)B1 5 ¦ 1 µ , donde B1 5 {1 2 x, 3x, x2 2x 21}. Escriba x en términos de la base ¦ µ ¦§ 3µ¶ B2 5 {3 2 2x, 1 1 x, x 1 x2}. De los problemas 30 al 39 utilice el teorema 5.6.2 para determinar si el conjunto de vectores dado es linealmente dependiente o independiente. 30. En P2: 2 1 3x 1 5x2, 1 2 2x 1 x2, 21 1 6x2 31. En P2: 5 2 x 1 3x2, 1 1 4x 1 x2, 2 2 4x 2 x2 32. En P2: 2 1 x, x2 1 x 1 1 33. En P2: x 1 4x2, 22 1 2x, 2 1 x 1 12x2 34. En P2: 2 2 4x 2 x2, 24 1 4x2, 25 1 3x 1 x2 35. En P2: x2 1 1, x 1 1, x 1 2, x2 1 4 36. En P3: 1 1 x2, 21 2 3x 1 4x2 1 5x3, 2 1 5x 2 6x3, 4 1 6x 1 3x2 1 7x3 37. En P2: 21 2 4x 1 4x2, 1 1 3x 1 4x2, 1 1 3x 1 x2

5.6

Cambio de bases

© 1 3¹ © 1 4 ¹ © 1 6 ¹ © 0 0¹ 38. En M22: ª º» , ª« 5 0 º» , ª« 1 3º» , ª« 3 0º» « © a 0¹ © b c ¹ © d , , 39. En M22: ª « 0 0º» ª« 0 0º» ª« f

e¹ © g , 0º» ª« j

h¹ donde acfk Z 0 k º»

40. En Pn, sean p1, p2, . . . , pn+1, n 1 1 polinomios tales que pi (0) 5 0 para i 5 1, 2, . . . , n 1 1. Demuestre que los polinomios son linealmente dependientes. *41. En el problema 5.6.40, en lugar de pi(0) 5 0, suponga que pi( j) 5 0 para i 5 1, 2, . . . , n 1 1 y para alguna j con 1 # j # n, donde pi( j) denota la j-ésima derivada de pi. Demuestre que los polinomios son linealmente dependientes en Pn. 42. En Mmn sean A1, A2, . . . , Amn, mn matrices cuyas componentes en la posición 1,1 son cero. Demuestre que las matrices son linealmente dependientes. *43. Suponga que los ejes x y y en el plano se rotan en sentido positivo (contrario al de las manecillas del reloj) un ángulo u (medido en radianes). Esto da nuevos ejes que se denotan por (x9, y9). ¿Cuáles son las coordenadas x, y de los vectores de la base i y j rotados? 44. Demuestre que la matriz del cambio de coordenadas en el problema 43 está dada por © cos u en u ¹ . A21 5 ª «  sen u cos uº» p © 1¹ 45. Si en los problemas 43 y 44, u 5 rad, escriba el vector ª º en términos de los nuevos 6 « 24» ejes coordenados x9 y y9. ⎛ 2⎞ 46. Si u 5 p/4 5 45°, escriba ⎜ ⎟ en términos de los nuevos ejes coordenados. ⎝ −7⎠ ¥ 4´ 47. Si u 5 2p/3 5 120°, escriba ¦ µ en términos de los nuevos ejes coordenados. § 5¶ 48. Sea C 5 (cij) una matriz invertible de n 3 n y sea B1 5 {v1, v2, . . . , vn} una base para el espacio vectorial. Sea © c11 ¹ ª º c c1 5 ª 21º ª %º ª º « cn1»

B1

© c12 ¹ ª º c 5 c2 5 ª 22 º ª % º ª º « cn 2 »

B1

© c1n ¹ ª º c cn 5 ª 2 n º ª % º ª º « cnn »

B1

Demuestre que B2 5 {c1, c2, . . . , cn} es una base para V. 49. Sean B1 y B2 dos bases para el espacio vectorial V de dimensión n y sea C la matriz de transición de B1 a B2. Demuestre que C 21 es la matriz de transición de B2 a B1. 50. Demuestre que (x)B1 5 CA(x)B1 para todo x en un espacio vectorial V si y sólo si CA 5 I. [Sugerencia: Sea xi el vector i en B1. Entonces (xi)B1 tiene un uno en la posición i y un cero en otra parte. ¿Qué puede decirse sobre CA(xi)B1?]

Cálculo

375

6.1

Bases ortonormales y proyecciones en Rn

MANEJO DE LA CALCULADORA 6.1 En la página 240 se indicó la manera de encontrar la longitud o norma de un vector en R2 con la calculadora HP 50g. En la página 254 se mostró cómo encontrar el producto punto de dos vectores en R2. Los mismos procedimientos se pueden emplear para Rn. Por ejemplo, la secuencia de teclas W¢46 QQ78I6 © 3¹ ª º 28 da como resultado ª º 5 102 < 10.0995. La imitación del procedimiento de la p᪠2º ª º ª« 5 º» gina 262 dará a ? b, donde a, b P Rn para cualquier n $ 2.

Problemas 6.1 De los problemas 1 al 18 construya una base ortonormal para el espacio o subespacio vectorial dado. © 1¹ © 3 ¹ 1. ª º , ª º . « 23» « 0 » ¥ 1´ ¥ 1 ´ 2. En R2, comenzando con los vectores básicos ¦ µ , ¦ . § 1¶ § 1µ¶ 3. H 5 {(x, y) P R2: x 1 y 5 0}. 4. H 5 {(x, y) P R2: 2x 1 y 5 0}.

5. H 5 {(x, y) P R2: ax 1 by 5 0}.

¥ a´ ¥ c ´ 6. En R2, comenzando con ¦ µ , ¦ µ , donde ad 2 bc Z 0. § b¶ § d ¶ 7. p 5 {(x, y, z): 2x 2 y 2 z 5 0} 9. p 5 {(x, y, z) P R3: x 1 2y 1 3z 5 0}

8. H 5 {(x, y, z) P R3: 2x 1 y 5 0}

`

10. L 5 ( x, y, z ):

11. H 5 {(x, y, z) P R3: x 5 3t, y 5 4t, z 5 0; t P R} 12. L 5 {(x, y, z) P R3: x 5 t, y 5 2t, z 5 22t; t P R} 13. H 5 {(x, y, z, w) P R4: 3x 1 4y 1 2z 1 5w 5 0} 14. p 5 {(x, y, z): ax 1 by 1 cz 5 0}, donde abc Z 0

`

15. L 5 ( x, y, z ):

x a

5 yb 5

z c

b

, donde abc Z 0

16. H 5 {(x1, x2, x3, x4, x5) P R5: 2x1 2 3x2 1 x3 1 4x4 2 x5 5 0} 17. H 5 {(x1, x2, x3, x4, x5) P R5: x1 1 2x2 2 2x3 2 x4 2 x5 5 0}

x a

5 yb 5

z c

b

433

434

CAPÍTULO 6

Espacios vectoriales con producto interno

18. H es el espacio de soluciones de [ 2 \ 1 ] 5 2 [ 1  \ 2 ] 5   [ 2  \ 1 ] 5  © 5¹ 19. Encuentre una base ortonormal en R2 que incluya al vector v 5 ª º . « 2» © 23¹ 20. Encuentre una base ortonormal en R que incluya al vector v 5 ª 2 º . ª º ª« 21º» 3

*21. Encuentre una base ortonormal en R4 que incluya los vectores © ª ª u1 5 ªª ª ª ª «

1 ¹ º 2º 0 º 1 º º 2º 0 º»

y

© 1¹ ª2 º ª 2º ª 1º ª º u 2 5 ª 2º ª 1º ª 2º ª º ª2 1º ª« 2 º»

[Sugerencia: Primero encuentre dos vectores v3 y v4 para completar la base.]

22. Demuestre que Q 5

© 2 ª ª 3 ª 1 ª 3 ª ª 1 ª2 3 «

1 2¹ º 3 3º 2 2º 2 º 3 3º 2 1º 3 3º»

es una matriz ortogonal.

23. Demuestre que si P y Q son matrices ortogonales de n 3 n, entonces PQ es ortogonal. 24. Verifique el resultado del problema 23 con © ª P 5ª ª ª «

1 2 1 2

21¹ º 2º 1 º º 2»

y

© ª Q 5 ªª ª ª«

1 3 8 3

2 8¹ º 3 º 1 º º 3 º»

25. Demuestre que si Q es una matriz ortogonal simétrica, entonces Q 2 5 I. 26. Demuestre que si Q es ortogonal, entonces det Q 5 ± 1. ¥ sen t 27. Demuestre que para cualquier número real t, la matriz A  ¦ § cos t

cos t ´ es ortogonal.

sen t µ¶

28. Sea {v1, v2, . . . , vk} un conjunto de vectores linealmente independientes en Rn. Pruebe que vi Z 0 para i 5 1, 2, . . . , k. [Sugerencia: Si vi 5 0, entonces es sencillo encontrar constantes c1, c2, . . . , ck con ci Z 0 tales que c1v1 1 c2v2 1 . . . 1 ckvk 5 0.] De los problemas 29 al 37 se dan un subespacio H y un vector v. a) Calcule proyH v; b) encuentre una base ortonormal para H'; c) escriba v como h 1 p donde h P H y p P H'.

6.1

29.

R2:

31.

R2:

32.

R2:

30.

Bases ortonormales y proyecciones en Rn

435

R2:

vZ0

© 1¹ 33. H 5 {(x, y, z) P R3: 3x 1 y 2 z 5 0}, v 5 ª 1º ª º « 1»

34.

R3:

z x y 5 5 4 2 3

35.

R3:

© 21¹ ª 2º 36. H 5 {(x, y, z, w) P R4: x 5 3t, y 5 22t, z 5 t, w 5 2t, t P R}, v 5 ª º ª 0º ª º « 21» 37.

R4:

38. Sean u1 y u2 dos vectores ortonormales en Rn. Demuestre que |u1 2 u2| 5

2.

39. Si u1, u2, . . . , un son ortonormales, demuestre que |u1 1 u2 1 . . . 1 un|2 5 |u1|2 1 |u2|2 1 . . . 1 |un|2 5 n 40. Encuentre una condición sobre los números a y b tales que forman una base ortonormal en R2.

®«¥ a ´ ¥ b ´ ®º ¬¦ µ , ¦ µ» y ®­§ b ¶ § a ¶ ®¼

®«¥ a ´ ¥ b ´ ®º ¬¦ µ , ¦ µ» ®­§ b ¶ § a ¶ ®¼

41. Demuestre que cualquier base ortonormal en R2 es de una de las formas dadas en el problema 40. 42. Usando la desigualdad de Cauchy-Schwarz, pruebe que si |u 1 v| 5 |u| 1 |v|, entonces u y v son linealmente dependientes. 43. Usando la desigualdad de Cauchy-Schwarz, pruebe la desigualdad del triángulo: |u 1 v| # |u| 1 |v| [Sugerencia: Obtenga la expansión de |u 1 v|2 .] 44. Suponga que x1, x2, . . . , xk son vectores en Rn (no todos cero) y que |x1 1 x2 1 . . . 1 xk| 5 |x1| 1 |x2| 1 . . . 1 |xk| Demuestre que dim gen {x1 1 x2 1 . . . 1 xn} 5 1. [Sugerencia: Utilice los resultados de los problemas 42 y 43.]

Desigualdad del triángulo

436

CAPÍTULO 6

Identidad de Parseval

Espacios vectoriales con producto interno

45. Sea {u1, u2, . . . , un} una base ortonormal en Rn y sea v un vector en Rn. Pruebe que |v|2 5 |v ? u1|2 1 |v ? u2|2 1 . . . 1 |v ? un|2. Esta igualdad se conoce como identidad de Parseval en Rn. 46. Demuestre que para cualquier subespacio H de Rn, (H')' 5 H. 47. Sean H1 y H2 dos subespacios de Rn y suponga que H'1 5 H'2. Demuestre que H1 5 H2. 48. Sean H1 y H2 dos subespacios de Rn; demuestre que si H1 ( H2, entonces H'2 ( H'1.

Teorema generalizado de Pitágoras

49. Demuestre el teorema generalizado de Pitágoras: sean u y v dos vectores en Rn con u ' v. Entonces |u 1 v|2 5 |u|2 1 |v|2

EJERCICIOS

CON

MATLAB 6.1

Recordatorio de MATLAB u ? v se calcula con u'*v o v' *u. |v| se calcula con sqrt(v'*v) o norm(v). proyv u se calcula con ((u'*v)/(v'*v))*v (el vector proyección de u sobre v). 1. Encuentre bases ortonormales para el espacio generado por cada conjunto de vectores dado usando el proceso de Gram-Schmidt. Verifique sus respuestas probando que el conjunto de vectores obtenido es ortonormal y que cada vector en el conjunto original es una combinación lineal del conjunto de vectores obtenido.

⎧⎛ −1 ⎞ ⎛ 3⎞ ⎫ ⎪ ⎪ a) ⎨⎜ 2 ⎟ , ⎜ 4 ⎟ ⎬ ⎜ ⎟ ⎜ ⎟ ⎪⎜⎝ − 1 ⎟⎠ ⎜⎝ 0 ⎟⎠ ⎪ ⎩ ⎭ ⎧⎛ ⎪⎜ ⎪ c) ⎨⎜ ⎪⎜ ⎪⎜⎝ ⎩

−11 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ − 1⎞ ⎫ ⎪ 2 ⎟ ⎜ − 1 ⎟ ⎜ − 2⎟ ⎜ 2⎟ ⎪ ⎟,⎜ ⎟,⎜ ⎟,⎜ ⎟⎬ 0 ⎟ ⎜ 2 ⎟ ⎜ 3 ⎟ ⎜ − 1⎟ ⎪ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 1 ⎠ ⎝ 2 ⎠ ⎝ 1 ⎠ ⎝ 4 ⎠ ⎪⎭

⎧⎛ ⎪⎜ ⎪⎜ ⎪ b) ⎨⎜ ⎪⎜ ⎪⎜ ⎪⎩⎜⎝

0⎞ ⎛ −2 ⎟ ⎜ ⎟ ⎜ −3 ⎟ , ⎜ ⎟ ⎜ −3 ⎟ ⎜ 1 ⎟⎠ ⎜⎝

3 ⎞ ⎛ 2⎞ ⎫ ⎪ −5 ⎟ ⎜ 1 ⎟ ⎪ ⎟ ⎜ ⎟⎪ 0 ⎟ , ⎜ 4⎟ ⎬ ⎟ ⎜ ⎟ 0 ⎟ ⎜ 1⎟ ⎪ ⎪ 5 ⎟⎠ ⎜⎝ 3⎟⎠ ⎪⎭

d) Genere cuatro vectores aleatorios en R6

2. Encuentre una base ortonormal para º «¥ x ´ ® ®¦ µ ® ® y H  ¬¦ µ x y 3 z w  0 » ¦ µ z ® ® ® ®¦§ w µ¶ ¼ ­ [Sugerencia: Primero encuentre una base para H hallando una base para las soluciones de Ax 5 0, donde A 5 (1, 21, 3, 1), y después aplique el proceso de Gram-Schmidt.] ¥ b´ ¥ a´ v z 3. a) (Lápiz y papel) Suponga que v = ¦ µ y z = ¦ . Suponga que v1 5 y v2 5 . µ | v | | z| § a¶ § b¶ 2 Demuestre que {v1, v2} forma una base ortonormal en símbolo R siempre que a y b no sean ambas cero. ¥ 1´ ⎛ −3 ⎞ b) Para v = ¦ µ , forme v1 y v2 como en el inciso a). Sea w = ⎜ . Calcule p1, el vector § 2¶ ⎝ 4 ⎟⎠ proyección de w sobre v1, y p2, el vector proyección de w sobre v2. Recuerde la geometría