Mitosis y Meiosis

Mitosis De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda Micrografía de una célula mitótica pulmonar d

Views 228 Downloads 90 File size 1MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Mitosis De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda

Micrografía de una célula mitótica pulmonar de tritón.

Cromosomas homólogos en mitosis (arriba) y meiosis(abajo) En biología, la mitosis (del griego mitos, hebra) es un proceso de reparto equitativo del material hereditario (ADN) característico de las células eucarióticas.1 Normalmente concluye con la formación de dos núcleos separados (cariocinesis), seguido de la partición del citoplasma (citocinesis), para formar dos células hijas. La mitosis completa, que produce células genéticamente idénticas, es el fundamento del crecimiento, de la reparación tisular y de la reproducción asexual. La meiosis, un proceso que comparte mecanismos con la mitosis pero que no debe confundirse con ella (es otro tipo de división celular, propio de los gametos), produce células genéticamente distintas y, combinada con la fecundación, es el fundamento de la reproducción sexual y la variabilidad genética.

Contenido [ocultar] •

1 Introducción

• • • • •

2 Fases del ciclo celular o 2.1 Interfase  2.1.1 Profase  2.1.2 Prometafase  2.1.3 Metafase  2.1.4 Anafase  2.1.5 Telofase  2.1.6 Citocinesis 3 Consecuencias de la mitosis 4 Errores en la mitosis 5 Endomitosis 6 Véase también 7 Referencias



8 Enlaces externos



[editar] Introducción La mitosis es el tipo de división celular por el cual se conservan los orgánulos y la información genética contenida en sus cromosomas, que pasa de esta manera a las células hijas resultantes de la mitosis. La mitosis es igualmente un verdadero proceso de multiplicación celular que participa en el desarrollo, el crecimiento y la regeneración del organismo. Este proceso tiene lugar por medio de una serie de operaciones sucesivas que se desarrollan de una manera continua, y que para facilitar su estudio han sido separadas en varias etapas.

Esquema que muestra de manera resumida lo que ocurre durante la mitosis El resultado esencial de la mitosis es la continuidad de la información hereditaria de la célula madre en cada una de las dos células hijas. El genoma se compone de una determinada cantidad de genes organizados en cromosomas, hebras de ADN muy enrolladas que contienen la información genética vital para la célula y el organismo. Dado que cada célula debe contener completa la información genética propia de su especie, la célula madre debe hacer una copia de cada cromosoma antes de la mitosis, de forma que las dos células hijas reciban completa la información. Esto ocurre durante la fase S de la interfase, el período que alterna con la mitosis en el ciclo celular y en el que la célula entre otras cosas se prepara para dividirse.2 Tras la duplicación del ADN, cada cromosoma consistirá en dos copias idénticas de la misma hebra de ADN, llamadas cromátidas hermanas, unidas entre sí por una región del cromosoma llamada centrómero.3 Cada cromátida hermana no se considera en esa

situación un cromosoma en sí mismo, sino parte de un cromosoma que provisionalmente consta de dos cromátidas. En animales y plantas, pero no siempre en hongos o protistas, la envoltura nuclear que separa el ADN del citoplasma se desintegra, desapareciendo la frontera que separaba el contenido nuclear del citoplasma. Los cromosomas se ordenan en el plano ecuatorial de la célula, perpendicular a un eje definido por un huso acromático. Éste es una estructura citoesquelética compleja, de forma ahusada, constituido por fibras que son filamentos de microtúbulos. Las fibras del huso dirigen el reparto de las cromátidas hermanas, una vez producida su separación, hacia los extremos del huso. Por convenio científico, a partir de este momento cada cromátida hermana sí se considera un cromosoma completo, y empezamos a hablar de cromosomas hermanos para referirnos a las estructuras idénticas que hasta ese momento llamábamos cromátidas. Como la célula se alarga, las fibras del huso “tiran” por el centrómero a los cromosomas hermanos dirigiéndolos cada uno a uno de los polos de la célula. En las mitosis más comunes, llamadas abiertas, la envoltura nuclear se deshace al principio de la mitosis y se forman dos envolturas nuevas sobre los dos grupos cromosómicos al acabar. En las mitosis cerradas, que ocurren por ejemplo en levaduras, todo el reparto ocurre dentro del núcleo, que finalmente se estrangula para formar dos núcleos separados.4 Se llama cariocinesis a la formación de los dos núcleos con que concluye habitualmente la mitosis. Es posible, y ocurre en ciertos casos, que el reparto mitótico se produzca sin cariocinesis (endomitosis) dando lugar a un núcleo con el material hereditario duplicado (doble número de cromosomas). La mitosis se completa casi siempre con la llamada citocinesis o división del citoplasma. En las células animales la citocinesis se realiza por estrangulación: la célula se va estrechando por el centro hasta que al final se separa en dos. En las células de las plantas se realiza por tabicación, es decir, las células hijas “construyen” una nueva región de pared celular que dividirá la una de la otra dejando puentes de citoplasma (plasmodesmos). Al final, la célula madre se parte por la mitad, dando lugar a dos células hijas, cada una con una copia equivalente y completa del genoma original. Cabe señalar que las células procariotas experimentan un proceso similar a la mitosis llamado fisión binaria. No se puede considerar que las células procariotas experimenten mitosis, dado que carecen de núcleo y únicamente tienen un cromosoma sin centrómero.5

[editar] Fases del ciclo celular

Diagrama mostrando los cambios que ocurren en los centrosomas y el núcleo de una célula en el proceso de la división mitótica. I a III, profase; IV, prometafase; V,metafase; VI y VII, anafase; VII y VIII, telofase. La división de las células eucarióticas es parte de un ciclo vital continuo, el ciclo celular, en el que se distinguen dos períodos mayores, la interfase, durante la cual se produce la duplicación del ADN, y la mitosis, durante la cual se produce el reparto idéntico del material antes duplicado. La mitosis es una fase relativamente corta en comparación con la duración de la interfase.

[editar] Interfase Artículo principal: Interfase

La célula está ocupada en la actividad metabólica preparándose para la mitosis (las próximas cuatro fases que conducen e incluyen la división nuclear). Los cromosomas no se disciernen claramente en el núcleo, aunque una mancha oscura llamada nucleolo, puede ser visible. La célula puede contener un centrosoma con un par de centriolos (o centros de organización de microtúbulos en los vegetales) los cuales son sitios de organización para los microtúbulos.2

[editar] Profase Artículo principal: Profase

Profase: Los dos centros de origen de los microtúbulos (en verde) son los centrosomas. La cromatina ha comenzado a condensarse y se observan las cromátidas (en azul). Las estructuras en color rojo son los cinetocoros. (Micrografía obtenida utilizando marcajes fluorescentes). Es la fase más larga de la mitosis. Se produce en ella la condensación del material genético (ADN, que en interfase existe en forma de cromatina), para formar unas estructuras altamente organizadas, los cromosomas. Como el material genético se ha duplicado previamente durante la fase S, los cromosomas replicados están formados por dos cromátidas, unidas a través del centrómero por moléculas de cohesinas. Uno de los hechos más tempranos de la profase en las células animales es duplicación del centrosoma; los dos centrosomas hijos (cada uno con dos centriolos) migran entonces hacia extremos opuestos de la célula. Los centrosomas actúan como centros organizadores de microtúbulos, controlando la formación de unas estructuras fibrosas, los microtúbulos, mediante la polimerización de tubulina soluble.6 De esta forma, el huso de una célula mitótica tiene dos polos que emanan microtúbulos. En la profase tardía desaparece el nucléolo y se desorganiza la envoltura nuclear. [editar] Prometafase Artículo principal: Prometafase Véase también: Cinetocoro # Sección: Anclaje de los cromosomas a los MTs del huso

mitótico

Prometafase: La membrana nuclear se ha disuelto, y los microtúbulos (verde) invaden el espacio nuclear. Los microtúbulos pueden anclar cromosomas (azul) a través de los cinetocoros (rojo) o interactuar con microtúbulos emanados por el polo opuesto. La membrana nuclear se desensambla y los microtúbulos invaden el espacio nuclear. Esto se denomina mitosis abierta, y ocurre en una pequeña parte de los organismos multicelulares. Los hongos y algunos protistas, como las algas o las tricomonas, realizan una variación denominada mitosis cerrada, en la que el huso se forma dentro del núcleo o sus microtúbulos pueden penetrar a través de la membrana nuclear intacta.7 8 Cada cromosoma ensambla dos cinetocoros hermanos sobre el centrómero, uno en cada cromátida. Un cinetocoro es una estructura proteica compleja a la que se anclan los microtúbulos.9 Aunque la estructura y la función del cinetocoro no se conoce completamente, contiene varios motores moleculares, entre otros componentes.10 Cuando un microtúbulo se ancla a un cinetocoro, los motores se activan, utilizando energía de la hidrólisis del ATP para "ascender" por el microtúbulo hacia el centrosoma de origen. Esta actividad motora, acoplada con la polimerización/despolimerización de los microtúbulos, proporcionan la fuerza de empuje necesaria para separar más adelante las dos cromátidas de los cromosomas.10 Cuando el huso crece hasta una longitud suficiente, los microtúbulos asociados a cinetocoros empiezan a buscar cinetocoros a los que anclarse. Otros microtúbulos no se asocian a cinetocoros, sino a otros microtúbulos originados en el centrosoma opuesto para formar el huso mitótico.11 La prometafase se considera a veces como parte de la profase.

Metafase: Los cromosomas se encuentran alineados en la placa metafásica. [editar] Metafase Artículo principal: Metafase Véase también: Checkpoint de mitosis

A medida que los microtúbulos encuentran y se anclan a los cinetocoros durante la prometafase, los centrómeros de los cromosomas se congregan en la "placa metafásica" o "plano ecuatorial", una línea imaginaria que es equidistante de los dos centrosomas que se encuentran en los dos polos del huso.11 Este alineamiento equilibrado en la línea media del huso se debe a las fuerzas iguales y opuestas que se generan por los cinetocoros hermanos. El nombre "metafase" proviene del griego μετα que significa "después." Dado que una separación cromosómica correcta requiere que cada cinetocoro esté asociado a un conjunto de microtúbulos (que forman las fibras cinetocóricas), los cinetocoros que no están anclados generan una señal para evitar la progresión prematura hacia anafase antes de que todos los cromosomas estén correctamente anclados y alineados en la placa metafásica. Esta señal activa el checkpoint de mitosis.12

Anafase: los microtúbulos anclados a cinetocoros se acortan y los dos juegos de cromosomas se aproximan a cada uno de los centrosomas.

[editar] Anafase Artículo principal: Anafase

Cuando todos los cromosomas están correctamente anclados a los microtúbulos del huso y alineados en la placa metafásica, la célula procede a entrar en anafase (del griego ανα que significa "arriba", "contra", "atrás" o "re-"). Entonces tienen lugar dos sucesos. Primero, las proteínas que mantenían unidas ambas cromatidas hermanas (las cohesinas), son cortadas, lo que permite la separación de las cromátidas. Estas cromátidas hermanas, que ahora son cromosomas hermanos diferentes, son separados por los microtúbulos anclados a sus microtúbulos al desensamblarse, dirigiéndose hacia los centrosomas respectivos. A continuación, los microtúbulos no asociados a cinetocoros se alargan, empujando a los centrosomas (y al conjunto de cromosomas que tienen asociados) hacia los extremos opuestos de la célula. Este movimento parece estar generado por el rápido ensamblaje de los microtúbulos.13 Estos dos estadios se denominan a veces anafase temprana (A) y anafase tardía (B). La anafase temprana viene definida por la separación de cromátidas hermanas, mientras que la tardía por la elongación de los microtúbulos que produce la separación de los centrosomas. Al final de la anafase, la célula ha conseguido separar dos juegos idénticos de material genético en dos grupos definidos, cada uno alrededor de un centrosoma.

Telofase: Los cromosomas decondensados están rodeados por la membrana nuclear. [editar] Telofase Artículo principal: Telofase

La telofase (del griego τελος, que significa "finales") es la reversión de los procesos que tuvieron lugar durante profase y prometafase. Durante la telofase, los microtúbulos no unidos a cinetocoros continúan alargándose, estirando aún más la célula. Los cromosomas hermanos se encuentran cada uno asociado a uno de los polos. La membrana nuclear se reforma alrededor de ambos grupos cromosómicos, utilizando fragmentos de la

membrana nuclear de la célula original. Ambos juegos de cromosomas, ahora formando dos nuevos núcleos, se descondensan de nuevo en cromatina. La cariocinesis ha terminado, pero la división celular aún no está completa. [editar] Citocinesis Artículo principal: Citocinesis

La citocinesis es un proceso independiente, que se inicia simultáneamente a la telofase. Técnicamente no es parte de la mitosis, sino un proceso aparte, necesario para completar la división celular. En las células animales, se genera un surco de escisión (cleavage furrow) que contiene un anillo contráctil de actina en el lugar donde estuvo la placa metafásica, estrangulando el citoplasma y aislando así los dos nuevos núcleos en dos células hijas.14 Tanto en células animales como en plantas, la división celular está dirigida por vesículas derivadas del aparato de Golgi, que se mueven a lo largo de los microtúbulos hasta la zona ecuatorial de la célula.15 En plantas esta estructura coalesce en una placa celular en el centro del fragmoplasto y se desarrolla generando una pared celular que separa los dos núcleos. El fragmoplasto es una estructura de microtúbulos típica de plantas superiores, mientras que algunas algas utilizan un vector de microtúbulos denominado ficoplasto durante la citocinesis.16 Al final del proceso, cada célula hija tiene una copia completa del genoma de la célula original. El final de la citocinesis marca el final de la fase M.

Esquema resumen de las distintas fases de la división celular: profase, prometafase, metafase, anafase, telofase y citocinesis.

[editar] Consecuencias de la mitosis Mediante el proceso mitótico, el material genético se divide en dos núcleos idénticos, con lo que las dos células hijas que resultan si se produce la división del citoplasma (ver citocinesis) serán genéticamente idénticas. Por tanto, la mitosis es un proceso de división conservativo, ya que el material genético se mantiene de una generación celular a la siguiente. La mayor parte de la expresión génica se detiene durante la mitosis, pero mecanismos epigenéticos funcionan durante esta fase, para "recordar" los genes que estaban activos antes de entrar en mitosis y transmitirlos a las células hijas.17

[editar] Errores en la mitosis Aunque los errores en la mitosis son bastante poco frecuentes, este proceso puede fallar, especialmente durante las primeras divisiones celulares en el cigoto. Los errores mitóticos pueden ser especialmente peligrosos para el organismo, porque el descendiente futuro de la célula madre defectuosa mantendrá la misma anomalía.

Un cromosoma puede no separarse durante la anafase. Este fenómeno se denomina "nodisyunción". Si esto ocurre, una célula hija recibirá dos cromosomas hermanos y la otra se quedará sin ninguno. Esto da lugar a que una célula tenga tres cromosomas que codifiquen la misma cosa (dos hermanos y un homólogo), una condición conocida como trisomía, y la otra célula, que solamente tiene un cromosoma (el cromosoma homólogo), tendrá monosomía. Estas células se consideran aneuploides, y la aneuploidía puede causar inestabilidad genética, un hecho frecuente en cáncer.18 La mitosis es un proceso traumático. La célula pasa por cambios drásticos en su estructura, algunos orgánulos se desintegran y se reconstruyen en cuestión de horas, y los microtúbulos tiran constantemente de los cromosomas. Por tanto, en ocasiones los cromosomas pueden dañarse. Un brazo del cromosoma se puede romper y perder un fragmento, causando deleción. El fragmento puede incorporarse incorrectamente a otro cromosoma no homólogo, causando translocación. Se puede integrar de nuevo al cromosoma original, pero en una orientación inversa, causando inversión. O se puede tratar erróneamente como un cromosoma separado, causando duplicación cromosómica. Una parte de estos errores pueden detectarse por alguno de los puntos de control existentes a través del ciclo celular, lo cual produce una parada en la progresión celular, dando tiempo a los mecanismos reparadores a corregir el error. Si esto no ocurre, el efecto de estas anormalidades genéticas dependerá de la naturaleza específica del error. Puede variar de una anomalía imperceptible, a carcinogénesis o a la muerte del organismo.

[editar] Endomitosis La endomitosis es una variante de la mitosis sin división nuclear o celular, lo que dá lugar a células con muchas copias del mismo cromosoma en el mismo núcleo. Este proceso también se denomina endoreduplicación, y las células resultantes endoploides.19 Un ejemplo de una célula que sufre endomitosis es el megacariocito.20

[editar] Véase también • • • • • •

Ciclo celular Citocinesis Citoesqueleto Cromatina División celular Meiosis

[editar] Referencias 1. ↑ Rubenstein, Irwin, and Susan M. Wick. "Cell." World Book Online Reference Center. 2008. 12 January 2008 2. ↑ a b Blow J, Tanaka T (2005). «The chromosome cycle: coordinating replication and segregation. Second in the cycles review series» EMBO Rep. Vol. 6. n.º. 11. pp. 1028–34. DOI 10.1038/sj.embor.7400557. PMID 16264427.

3. ↑ Zhou J, Yao J, Joshi H (2002). «Attachment and tension in the spindle assembly checkpoint» J Cell Sci. Vol. 115. n.º. Pt 18. pp. 3547–55. DOI 10.1242/jcs.00029. PMID 12186941. 4. ↑ De Souza CP, Osmani SA (2007). «Mitosis, not just open or closed» Eukaryotic Cell. Vol. 6. n.º. 9. pp. 1521–7. DOI 10.1128/EC.00178-07. PMID 17660363. 5. ↑ Nanninga N (2001). «Cytokinesis in prokaryotes and eukaryotes: common principles and different solutions» Microbiol Mol Biol Rev. Vol. 65. n.º. 2. pp. 319–33. DOI 10.1128/MMBR.65.2.319-333.2001. PMID 11381104. 6. ↑ Mayor, T. Meraldi, P.,Nivela, Stierhof, Y.D., Nigg, E.A., Fry, A.M. (1999). «Protein kinases in control of the centrosome cycle» FEBS Lett.. Vol. 452. n.º. 1-2. 92-95. [1] 7. ↑ Heywood P. (1978). «Ultrastructure of mitosis in the chloromonadophycean alga Vacuolaria virescens» J Cell Sci.. Vol. 31. pp. 37–51. PMID 670329. 8. ↑ Ribeiro K, Pereira-Neves A, Benchimol M (2002). «The mitotic spindle and associated membranes in the closed mitosis of trichomonads» Biol Cell. Vol. 94. n.º. 3. pp. 157–72. DOI 10.1016/S0248-4900(02)01191-7. PMID 12206655. 9. ↑ Chan G, Liu S, Yen T (2005). «Kinetochore structure and function» Trends Cell Biol. Vol. 15. n.º. 11. pp. 589–98. DOI 10.1016/j.tcb.2005.09.010. PMID 16214339. 10. ↑ a b Maiato H, DeLuca J, Salmon E, Earnshaw W (2004). «The dynamic kinetochore-microtubule interface» J Cell Sci. Vol. 117. n.º. Pt 23. pp. 5461– 77. DOI 10.1242/jcs.01536. PMID 15509863. 11. ↑ a b Winey M, Mamay C, O'Toole E, Mastronarde D, Giddings T, McDonald K, McIntosh J (1995). «Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle» J Cell Biol. Vol. 129. n.º. 6. pp. 1601– 15. DOI 10.1083/jcb.129.6.1601. PMID 7790357. 12. ↑ Burke D.J., Stukenberg P.T. (2008). «Linking Kinetochore-Microtubule Binding to the Spindle Checkpoint.» Developmental Cell. Vol. 14. n.º. 4. 474-479. [2] 13. ↑ Kenneth R. Miller. (2000). «Anaphase» Biology.. pp. 169–170. 14. ↑ Glotzer M (2005). «The molecular requirements for cytokinesis» Science. Vol. 307. n.º. 5716. pp. 1735–9. DOI 10.1126/science.1096896. PMID 15774750. 15. ↑ Albertson R, Riggs B, Sullivan W (2005). «Membrane traffic: a driving force in cytokinesis» Trends Cell Biol. Vol. 15. n.º. 2. pp. 92–101. DOI 10.1016/j.tcb.2004.12.008. PMID 15695096. 16. ↑ Raven, Peter H.; Ray F. Evert, Susan E. Eichhorn (2005). Biology of Plants, 7th Edition. New York: W.H. Freeman and Company Publishers, pp. 64–67, 328– 329. ISBN 0-7167-1007-2. 17. ↑ Zhou G, Liu D, Liang C (2005). «Memory mechanisms of active transcription during cell division» Bioessays. Vol. 27. n.º. 12. pp. 1239–45. DOI 10.1002/bies.20327. PMID 16299763. 18. ↑ Draviam V, Xie S, Sorger P (2004). «Chromosome segregation and genomic stability» Curr Opin Genet Dev. Vol. 14. n.º. 2. pp. 120–5. DOI 10.1016/j.gde.2004.02.007. PMID 15196457. 19. ↑ Lilly M, Duronio R (2005). «New insights into cell cycle control from the Drosophila endocycle» Oncogene. Vol. 24. n.º. 17. pp. 2765–75. DOI 10.1038/sj.onc.1208610. PMID 15838513. 20. ↑ Italiano JE, Shivdasani RA (2003). «Megakaryocytes and beyond: the birth of platelets» J. Thromb. Haemost.. Vol. 1. n.º. 6. pp. 1174–82. DOI 10.1046/j.15387836.2003.00290.x. PMID 12871316.

[editar] Enlaces externos Wikimedia Commons alberga contenido multimedia sobre Mitosis.



Obtenido de "http://es.wikipedia.org/wiki/Mitosis" Categorías: Mitosis | Ciclo celular Categoría oculta: Wikipedia:Artículos buenos en w:en Vistas • • • •

Artículo Discusión Editar Historial

Herramientas personales • •

Probar Beta

Registrarse/Entrar

Buscar

Navegación • • • • • • •

Portada Portal de la comunidad Actualidad Cambios recientes Página aleatoria Ayuda Donaciones

Imprimir/exportar • • •

Crear un libro Descargar como PDF Versión para imprimir

Herramientas • • • •

Lo que enlaza aquí Cambios en enlazadas Subir archivo Páginas especiales

• •

Enlace permanente Citar este artículo

En otros idiomas • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

‫العربية‬ Català Česky Dansk Deutsch Ελληνικά English Esperanto Eesti ‫فارسی‬ Français Galego ‫עברית‬ Hrvatski Magyar Bahasa Indonesia Italiano 日本語 한국어 Lietuvių Македонски Nederlands Norsk (bokmål) Polski Português Русский Simple English Slovenčina Slovenščina Српски / Srpski Svenska ไไไ Українська 中文 Bân-lâm-gú

Fisiología celular, Meiosis y Mitosis Enviado por trulopez Fisiología celular

1) RELACION: Esta función permite la interacción con el medio ambiente, y se basa en movimientos internos (ciclosis) o externos (tropismos, taxismos). Ciclosis: Movimiento circulatorio que se produce en el citoplasma por cambios de estado y por acción del citoesqueleto ante estímulos externos. Tropismos: Son movimientos de orientación en el crecimiento de las células vegetales hacia o en contra de un estímulo externo (Ej: fototropismo positivo en hojas y negativo en raíces). Taxismos: Son movimientos de traslación de células animales producido por cilias, flagelos o ameboidales como respuesta a estímulos. 2) REPRODUCCIÓN: Es la propiedad de engendrar organismos similares o iguales asegurando la supervivencia de la especie. Puede ser por mitosis (la célula madre origina 2 células con igual número de cromosomas) o por meiosis (la célula madre origina 4 células con la mitad del número cromosómico). 3) NUTRICIÓN: Es un conjunto de funciones para obtener materia y energía por intercambio con el ambiente. En heterótrofos, las funciones son: ingestión, digestión, asimilación, excreción, respiración y circulación. En autótrofos, son: fotosíntesis, respiración y circulación. Heterótrofos:

A.

Ingestión: La célula incorpora materia por endocitosis, y se forma una vacuola alimenticia. B. Digestión: Un lisosoma primario se acerca a la vacuola alimenticia, se fusionan sus membranas, y se forma un lisosoma secundario. Allí las enzimas digestivas desdoblan las moléculas complejas en simples. C. Circulación: Por la digestión, las proteínas se desdoblan en aminoácidos, los lípidos en ácidos grasos y los hidratos de carbono en monosacáridos. Las moléculas simples ya pueden ser asimiladas, y para ello deben circular por medio de la ciclosis. D. Excreción: Las sustancias no asimilables se acumulan en vacuolas o se fusionan con la membrana plasmática, y por exocitosis expulsan su contenido. E. Respiración: Se produce gracias a la materia y energía obtenidas de los alimentos digeridos. Es el proceso por el cual la glucosa es oxidada CO2 y H2O en presencia de O2, con liberación de energía. Comprende 3 etapas: Glucósis: Se realiza en el citoplasma donde hay enzimas que degradan parcialmente la glucosa, liberando energía (ATP). Ciclo de Krebs: Ocurre en la matriz mitocondrial por una acción enzimática. Se produce liberación de CO2 y energía. Cadena respiratoria: Se produce en las crestas mitocondriales donde hay enzimas que forman la cadena respiratoria. Finalmente, la glucosa es degradada totalmente. Autótrofos:

A.

Fotosíntesis: Los vegetales elaboran glucosa a partir de agua, sales CO2 y energía luminosa captada por la clorofila. Los cloroplastos están formados por tres membranas los tilacoides se apilan formando granas dentro de la matriz, y la clorofila está en la superficie interna de los tilacoides. La fotosíntesis se realiza en el parénquima clorofiliano de las plantas y consta de 2 etapas: lumínica (se realiza en los tilacoides en presencia de luz) y oscura (no necesita luz y ocurre en la matriz).

Fase lumínica: La energía lumínica es captada por la clorofila y transformada en energía química. La energía química se almacena en compuestos como el ADP que al incorporar energía se transforma en ATP. La energía del ATP se utiliza para romper la molécula de agua y separarla en H2 y O2, proceso de hidrólisis. El O2 sale por los estomas y el H2 queda detenido en un compuesto que actúa como aceptor de H2. Fase oscura: Se utiliza la energía acumulada en el ATP, el cual cede un ácido fosfórico y origina ADP, liberando energía. Los aceptores ceden el H2 que se combina con el CO2 usando energía del ATP. Esa combinación origina glucosa. Este proceso se llama ciclo de Calvin. A partir de la glucosa se originan azúcares (almidón y sacarosa) o lípidos (que se acumulan en oleoplastos) o proteínas (en proteoplastos). El transporte de estas sustancias se realiza por el floema.

B.

Circulación: Responde a la teoría tenso-ccheso-transpiratoria. El agua entra en la raíz por ósmosis, atraviesa la epidermis (rizodermis), pasa al apénquima cortical, y luego entra en el xilema, que se encargará de distribuir el agua las sales a toda la planta. Para que el agua ascienda requiere de cohesión de sus moléculas que se unen formando columnas, las cuales permanecen unidas e todo su recorrido por los vasos del xilema. Cuando la planta transpira por los estomas, se genera un vacío temporario en los vasos xilemáticos que sufren una tensión que hacen ascender la columna de agua. El floema es otro tejido conductor compuesto por células vivas y paralelo al xilema, que transporta la glucosa desde la hoja hasta el resto del vegetal (camino adverso del xilema).

Mitosis Es la división celular que consiste en que a partir de una célula se obtienen 2 células hijas, genéticamente idénticas a la madre. Se produce en cualquier célula eucarionte, ya sea diploide o haploide y como mantiene invariable el número de cromosomas, las células hijas resultarán diploides, si la madre era diploide o alploide. La división del citoplasma se llama citocinesis, y la división del núcleo, cariocinesis. Algunas células no realizan mitosis y permanencen en un estado interfásico, pero otras la realizan frecuentemente (células embrionarias, células de zonas de crecimiento, células de tejidos sujetos a desgaste.). Función: crecimiento y desarrollo del organismo multicelular, y la regeneración de tejidos expuestos a destrucción de células. En unicelulares, cumple la función de reproducción asexual. Cada mitosis está precedida por una interfase, donde se produce la duplicación del material genético. Actúa como un mecanismo que asegura que cada célula hija reciba la misma información genética. Etapas: Profase, Prometafase, Metafase, Anafase y Telofase.

1. PROFASE: La cromatina se condensa para formar los cromosomas y los 2 centríolos migran a polos opuestos organizando un sistema de microtóbulos (aparato mitótico) para permitir la migración de los cromosomas. El aparato mitótico está constituído por: •

Centríolos: Están rodeadas por el centrosoma. A medida que cada centríolo migra, tiene un hijo y cuando llega al polo se ven 2. • Ásteres: Conjunto de microtóbulos cortos que se extienden desde cada centríolo.



Huso acromático: Tiene forma de ovoide y formado por muchos microtóbulos sin ramificaciones. Cada cromosoma está constituido por 2 cromátidas unidas por el centrómero. La envoltura nuclear se desorganiza y sus fragmentos no se distinguen del retículo endoplasmático. Desaparece el nucleolo.

1. PROMETAFASE: Los cromosomas condensados migran hacia la placa ecuatorial del huso acromático. 2. METAFASE: Los cromosomas se alínean en el plano ecuatorial, y cada uno están unido por su centrómero a una fibra del huso acromático. 3. ANAFASE: Las 2 cromátides de cada cromosoma se separan por fisión del centrómero y se dirigen hacia polos opuestos. El movimiento de los cromosomas hijos hacia los polos se debe a un acortamiento de las fibras cromosómicas y se alargan las fibras interzonales. 4. TELOFASE: El huso mitótico y los ásteres se desorganizan. Alrededor de cada grupo cromosómico se organiza una envoltura nuclear a partir del re´ticulo endoplasmático y de la envoltura original. Los cromosomas se dispersan y retoman el aspecto de cromatina que tenían antes de iniciarse la división. Los nucleolos reaparecen a partir de sus organizadores. Citocinesis: 1. La división del citoplasma se produce junto con la telofase. Se produce un surco en la membrana plasmática, producidom por un anillo de mocrofilamentos unidos a ella. Las 2 células hijas se serparan, distribuyéndose el hialoplasma y los orgamelos de un modo equitativo. 2. Cuando no ocurre citocinesis luego de la caruccinesis, los dos núcleos quedan en el mismo citoplasma y resulta una célula binucleada. División en células vegetales: • •

No hay centríolos ni ásteres pero se organiza el huso acromático. Citocinesis: el citoplasma se divide mediante un tabique, que se forma por la agrupación de microtóbulos y vescículas. Las vescículas crecen, se ordenan y se funden entre sí originando la placa celular. Finalmente se arman las paredes celulares a partir de celulosa, hemicelulosa y pectina. Meiosis Es un proceso de reducción cromática por el que los cromosomas se reducen a la mitad. En la meiosis I (etapa reduccionaria) se reduce el número diploide de cromosomas a la mitad (haploide) pero aún los cromosomas son dobles. En la meiosis II (etapa ecuacional) se mantiene el número cromosómico haploide conseguido en la etapa anterior. Los cromosomas son simples. •

Meiosis I: Está precedida por una interfase durante la cual se duplica el materialo genético. 1. PROFASE I: La envoltura nuclear y el nucleolo se desorganizan, los centríolos migran a polos oppuestos, duplicándose y se ordena el huso acromáticop. Se divide en 5 etapas: Leptonema, Cigonema, Paquinema, Diplonema y Diacinesis. 2. PROMETAFASE I: Los cromosomas migran al plano ecuatorial de la célula.

3. METAFASE I: Los cromosomas se alinean en el plano ecuatorial. Los 2 cromosomas del bivalente se unen por medio del centrómero a la misma fibra del uso acromático. 4. ANAFASE I: Los 2 cromosomas homólogos unidos a la misma fibra dek huso se repelen y migran a polos opuestos. Cada cromosoma está formado por 2 cromatimas. 5. TELOFASE I: Cuando los cromosomas llegaron a los polos, se desorganizan el huso acromático y los ásteres, se reprganizan la envoltura nuclear y los nucleolos y se constituyen los núcleos hijos. Citocinesis: Se produce simultáneamentye con la telofase, y da como resultado 2 célula hijas con un número haploide de cromosomas. Intercinesis: Es un período que tiene lugar entre la meiosis I y II y no se realiza duplicación del ADN. •

Meiosis II: Los procesos de esta división son semejantes a los de una mitosis en una célula haploide. 1. PROFASE II: Se condensan los cromosomas, se desintegran los nucleolos, los centríolos migran a los polos y se duplican, formación del huso acromático y se desorganiza la envoltura nuclear. 2. PROMETAFASE II: Los cromosomas condensados migran a la placa ecuatorial de la célula. 3. METAFASE II: Los cromosomas se alinean en la placa ecuatorial, y cada cromosoma se une a una fibra del huso acromático. 4. ANAFASE II: Se fusiona el centrómero y se separan las 2 cromátidas de cada cromosoma. Cada una migra a un polo diferente. 5. TELOFASE II: Los grupos cromosómicos llegan a los polos, el huso acromático se desorganiza, se reorganizan la envoltura nuclear y el nucleolo, se dispersan los cromosomas y se transforman en cromatina. Citocinesis: Separación de los citoplasmas de las células hijas. El proceso melótico parte de una célula diploide que da como resultado 2 haploides, y a partir de éstas dos (melosis II) se obtienen 4 haploides. Melosis, variabilidad genética y evolución La reproducción sexual introduce una importante proporción de variaciones genéticas. Cuanto mayor sea la diversidad de gametas formadas en cada progenitor, mayor será la probabilidad de originar combinaciones diferentes por fecundación, y mayor será la diversidad de los descendientes. Una célula diploide, con 2 pares de cromosomas homólogos, originará por melosis 4 gametas haploides (uno de la madre y otro del padre). En la Metafase I se va a determinar en qué sentido migrarán en la Anafase I. Hay dos opciones: 1. Puede ocurrir que los 2 cromosomas paternos migren juntos a un polo y los dos maternos al opuesto. 2. Puede ocurrir que migren al mismo polo el cromosoma materno del par homólogo y el paterno del par homólogo. Los otros cromosomas, migran al polo opuesto. Trabajo realizado por:

Facundo López trulopez[arroba]netverk.com.ar

E-mail:

Regístrese gratis

Contraseña: Recordarme en este equipo

¿Olvidó su contraseña? Ayuda

Comentarios Para dejar un comentario, regístrese gratis o si ya está registrado, inicie sesión. Agregar un comentario Enviar comentario Los comentarios están sujetos a los Términos y Condiciones

LA MITOSIS • • • • •

Significado biológico de la mitosis El ciclo celular Las fases de la Mitosis Duración y medida del ciclo celular Alteraciones del ciclo celular

Significado Biológico de la Mitosis Todos los organismos vivos utilizan la división celular, bien como mecanismo de reproducción, o como mecanismo de crecimiento del individuo. Lo seres unicelulares utilizan la división celular para la reproducción y perpetuación de la especie, una célula se divide en dos células hijas genéticamente idénticas entre sí e idénticas a la original, manteniendo el número cromosómico y la identidad genética de la especie. En organismos pluricelulares la división celular se convierte en un proceso cíclico destinado a la producción de múltiples células, todas idénticas entre sí, pero que posteriormente pueden derivar en una especialización y diferenciación dentro del individuo. Desde un punto de vista puramente evolutivo un organismo unicelular es simplemente una estructura dentro de la cual se realizan las funciones vitales básicas de nutrición y reproducción. Las únicas presiones selectivas son la adquisición de alimento y las fuerzas de tensión superficial. El organismo unicelular debe por tanto aislarse del medio mediante una membrana o pared que le permita adquirir alimento a la vez que soporte las fuerzas de tensión superficial del medio en que se desarrolla. Dicho organismo, en su lucha contra el medio, y para poder crecer y optimizar sus funciones, va adquiriendo nuevas

funciones como la excreción, la relación, etc, para ello va adquiriendo o desarrollando diversos orgánulos, pero llega un momento en que la célula no podría albergar en su interior tantos orgánulos y funciones, pues la presión del medio impediría que la célula adquiriera el tamaño y volumen necesario para ello. Bajo este supuesto los organismos evolucionan convirtiéndose de unicelulares a pluricelulares, así cada célula puede especializarse en diversas funciones y diferenciarse en un trabajo específico. Los organismos pasan de luchar contra las fuerzas de tensión superficial, a combatir contra la fuerza de la gravedad, para ello se convierten en organismos pluricelulares, en el cual las células se agrupan en tejidos, órganos y sistemas, cada uno especializado en una función determinada y cada célula diferenciada en realizar una actividad concreta. Para un organismo pluricelular, la división celular es un mecanismo cíclico el cual le permite el aumento del número de células, y a partir de esas células lograr una especialización y una funcionalidad concreta.

El Ciclo Celular Cuando una célula se divide en dos, uno ambos productos de la división pueden volver a dividirse, estableciéndose de esta forma un ciclo de división celular, el período entre dos mitosis consecutivas, se denomina interfase. El estado normal de una célula es con los cromosomas en estado de un cromatidio, es decir en estado de una doble hélice de ADN. Indudablemente para que una estructura pueda dividirse en dos exactamente iguales, esta estructura ha de estar duplicada, es decir todos sus componente repetidos y separados en estructuras diferenciadas. El cromosoma antes de dividirse debe pasar a un estado en el que posea dos cromatidios, genéticamente idénticos. La duplicación del materia genético ha de ser previo a la división celular.

En la interfase del ciclo de división celular podemos distinguir tres períodos: G1.- Es un estadío que se caracteriza por ser genéticamente activo, el ADN se transcribe y se traduce, dando lugar a proteínas necesarias para la vida celular y sintetizando las enzimas y la maquinaria necesaria para la síntesis del ADN.

Fase S.- Es la fase en la cual se duplica por entero el material hereditarios, el cromosoma pasa de tener un cromatidio a tener dos, cada uno de ellos compuesto por una doble hélice de ADN producto de la duplicación de la original, como la replicación del ADN es semiconservativa, las dos dobles hélices hijas serán exactamente iguales, y por tanto los cromatidios hermanos, genéticamente idénticos. G2.- Durante este período se ultima la preparación de todos los componentes de la división celular, al final de esta fase, se produce una señal que dispara todo el proceso de la división celular.

La división celular se compone de dos partes, la división del núcleo (cariocinesis, o mitosis) y la del citoplasma (citocinesis). La división del núcleo es exacta, se reparte equitativamente el material hereditario, mientras que la citocinesis puede no serlo, es decir el reparto de orgánulos citoplásmicos y el tamaño de las dos células puede no ser equitativo ni igual. Durante la mitosis el ADN va a estar totalmente empaquetado y supernrollado, inaccesible a polimerasas y transcriptasas, es por ello que toda la actividad funcional del ADN ha de realizarse en la interfase previa a la cariocinesis. Al final de la mitosis, la célula entra en interfase, si esa célula ya no se va a dividir más, entra en lo que se denomina período G0, si por el contrario esa célula va a volver a dividirse entra de nuevo en el período G1 previo a la síntesis del ADN, e iniciándose un nuevo ciclo de división celular.

Fases de la mitosis De una forma tradicional y basándose en aspectos morfológicos observados al microscopio óptico, la mitosis suele dividirse en 4 fases o estadíos Profase, Metafase, anafase y Telofase. Aunque esta diferenciación es correcta, y se corresponde con etapas concretas de la cariocinesis, no hemos de pensar que ello ocurre en etapas diferenciadas, sino más bien en un proceso totalmente continuo, sin pausa en el tiempo, y que todo se engloba en un ciclo de la célula. Durante la interfase, el núcleo eucariótico aparece encerrado dentro de la membrana nuclear, con el nucleolo perfectamente diferenciado y con una fibra de cromatina, fácilmente observable por su facilidad para teñirse. La fibra de cromatina contiene el ADN y las proteínas asociadas al mismo, su aspecto es similar al de una madeja de hilo o lana, totalmente indiferenciado. Es una fibra muy larga y fina, a manera de ejemplo la fibra de cromatina de un núcleo humano mide aproximadamente 2 metros. Aunque al microscopio óptico es imposible diferenciarlo, realmente esta fibra está organizada en unas estructuras individuales que son los cromosomas, lo que ocurre es que al estar desespiralizados y descondensados dentro del núcleo, parece como si todo

fuera una estructura única. Cromatina y cromosoma son genéticamente lo mismo, el material hereditario, ADN unido a proteínas. Durante la interfase el cromosoma pasa de estar compuesto por un sólo cromatidio (G1), a tener dos cromatidios (G2), ya hemos dicho anteriormente que esto ocurre durante la Fase de síntesis (S).

Interfase Celular antes de la división Al final del período G2, empieza la mitosis, y la cromatina sufre una progresiva condensación debido al superempaquetamiento y superenrrollamiento de los cromosomas. Esto es el principio de la profase mitótica. Según avanza la profase, los cromosomas van individualizándose y van apareciendo como estructuras perfectamente diferenciadas dentro del núcleo celular. Este empaquetamiento de la cromatina es fácilmente entendible desde un punto de vista funcional del proceso. Pensemos en esa madeja de la que hablábamos al principio de la profase, separar todo ese material sería muy difícil, es más sencillo si todo esta condensado, individualizado, y las dos partes a separar (en este caso los cromatidios) perfectamente diferenciadas. Mientras los cromosomas continúan condensándose y haciéndose visible su estructura de dos cromatidios, en el citoplasma y más concretamente en dos polos opuestas del mismo, se van organizando unos centros emisores de microtúbulos. El nucleolo desaparece y la membrana nuclear se rompe y disgrega. De esta forma esos microtúbulos puenden entrar en contacto con las regiones centroméricas de los cromosomas y unirse a los cinetocoros. Este haz de microtúbulos es lo que se denomina huso mitótico o huso acromático debido a su forma fusiforme. Cada uno de los cinetocoros de cada cromatidio empieza a captar estos microtúbulos, como consecuencia de ello el cromosoma se mueve por el citoplasma en movimientos de polarización u orientación (cada cromatidio se orienta hacia un polo celular) y de congresión: cada cinetocoro capta micrtúbulos de un polo, su hermano del polo contrario, por fuerzas de tensión el cromosoma se mueve hacia uno u otro polo, cuando el número de microtúbulos captado por cada cinetocoro hermano es aproximadamente igual, las fuerzas de tensión se equilibran y el cromosoma tiende a quedarse en el centro de la célula, al ocurrir este fenómeno en todos los cromosomas, decimos que se produce una congresión de los cromosomas en el centro de la célula, en la zona del ecuador de la misma.

Profase mitótica

Metafase mitótica

Esta congresión de todos los cromosmas en la placa ecuatorial de la célula es lo que denominamos metafase, los cromosomas además de estar en el centro, estan orientados anfitélicamente, esto es, los dos cromatidios orientados hacia polos opuestos de la célula. Algunos autores distinguen una fase intermedia de la mitosis, entre la profase y la metafase. Dicha fase se denomina prometafase y estaría comprendida desde que los microtúbulos entran en contacto con los cinetocoros hasta que se forma la placa ecuatorial con los cromosomas dispuestos en ella. Cuando todos los cromosomas están dispuestos en la placa ecuatorial, se produce una nueva señal en la célula, que produce que cada cinetocoro hermano sea arrastrado hacia un polo distinto de la célula. Esta separación de cinetocoros conlleva la separación de los cromatidios hermanos, con lo cual el cromosoma se escinde en sus dos cromatidios y cada uno de ellos migra hacia un polo celular distinto. Como cada cromatido es genéticamente igual a su hermano a cada polo celular se dirige una idéntica información genética. Esta es la fase que denominados Anafase, y que se caracteriza por la separación y migración de cromatidios hermanos a polos opuestos celulares. Cuando este viaje anafásico se culmina, tenemos dos núcleos opuestos e idénticos, que empiezan a ir adoptando la situación primigenia de la interfase. La cromatina empieza a descondensarse, el nucleolo y la membrana nuclear vuelven a recontruirse, se forman dos núcleos hijos. Esto es lo que denominamos Telofase y con ella termina propiamente la cariocinesis.

Anafase mitótica

Telofase mitótica

Para que la división celular se complete ha de formarse un tabique o pared que aísle los dos núcleos, esto se produce durante la citocinesis o división del citoplasma.

Interfase postmitótica

Duración y medida del ciclo celular La estimación de la duración o medida del ciclo celular se realiza mediante la utilización de algún tipo de marcaje celular y su seguimiento en el tiempo. En un tejido en crecimiento o en un cultivo celular, las células proliferantes no son sincrónicas, no se encuentran en la misma fase. Si miramos al microscopio óptico observamos que hay células en todos los estadíos posibles del ciclo celular. Una primera aproximación de la medida del ciclo celular puede hacerse, contando un determinado número de células (por ejemplo 1000) y viendo cuantas de ellas están en mitosis. Esto es lo que se denomina índice mitótico: número de células en mitosis dividido por número total de células contadas. De igual forma se puede estimar cada uno de los índices de fase, si contamos por ejemplo 100 células en mitosis, los cuatro índices de fase (profase, metafase, anafase y telofase) se calcularían como el número de células en esa fase dividido por el total de células en mitosis contadas, en este caso 100. El cálculo de los índices mitótico y de cada una de las fases, no nos da una medida temporal del ciclo de división celular, sino simplemente una relación entre lo que duran cada una de las fases. Para una medida en escala temporal de días u horas, se suele emplear un marcaje celular y un seguimiento de esas células marcadas. El procedimiento más habitual es marcar las células con timidina tritiada. Si en un tejido o cultivo en proliferación, añadimos al medio timidina tritiada, las células que estén en período de síntesis incorporarán dicho marcaje y podremos distinguirlas del resto debido a su radiactividad. Supongamos que damos un pulso de timidina tritiada de una duración de aproximadamente media hora, y posteriormente vamos tomando muestras cada cierto tiempo (por ejemplo cada una o dos horas) y anotando el porcentaje de células en mitosis (por ejemplo telofases)

que están marcadas. Obtendríamos una gráfica aproximadamente igual a la de este esquema:

Las primeras células marcadas que aparecen, serían las que estaban al final del período S cuando dimos nuestro pulso radiactivo, por lo tanto la duración en horas de la fase G2 + Mitosis (o mas concretamente G2 + profase + metafase + anafase) nos lo marca el tiempo que tardan en aparecer dichas células. Dentro del cultivo o tejido, no todas las células van a la misma velocidad, hay algunas que son más rápidas que otras, esto lo observamos porque no pasamos de un 0 a un 100% de marcaje, sino que tanto el ascenso como el descenso de células marcadas no es brusco sino progresivo. Se ha establecido por convenio por convenio que todos los cálculos se realicen sobre el 50% de marcaje. De esta forma la diferencia entre dos 50% ascendentes será la duración total de un ciclo celular completo. La diferencia en horas entre un 50% descendente y su 50% ascendente previo, nos dará la duración de la fase S ya que este tiempo representa cuantas horas han estado "marcándose" las células. La estima de la fase G1 sería el resultado de restar a la duración del ciclo celular completo, la duración de G2+mitosis y la duración de la fase S

Aunque este método es más exacto y nos da unas medidas en horas, no es realmente exacto, ya que esas medidas dependen de muchos factores, como son las condiciones de temperatura, los nutrientes del medio y también la propia naturaleza del tejido o cultivo en cuestión. En células embrionarias el ciclo es muy corto y la interfase casi se reduce a solamente el período S. Como norma general suele decirse que a mayor vejez celular y a temperaturas más bajas el ciclo celular se alarga, y en células jóvenes y temperaturas altas el ciclo se acorta.

Alteraciones Del Ciclo Celular La mitosis es prácticamente un proceso universal y se realiza prácticamente igual en todos los seres vivos. Sien embargo, bien por fallos en la célula o bien de forma artificial por administración de drogas, podemos observar determinadas alteraciones en el ciclo celular. La alteración natural más común es la endorreduplicación, que consiste en varios períodos de síntesis de ADN sin división celular. Los cromosomas homólogos están perfectamente alineados y juntosy al terminar la fase S del ciclo celular no se entra en mitosis, sino que se inicia una nueva ronda de replicación, así durante 10 períodos, de tal forma que el cromosoma politénico contiene más de 1000 fibras de cromatina. Esta fibra tiene un patrón constante de una alternancia de zonas más o menos condensadas lo que simula una alternancia de bandas e interbandas en el cromosoma. Los cromosomas

politénicos pùeden estar todos juntos por la región centromérica (ej. Drosophila) o permanecer separados en el núcleo celular (ej Chironomus)

Los cromómeros son las regiones más condensadas del cromosoma politénico, cuando una región está muy desespiralizada, se denomina Puff. Estos puff son la expresión citológica de la transcripción del ADN. Cuando estos Puffs son muy grandes se denominan Anillos de Balbiani, (BR o Balbiani Rings), y en fotografías al microscopio electrónico se puede observar a lo largo de la fibra de cromatina en transcripción molécular de polimerasas y ARN cada vez de mayor tamaño.

Dentro de las alteraciones artificiales por administración de drogas, vamos a estudiar tres de ellas que son las más utilizadas en Citogenética. C-mitosis: Se produce por la administración de la droga Colchicina. Esta sustancia inhibe la formación del huso acromático, al llegar a metafase los cromosomas están muy condensados y con los cromatidios separados y en forma de "X" ya que las cromátidas han perdido la cohexividad entre ellas y sólo aparecen unidas por la región del centrómero. Los cromosomas aparecen perfectmente individualizados y se puede apreciar perfectamente su forma, y número. Esta droga se utiliza para resaltar la forma cromosómica y para facilitar el contar el número cromosómico de una célula.

Bi-mitosis: Se produce por la administración de cafeína a tejidos vegetales. La cafeína inhibe la formación del fragmoplasto o tabique de separación celular, no se produce la citocinesis y los dos núcleos permencen separados pero dentro del mismo citoplasma. En la siguiente división los dos núcleos entran de nuevo en mitosis y podemos ver Bi profases, bimetafases, bianafases y bi telofases. Esta droga se utiliza para estudiar controles del ciclo celular y para determinaciones de la duración del ciclo. En una segunda ronda de división bajo los efectos de la cafeína observaríamos la mitosis en células polinucleadas.

Biprofase

Profase

Bimetafase Bianafase

Bitelofase

Células Metafase

Telofase

Polinucleadas Anafase

Mitosis multipolares: Se produce mediante drogas tales como la carbetamida, que producen husos multipolares, los cromosomas no emigran a dos polos opuestos, sino a varios, 3 o 4, produciéndose células con distinto número de cromosomas.

Meiosis De Wikipedia, la enciclopedia libre

Saltar a navegación, búsqueda En biología, meiosis (del griego μείωσις, disminución) es una de las formas de reproducción celular. Es un proceso divisional celular, en el cual una célula diploide (2n) experimentará dos divisiones celulares sucesivas, con la capacidad de generar cuatro células haploides (n). Este proceso se lleva a cabo en dos divisiones nucleares y citoplasmáticas, llamadas primera y segunda división meiótica o simplemente Meiosis I y Meiosis II. Ambas comprenden Profase, Metafase, Anafase y Telofase. Durante la meiosis I, los miembros de cada par homólogo de cromosomas se unen primero y luego se separan y se distribuyen en diferentes núcleos. En la Meiosis II, las cromátidas hermanas que forman cada cromosoma se separan y se distribuyen en los núcleos de las células hijas. Entre estas dos etapas sucesivas no existe la etapa S (duplicación del ADN). La meiosis no siempre es un proceso preciso; a veces los errores en la meiosis son responsables de las principales anomalías cromosómicas. La meiosis consigue mantener constante el número de cromosomas de las células de la especie para mantener la información genética.

Contenido [ocultar]

• •

1 Historia de la meiosis 2 Meiosis y ciclo vital 3 Proceso celular o 3.1 Meiosis I  3.1.1 Profase I  3.1.2 Prometafase I  3.1.3 Metafase I  3.1.4 Anafase I  3.1.5 Telofase I o 3.2 Meiosis II  3.2.1 Profase II  3.2.2 Metafase II  3.2.3 Anafase II  3.2.4 Telofase II 4 Variabilidad genética 5 Anomalías cromosómicas o 5.1 Monosomía o 5.2 Trisomía 6 Véase también 7 Enlaces externos



8 Referencias

• • •

• •

Historia de la meiosis La meiosis fue descubierta y descrita por primera vez en los huevos del erizo de mar en 1876, por el conocido biólogo alemán Oscar Hertwig (1849-1922). Fue descrita otra vez en 1883, en el nivel de cromosomas, por el zoólogo belga Edouard Van Beneden (1846-1910) en los huevos de los gusanos parásitos Ascaris. En 1887, observó que en la primera división celular que llevaba a la formación de un huevo, los cromosomas no se dividían en dos longitudinalmente como en la división celular asexual, sino que cada par de cromosomas se separaba para formar dos células, cada una de las cuales presentaba tan sólo la mitad del número usual de cromosomas. Posteriormente, ambas células se dividían de nuevo según el proceso asexual ordinario. Van Beneden denominó a este proceso “meiosis”. La significación de la meiosis para la reproducción y la herencia, sin embargo, fue descrita solamente en 1890 por el biólogo alemán August Weismann (1834-1914), quien observó que dos divisiones celulares eran necesarias transformar una célula diploide en cuatro células haploides si el número de cromosomas tenía que ser mantenido. En 1911, el genetista estadounidense Thomas Hunt Morgan (1866-1945) observó el entrecruzamiento en la meiosis de la mosca de la fruta, proveyendo la primera interpretación segura y verdadera sobre la meiosis.

Meiosis y ciclo vital La reproducción sexual se caracteriza por la fusión de dos células sexuales haploides para formar un cigoto diploide, por lo que se deduce que, en un ciclo vital sexual, debe ocurrir la meiosis antes de que los gametos puedan reproducirse. En animales y otros pocos organismos, la meiosis precede de manera inmediata a la formación de gametos. Las células del cuerpo somáticas de un organismo individual se multiplican por mitosis y son diploides; las únicas células haploides son los gametos. Estos se forman cuando algunas células de la línea germinativa experimentan la meiosis. La formación de gametos recibe el nombre de gametogénesis. La gametogénesis masculina denominada espermatogénesis da por resultado la formación de cuatro espermatozoides haploides por cada célula que entra en la meiosis. En contraste, la gametogénesis femenina llamada ovogénesis genera un solo óvulo por cada célula que entra en la meiosis por un proceso que asigna virtualmente todo el citoplasma a uno solo de dos núcleos en cada división meiótica. Al final de la primera división meiótica se retiene un núcleo; el otro, llamado primer cuerpo polar, se excluye de la célula y por último degenera. De modo general, al final de la segunda división un núcleo se convierte en el segundo cuerpo polar y el otro núcleo sobrevive. De esta forma, un núcleo haploide pasa a ser el receptor de la mayor parte del citoplasma y los nutrimentos acumulados de la célula meiótica original. Sin embargo, aunque la meiosis se realiza en algún punto de los ciclos vitales sexuales, no siempre precede directamente a la formación de gametos. Muchos eucariontes sencillos (incluso algunos hongos y algas) permanecen haploides (sus células se dividen por

mitosis) la mayor parte de su vida, y los individuos pueden ser unicelulares o pluricelulares. Dos gametos haploides (producidos por mitosis) se fusionan para formar un cigoto diploide, el cual experimenta la meiosis para volver al estado haploide. Los ciclos vitales más complejos se encuentran en vegetales y algunas algas. Estos ciclos vitales, que se caracterizan por alternancia de generaciones, consisten en una etapa diploide multicelular, denominada generación esporófita, y una etapa haploide multicelular, a la que se llama generación gametófita. Las células esporofitas diploides experimentan la meiosis para formar esporas haploides, cada una de las cuales se divide en forma mitótica para producir un gametofito haploide multicelular. Los gametofitos producen gametos por mitosis. Los gametos femeninos y masculinos (óvulo y espermatozoides) se fusionan entonces para formar un cigoto diploide, el cual se divide de manera mitótica para producir un esporofito diploide multicelular.

Proceso celular

Visión general de la meiosis. En la interfase se duplica el material genético, y se produce el fenómeno de la recombinación (representado por cromosomas rojos y azules). En meiosis I los cromosomas homólogos se reparten en dos células hijas. En meiosis II, al igual que en una mitosis, cada cromátida migra hacia un polo. El resultado son 4 células hijas haploides (n). Los pasos preparatorios que conducen a la meiosis son idénticos en patrón y nombre a la interfase del ciclo mitótico de la célula. La interfase se divide en tres fases: • •



Fase G1: caracterizada por el aumento de tamaño de la célula debido a la fabricación acelerada de organelos, proteínas y otras materias celulares. Fase S (síntesis): se replica el material genético, es decir, el ADN se replica dando origen a dos cadenas nuevas, unidas por el centrómero. Los cromosomas, que hasta el momento tenían una sola cromátida, ahora tienen dos. Se replica el 98% del ADN, el 2% restante queda sin replicar. Fase G2: la célula continúa aumentando su biomasa.

La interfase es seguida inmediatamente por la meiosis I y II. La meiosis I consiste en la segregación de cada uno de los cromosomas homólogos, dividiendo posteriormente la célula diploide en dos células diploides pero con la mitad de cromosomas. La meiosis II consiste en desemparejar cada una de las cromátidas del cromosoma, que se segregarán

una a cada polo, con lo que tras una división se producen cuatro células haploides. Meiosis I y II están divididas en profase, metafase, anafase y telofase, similares en propósito a sus subfases análogas en el ciclo mitótico de la célula. Por lo tanto, la meiosis abarca la interfase (G1, S, G2), la meiosis I (profase I, metafase I, anafase I, telofase I), y la meiosis II (profase II, metafase II, anafase II, telofase II).

Meiosis I Profase I La profase I de la primera división meiótica es la etapa más compleja del proceso y a su vez se divide en 5 subetapas, que son: •

Leptoteno

La primera etapa de Profase I es la etapa del leptoteno, durante la cual los cromosomas individuales comienzan a condensar en filamentos largos dentro del núcleo. Cada cromosoma tiene un elemento axial, un armazón proteico que lo recorre a lo largo, y por el cual se ancla a la envuelta nuclear. A lo largo de los cromosomas van apareciendo unos pequeños engrosamientos denominados cromómeros. •

Zigoteno

Los cromosomas homólogos comienzan a acercarse hasta quedar apareados en toda su longitud. Esto se conoce como sinapsis (unión) y el complejo resultante se conoce como bivalente o tétrada (nombre que prefieren los citogenetistas), donde los cromosomas homólogos (paterno y materno) se aparean, asociándose así cromátidas homólogas. Producto de la sinapsis, se forma una estructura observable solo con el microscopio electrónico, llamada complejo sinaptonémico, unas estructuras, generalmente esféricas, aunque en algunas especies pueden ser alargadas. La disposición de los cromómeros a lo largo del cromosoma parece estar determinado genéticamente. Tal es así que incluso se utiliza la disposición de estos cromómeros para poder distinguir cada cromosoma durante la profase I meiótica. Además el eje proteico central pasa a formar los elementos laterales del complejo sinaptonémico, una estructura proteica con forma de escalera formada por dos elementos laterales y uno central que se van cerrando a modo de cremallera y que garantiza el perfecto apareamiento entre homólogos. En el apareamiento entre homólogos también está implicada la secuencia de genes de cada cromosoma, lo cual evita el apareamiento entre cromosomas no homólogos. Además durante el zigoteno concluye la replicación del ADN (2% restante) que recibe el nombre de zig-ADN. •

Paquiteno

Una vez que los cromosomas homólogos están perfectamente apareados formando estructuras que se denominan bivalentes se produce el fenómeno de entrecruzamiento (crossing-over) en el cual las cromatidas homólogas no hermanas intercambian material genético. La recombinación genética resultante hace aumentar en gran medida la

variación genética entre la descendencia de progenitores que se reproducen por vía sexual. La recombinación genética está mediada por la aparición entre los dos homólogos de una estructura proteica de 90 nm de diámetro llamada nódulo de recombinación. En él se encuentran las enzimas que medían en el proceso de recombinación. Durante esta fase se produce una pequeña síntesis de ADN, que probablemente está relacionada con fenómenos de reparación de ADN ligados al proceso de recombinación. •

Diploteno

Los cromosomas continúan condensándose hasta que se pueden comenzar a observar las dos cromátidas de cada cromosoma. Además en este momento se pueden observar los lugares del cromosoma donde se ha producido la recombinación. Estas estructuras en forma de X reciben el nombre quiasmas. Cada quiasma se origina en un sitio de entrecruzamiento, lugar en el que anteriormente se rompieron dos cromatidas homólogas que intercambiaron material genético y se reunieron. En este punto la meiosis puede sufrir una pausa, como ocurre en el caso de la formación de los óvulos humanos. Así, la línea germinal de los óvulos humanos sufre esta pausa hacia el séptimo mes del desarrollo embrionario y su proceso de meiosis no continuará hasta alcanzar la madurez sexual. A este estado de latencia se le denomina dictiotena. •

Diacinesis

Esta etapa apenas se distingue del diploteno. Podemos observar los cromosomas algo más condensados y los quiasmas. El final de la diacinesis y por tanto de la profase I meiótica viene marcado por la rotura de la membrana nuclear. Durante toda la profase I continuó la síntesis de ARN en el núcleo. Al final de la diacinesis cesa la síntesis de ARN y desaparece el nucléolo. Prometafase I La membrana nuclear desaparece. Un cinetocoro se forma por cada cromosoma, no uno por cada cromátida, y los cromosomas adosados a fibras del huso comienzan a moverse. Algunas veces las tétradas son visibles al microscopio. Las cromatidas hermanas continúan estrechamente alineadas en toda su longitud, pero los cromosomas homólogos ya no lo están y su centrómeros y cinetocoros encuentran separados entre sí. Metafase I Los cromosomas homólogos se alinean en el plano de ecuatorial. La orientación es al azar, con cada homologo paterno en un lado. Esto quiere decir que hay un 50% de posibilidad de que las células hijas reciban el homólogo del padre o de la madre por cada cromosoma. Los microtubulos del huso de cada centríolo se unen a sus respectivos cinetocoros. Anafase I

Los quiasmas se separan. Los microtúbulos del huso se acortan en la región del cinetocoro, con lo que se consigue remolcar los cromosomas homólogos a lados opuestos de la célula, junto con la ayuda de proteínas motoras. Ya que cada cromosoma homólogo tiene solo un cinetocoro, se forma un juego haploide (n) en cada lado. En la repartición de cromosomas homólogos, para cada par, el cromosoma materno se dirige a un polo y el paterno al contrario. Por tanto el número de cromosomas maternos y paternos que haya a cada polo varía al azar en cada meiosis. Por ejemplo, para el caso de una especie 2n = 4 puede ocurrir que un polo tenga dos cromosomas maternos y el otro los dos paternos; o bien que cada polo tenga uno materno y otro paterno. Telofase I Cada célula hija ahora tiene la mitad del número de cromosomas pero cada cromosoma consiste en un par de cromátidas. Los microtubulos que componen la red del huso mitótico desaparece, y una membrana nuclear nueva rodea cada sistema haploide. Los cromosomas se desenrollan nuevamente dentro de la cromatina. Ocurre la citocinesis (proceso paralelo en el que se separa la membrana celular en las células animales o la formación de esta en las células vegetales, finalizando con la creación de dos células hijas). Después suele ocurrir la intercinesis, parecido a una segunda interfase, pero no es una interfase verdadera, ya que no ocurre ninguna réplica del ADN. Este proceso es breve en todos los organismos, pero en algunos generalmente no ocurre.

Meiosis II Profase II •

Profase Temprana II

Comienza a desaparecer la envoltura nuclear y el nucleolo. Se hacen evidentes largos cuerpos filamentosos de cromatina, y comienzan a condensarse como cromosomas visibles •

Profase Tardía II

Los cromosomas continúan acortándose y engrosándose. Se forma el huso entre los centríolos, que se han desplazado a los polos de la célula Metafase II Las fibras del huso se unen a los cinetocóros de los cromosomas. Éstos últimos se alinean a lo largo del plano ecuatorial de la célula. La primera y segunda metafase pueden distinguirse con facilidad, en la metafase I las cromatidas se disponen en haces de cuatro (tétrada) y en la metafase II lo hacen en grupos de dos (como en la metafase mitótica). Esto no es siempre tan evidente en las células vivas. Anafase II Las cromátidas se separan en sus centrómeros, y un juego de cromosomas se desplaza hacia cada polo. Durante la Anafase II las cromatidas, unidas a fibras del huso en sus

cinetocóros, se separan y se desplazan a polos opuestos, como lo hacen en la anafase mitótica. Como en la mitosis, cada cromátida se denomina ahora cromosoma. Telofase II En la telofase II hay un miembro de cada par homologo en cada polo. Cada uno es un cromosoma no duplicado. Se reensamblan las envolturas nucleares, desaparece el huso acromático, los cromosomas se alargan en forma gradual para formar hilos de cromatina, y ocurre la citocinesis. Los acontecimientos de la profase se invierten al formarse de nuevo los nucleolos, y la división celular se completa cuando la citocinesis ha producidos dos células hijas. Las dos divisiones sucesivas producen cuatro núcleos haploide, cada uno con un cromosoma de cada tipo. Cada célula resultante haploide tiene una combinación de genes distinta. Esta variación genética tiene dos fuentes: 1 – Durante la meiosis, los cromosomas maternos y paternos se barajan, de modo que cada uno de cada par se distribuye al azar en los polos de la anafase I. 2 - se intercambian segmentos de ADN entre los homólogos paternos y maternos durante el entrecruzamiento.

Variabilidad genética El proceso de meiosis presenta una vital importancia en los ciclos vitales ya que hay una reducción del número de cromosomas a la mitad, es decir, de una célula diploide (ej: 46 cromosomas en el ser humano) se forman células haploides (23 cromosomas). Esta reducción a la mitad permite que en la fecundación se mantenga el número de cromosomas de la especie. También hay una recombinación de información genética, que es heredada del padre y la madre; el apareamiento de los homólogos y consecuente crossing-over permite el intercambio de información genética. Por lo tanto el nuevo individuo hereda información genética única y nueva, y no un cromosoma íntegro de uno de sus parientes. Otra característica importante en la significación de la meiosis para la reproducción sexual, es la segregación al azar de cromosomas maternos y paternos. La separación de los cromosomas paternos y maternos recombinados, durante la anafase I y II, se realiza completamente al azar, hecho que contribuye al aumento de la diversidad genética. En la anafase I, por cada par de homólogos existen dos posibilidades: un cromosoma puede ir a un polo mitótico o al otro . El número de combinaciones posibles por tanto se calcula 2n donde n es el número de pares de cromosomas homólogos (variaciones con repetición de n elementos en grupos de 2). En el ser humano, que tiene 23 pares de cromosomas homólogos, tiene la posibilidad de recombinación con 223 = 8 388 608 combinaciones, sin tener en cuenta las múltiples combinaciones posibilitadas por la recombinación en el crossing-over.1

Anomalías cromosómicas En la meiosis debe ocurrir una correcta separación de las cromatidas hacia los polos durante la anafase, lo que se conoce como disyunción meiotica, cuando esto no ocurre o hay un retraso en la primera o segunda división meiotica, conlleva problemas en la configuración de los cromosomas, alterando el número correcto de estos, es decir, dejan de ser múltiplos básicos del número haploide original de la especie, lo que se conoce como aneuploidía. Entre los problemas en el material genético encontramos:

• • •

Nulisomía en la que faltan un par de cromosomas homólogos (2n-2 cromosomas) Monosomía (2n-1 cromosoma) Trisomía (2n+1 cromosoma)

En los animales sólo son viables monosomías y trisomías. Los individuos nulisómicos no suelen manifestarse, puesto que es una condición letal en diploides.

Monosomía • •

Monosomía autosomática: produce la muerte en el útero. Síndrome de Turner: solamente un cromosoma X presente en las mujeres. Los afectados son hembras estériles, de estatura baja y un repliegue membranoso entre el cuello y los hombros. Poseen el pecho con forma de escudo y pezones muy separados, así como ovarios rudimentarios y manchas marrones en las piernas.

Trisomía •











Síndrome de Down - Trisomía del cromosoma 21: es la aneuploidía más viable, con un 0,15% de individuos en la población. Es una trisomía del cromosoma 21, que incluye retraso mental (C.I de 20-50), cara ancha y achatada, estatura pequeña, ojos con pliegue apicántico y lengua grande y arrugada. Síndrome de Patau - Trisomía del cromosoma 13: es una enfermedad genética que resulta de la presencia de un cromosoma 13 suplementario. Se trata de la trisomía menos frecuente. Se suele asociar con un problema meiótico materno, más que paterno y como el síndrome de Down, el riesgo aumenta con la edad de la mujer. Los afectados mueren poco tiempo después de nacer, la mayoría a los 3 meses, como mucho llegan al año. Se cree que entre el 80-90% de los fetos con el síndrome no llegan a término. Síndrome de Edwards - Trisomía del cromosoma 18: se trata de una enfermedad rara, cromosómica caracterizada por la presencia de un cromosoma adicional en el par 18. Clínicamente se caracteriza por: bajo peso al nacer, talla corta, retraso mental, y del desarrollo psicomotor (coordinación de la actividad muscular y mental), e hipertonía (tono anormalmente elevado del músculo). Se acompaña de diversas anomalías viscerales. Síndrome de Klinefelter - Un cromosoma de X adicional en varones: produce individuos altos, con físico ligeramente feminizado, coeficiente intelectual algo reducido, disposición femenina del vello del pubis, atrofia testicular y desarrollo mamario. Tienen una mezcla de ambos sexos. Síndrome del XYY - Un cromosoma de Y adicional en varones: en esta anaploidia, el varón afectado recibe un cromosoma Y adicional. No presenta diferencias a las personas normales y de hecho se duda del término “síndrome” para esta condición. Síndrome del triple X - Un cromosoma de X adicional en hembras: está caracterizada por un cromosoma X adicional en la mujer; quienes presentan la condición no están en ningún riesgo creciente para los problemas médicos. Las mujeres con esta condición son altas, de bajo peso, con irregularidad en el periodo menstrual y rara vez presentan debilidad mental.

Véase también