Intrumentos Opticos

2010 Facultad de Ciencias Físicas Escuela Académico Profesional de Física Contenido 1 Introducción .................

Views 165 Downloads 4 File size 695KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

2010

Facultad de Ciencias Físicas Escuela Académico Profesional de Física

Contenido 1

Introducción ...................................................................................................................................... 2

2

Espejos ............................................................................................................................................... 2

3

Lentes................................................................................................................................................. 3

4

El prisma ............................................................................................................................................ 4

5

El Microscopio ....................................................................................................................................5 5.1 5.1.1

Microscopio simple ..............................................................................................................5

5.1.2

Microscopio compuesto .......................................................................................................5

5.1.3

Otros microscopios ópticos ................................................................................................ 8

5.2

6

7

8

Microscopio Óptico .....................................................................................................................5

Microscopio electrónico ............................................................................................................. 9

5.2.1

Funcionamiento del microscopio electrónico .................................................................... 9

5.2.2

Tipos de microscopios electrónicos ...................................................................................10

Prismáticos ....................................................................................................................................... 11 6.1

Funcionamiento ........................................................................................................................ 11

6.2

Clasificación .............................................................................................................................. 12

El Telescopio ..................................................................................................................................... 12 7.1

Caracterización......................................................................................................................... 12

7.2

Clasificación .............................................................................................................................. 13

7.2.1

Telescopio reflector ............................................................................................................ 13

7.2.2

Telescopio refractor........................................................................................................... 14

Fibra óptica ....................................................................................................................................... 15 8.1

Características .......................................................................................................................... 15

8.2

Usos y aplicaciones ................................................................................................................... 16

8.2.1

Comunicaciones con fibra óptica ...................................................................................... 16

8.2.2

Sensores de fibra óptica .................................................................................................... 16

8.2.3

Iluminación........................................................................................................................ 16

8.2.4

Más usos de la fibra óptica................................................................................................ 17

1 Introducción Un instrumento óptico sirve para procesar ondas de luz con el fin de mejorar una imagen para su visualización, y para analizar las ondas de luz (o fotones) para determinar propiedades características. Los primeros instrumentos ópticos fueron telescopios utilizados para la magnificación de imágenes distantes, y microscopios utilizados para magnificar imágenes muy pequeñas. Desde los días de Galileo y Van Leeuwenhoek, estos instrumentos han sido mejorados ampliamente y se han extendido a otras porciones del espectro electromagnético. Los microscopios tenían como máximo 10X, mientras que los modernos tienen entre 400X y 600X. Otra clase de instrumentos ópticos es utilizada para analizar las propiedades de la luz o de materiales ópticos. Entre ellos se incluyen: Interferómetro para medir la interferencia de las ondas de luz Fotómetro para medir la intensidad de la luz Polarímetro para medir la dispersión o rotación de luz polarizada

Reflectómetro para medir la reflectividad de la superficie de un objeto Refractómetro para medir índice de refracción de varios materiales, inventado por Ernst Abbe En el presente trabajo solo nos ocuparemos de presentarle los instrumentos ópticos hechos en función solo de las propiedades de reflexión y refracción.

2 Espejos Un espejo es una superficie pulida en la que al incidir la luz, se refleja siguiendo las leyes de la reflexión. El ejemplo más simple es el espejo plano o el espejo esferoidal. En él, un haz de rayos de luz paralelos puede cambiar de dirección completamente como conjunto y continuar siendo un haz de rayos paralelos, pudiendo producir así una imagen virtual de un objeto con el mismo tamaño y forma que el real. Sin embargo, la imagen resulta derecha, pero invertida en el eje vertical. Existen también espejos cóncavos y espejos convexos. Cuando un espejo es cóncavo y la curva es una parábola, si un rayo incide paralelo al eje del espejo, se refleja pasando por el foco 2

(que es la mitad del centro óptico de la esfera a la que pertenece el espejo), y si incide pasando por el foco, se refleja paralelo al eje principal. El método original para fabricar espejos de vidrio consistía en 'azogar' una lámina de vidrio, recubriéndola con una amalgama de mercurio y estaño. La superficie del vidrio se recubría de hojas de papel de estaño, que se alisaban y se cubrían de mercurio. Mediante pesos de hierro se apretaba firmemente un paño de lana contra la superficie durante un día aproximadamente. Después se inclinaba el vidrio, con lo que el mercurio sobrante escurría y la superficie interior quedaba reluciente. El primero en intentar cubrir el reverso del vidrio con una solución de plata fue el químico alemán Justus von Liebig, en 1836; desde entonces se han desarrollado diferentes métodos que se basan en la reducción química a plata metálica de una sal de plata. En la actualidad, para fabricar espejos según este principio, se corta una plancha de vidrio del tamaño adecuado y se eliminan todos sus defectos puliéndola con rojo de joyero. El vidrio se frota y se baña con una disolución reductora como cloruro de estaño, tras lo cual se coloca el vidrio sobre un soporte hueco de hierro colado, se cubre con fieltro y se mantiene caliente con vapor. Después se vierte una disolución de nitrato de plata sobre el vidrio y se deja reposar durante aproximadamente una hora. El nitrato de plata se reduce a plata metálica, con lo que se forma gradualmente un reluciente depósito de plata que se deja secar, se cubre con goma laca y se pinta. En otros métodos de fabricación de espejos, se añade a la disolución de plata un agente reductor, como formaldehído o glucosa. Frecuentemente, los compuestos químicos para el plateado se aplican en forma de aerosol. A veces, algunos espejos especiales se recubren de metal vaporizando eléctricamente plata sobre ellos en un vacío. Muchas veces, los espejos grandes se recubren de aluminio con este mismo sistema. Además de su uso habitual en el hogar, los espejos se emplean en aparatos científicos; por

ejemplo, son componentes importantes de los microscopios y los telescopios.

3 Lentes Las lentes son objetos transparentes (normalmente de vidrio), limitados por dos superficies, de las que al menos una es curva. Las lentes más comunes se basan en el distinto grado de refracción que experimentan los rayos de luz al incidir en puntos diferentes de la lente. Entre ellas están las utilizadas para corregir los problemas de visión en gafas, anteojos o lentillas. También se usan lentes, o combinaciones de lentes y espejos, en telescopios y microscopios. El primer telescopio astronómico fue construido por Galileo Galilei usando una lente convergente como objetivo y otra divergente como ocular. Existen también instrumentos capaces de hacer converger o divergir otros tipos de ondas electromagnéticas y a los que se les denomina también lentes. Por ejemplo, en los microscopios electrónicos las lentes son de carácter magnético. En astrofísica es posible observar fenómenos de lentes gravitatorias cuando la luz procedente de objetos muy lejanos pasa cerca de objetos masivos, curvándose en su trayectoria.

3

También, se suele denominar lentes artificiales a las construidas con materiales artificiales no homogéneos, de modo que su comportamiento exhibe índices de refracción menores que la unidad (conviene recordar que la velocidad de fase sí puede ser mayor que la velocidad de la luz en el vacío), con lo que, por ejemplo, se tienen lentes biconvexas divergentes. Nuevamente este tipo de lentes es útil en microondas y sólo últimamente se han descrito materiales con esta propiedad a frecuencias ópticas.

4 El prisma En óptica, un prisma es un objeto capaz de refractar, reflejar y descomponer la luz en los colores del arco iris. Generalmente, estos objetos tienen la forma de un prisma triangular, de ahí su nombre. De acuerdo con la ley de Snell, cuando la luz pasa del aire al vidrio del prisma disminuye su velocidad, desviando su trayectoria y formando un ángulo con respecto a la interface. Como consecuencia, se refleja o se refracta la luz. El ángulo de incidencia del haz de luz y los índices de refracción del prisma y el aire determinan la cantidad de luz que será reflejada, la cantidad que será refractada o si sucederá exclusivamente alguna de las dos cosas.

cos como los prismáticos, los monoculares y otros. Los prismas dispersivos son usados para descomponer la luz en el espectro del arcoiris, porque el índice de refracción depende de la frecuencia (ver dispersión); la luz blanca entrando al prisma es una mezcla de diferentes frecuencias y cada una se desvía de manera diferente. La luz azul es disminuida a menor velocidad que la luz roja. Los prismas polarizantes separan cada haz de luz en componentes de variante polarización. Isaac Newton, al igual que sus contemporáneos científicos, pensaba que los prismas separaban los colores fuera de la luz incolora. Cuando hizo pasar cada color a través de un segundo prisma, descubrió que seguían iguales y fue el primero en descubrir que los prismas separan los colores de la luz. También usó una lente y un segundo prisma para volver a unir los colores separados en luz blanca. un prisma es un poliedro limitado por dos poligonos iguales y paralelos llamados bases y varios paralelogramos llamados caras laterales.

Los prismas reflectivos son los que únicamente reflejan la luz, como son más fáciles de elaborar que los espejos, se utilizan en instrumentos ópti-

4

5 El Microscopio El microscopio es un instrumento que permite observar objetos que son demasiado pequeños para ser vistos a simple vista. El tipo más común y el primero que se inventó es el microscopio óptico. Se trata de un instrumento óptico que contiene una o varias lentes que permiten obtener una imagen aumentada del objeto y que funciona por refracción. En general, cualquier microscopio requiere los siguientes elementos: una fuente (como un haz de fotones o de electrones), una muestra sobre la que actúa dicha fuente, un receptor de la información proporcionada por la interacción de la fuente con la muestra, y un procesador de esta información (en general, un ordenador).

5.1 Microscopio Óptico La función del cristalino es la de enfocar los rayos luminosos para que formen una buena imagen en la retina con independencia de la distancia a la que esté situado el objeto. Así, según la mayoría de modelos del ojo, las cerca de 20 dioptrías del cristalino en el estado relajado, unidas a las 40 de la córnea, enfocan en retina los rayos emitidos por objetos lejanos. Sin embargo, para objetos cercanos, la potencia del ojo relajado no refracta lo suficiente los rayos luminosos. En consecuencia, si no se produjese ningún cambio, la imagen del objeto se formaría por detrás de la retina, de modo similar a lo que sucede en la hipermetropía. Por tanto, durante la visión cercana el ojo necesita de una potencia adicional, que obtiene mediante la modificación de la curvatura del cristalino: acomodación.

5.1.1 Microscopio simple Un microscopio simple es aquel que solo utiliza un lente de aumento. Es el microscopio más básico. El ejemplo más clasico es la lupa. El microscopio óptico estándar utiliza dos sistemas de lentes alineados.

El objeto por observar se coloca entre el foco y la superficie de la lente, lo que determina la formación de una imagen virtual, derecha y mayor cuanto mayor sea el poder dióptrico del lente y cuanto más alejado esté el punto próximo de la visión nítida del sujeto. El holandés Anton Van Leeuwenhoek construyó microscopios muy eficaces basados en una sola lente. Esos microscopios no padecían las aberraciones que limitaban tanto la eficacia de los primeros microscopios compuestos, como los empleados por Robert Hooke, y producían una ampliación de hasta 300 veces; gracias a ellos Leeuwenhoek fue capaz incluso de describir por primera vez las bacterias.

5.1.2 Microscopio compuesto Un microscopio compuesto es un microscopio óptico que tiene más de una lente de objetivo, una de estas lentes es de 1000x. Los microscopios compuestos se utilizan especialmente para examinar objetos transparentes, o cortados en láminas tan finas que se transparentan. Se emplea para aumentar o ampliar las imágenes de objetos y organismos no visibles a simple vista. El microscopio óptico común está conformado por tres sistemas:

5

El sistema mecánico está constituido por una serie de piezas en las que van instaladas las lentes, que permiten el movimiento para el enfoque. El sistema óptico comprende un conjunto de lentes, dispuestas de tal manera que producen el aumento de las imágenes que se observan a través de ellas. El sistema de iluminación comprende las partes del microscopio que reflejan, transmiten y regulan la cantidad de luz necesaria para efectuar la observación a través del microscopio.

Entrando en detalles, la parte mecánica del microscopio comprende el pie, el tubo, el revólver, el asa, la platina, el carro y el tornillo micrométrico. Estos elementos sostienen la parte óptica y de iluminación; además, permiten los desplazamientos necesarios para el enfoque del objeto. a) El pie y soporte: Constituye la base sobre la que se apoya el microscopio y tiene por lo general forma de Y o bien es rectangular. b) La columna o brazo: llamada también asa, es una pieza en forma de C, unida a la base por su parte inferior mediante una charnela, permitiendo la inclinación del tubo para mejorar la captación de luz cuando se utilizan los espejos. Sostiene el tubo en su porción superior y por el extremo inferior se adapta al pie. c) El tubo: tiene forma cilíndrica y está ennegrecido internamente para evitar los reflejos de la luz. En su extremidad superior se colocan los oculares y en el extremo inferior el revólver de objetivos. El tubo se encuentra unido a la parte superior de la columna mediante un sistema de cremalleras, las cuales permiten que el tubo se mueva mediante los tornillos. d) El tornillo macrométrico: girando este tornillo, asciende o desciende el tubo del microscopio, deslizándose en sentido vertical gracias a un mecanismo de cremallera. Estos movimientos largos permiten el enfoque rápido de la preparación. e) El tornillo micrométrico: mediante el ajuste fino con movimiento casi imperceptible que produce al deslizar el tubo o la platina, se logra el enfoque exacto y nítido de la preparación. Lleva acoplado un tambor graduado en divisiones de 0,001 mm., que se utiliza para precisar sus movimientos y puede medir el espesor de los objetos. f) La platina: es una pieza metálica plana en la que se coloca la preparación u objeto que se va a observar. Presenta un orificio, en el eje óptico del tubo, que permite el paso de los rayos luminosos a la preparación. La

6

platina puede ser fija, en cuyo caso permanece inmóvil; en otros casos puede ser giratoria; es decir, mediante tornillos laterales puede centrarse o producir movimientos circulares. g) Las pinzas: son dos piezas metálicas que sirven para sujetar la preparación. Se encuentran en la platina. h) Carro móvil: es un dispositivo que consta de dos tornillos y está colocado sobre la platina, que permite deslizar la preparación con movimiento ortogonal de adelante hacia atrás y de derecha a izquierda. i) El revólver: es una pieza giratoria provista de orificios en los que se enroscan los objetivos. Al girar el revólver, los objetivos pasan por el eje del tubo y se colocan en posición de trabajo, lo que se nota por el ruido de un piñón que lo fija. El sistema óptico es el encargado de reproducir y aumentar las imágenes mediante el conjunto de lentes que lo componen. Está formado por el ocular y los objetivos. El objetivo proyecta una imagen de la muestra que el ocular luego amplía. a) El ocular: se encuentra situado en la parte superior del tubo. Su nombre se debe a la cercanía de la pieza con el ojo del observador. Tiene como función aumentar la imagen formada por el objetivo. Los oculares son intercambiables y sus poderes de aumento van desde 5X hasta 20X. Existen oculares especiales de potencias mayores a 20X y otros que poseen una escala micrométrica; estos últimos tienen la finalidad de medir el tamaño del objeto observado. b) Los objetivos: se disponen en una pieza giratoria denominada revólver y producen el aumento de las imágenes de los objetos y organismos, y, por tanto, se hallan cerca de la preparación que se examina. Los objetivos utilizados corrientemente son de dos tipos: objetivos secos y objetivos de inmersión. Los objetivos secos se utilizan sin necesidad de colocar sustancia alguna entre

ellos y la preparación. En la cara externa llevan una serie de índices que indican el aumento que producen, la abertura numérica y otros datos. Así, por ejemplo, si un objetivo tiene estos datos: plan 40/0,65 y 160/0,17, significa que el objetivo es planacromático, su aumento 40 y su apertura numérica 0,65, calculada para una longitud de tubo de 160 mm. El número de objetivos varía con el tipo de microscopio y el uso a que se destina. Los aumentos de los objetivos secos más frecuentemente utilizados son: 4X, 10X, 20X, 40X y 60X. El objetivo de inmersión está compuesto por un complicado sistema de lentes. Para observar a través de este objetivo es necesario colocar una gota de aceite de cedro entre el objetivo y la preparación, de manera que la lente frontal entre en contacto con el aceite de cedro. Generalmente, estos objetivos son de 100X y se distingue por uno o dos círculos o anillos de color negro que rodea su extremo inferior. Este sistema tiene como finalidad dirigir la luz natural o artificial de tal manera que ilumine la preparación u objeto que se va a observar en el microscopio de la manera adecuada. Comprende los siguientes elementos: Fuente de iluminación: se trata clásicamente de una lámpara incandescente de tungsteno sobrevoltada; en versiones más modernas con leds. Por delante de ella se sitúa un condensador (una lente convergente) e, idealmente, un diafragma de campo, que permite controlar el diámetro de la parte de la preparación que queda iluminada, para evitar que exceda el campo de observación produciendo luces parásitas. a) El espejo: necesario si la fuente de iluminación no está construida dentro del microscopio y ya alineada con el sistema óptico, como suele ocurrir en los microscopios modernos. Suele tener dos caras: una cóncava y otra plana. Goza de movimientos en todas las direcciones. La cara cóncava se emplea 7

de preferencia con iluminación artificial, y la plana, para natural (luz solar). Los modelos más modernos no poseen espejos sino una lámpara que cumple la misma función que el espejo. b) Condensador: está formado por un sistema de lentes, cuya finalidad es concentrar los rayos luminosos sobre el plano de la preparación, formando un cono de luz con el mismo ángulo que el del campo del objetivo. El condensador se sitúa debajo de la platina y su lente superior es generalmente planoconvexa, quedando la cara superior plana en contacto con la preparación cuando se usan objetivos de gran abertura (los de mayor ampliación); existen condensadores de inmersión, que piden que se llene con aceite el espacio entre esa lente superior y la preparación. La abertura numérica máxima del condensador debe ser al menos igual que la del objetivo empleado, o no se logrará aprovechar todo su poder separador. El condensador puede deslizarse verticalmente sobre un sistema de cremallera mediante un tornillo, bajándose para su uso con objetivos de poca potencia. c) Diafragma: el condensador está provisto de un diafragma-iris, que regula su abertura para ajustarla a la del objetivo. Puede emplearse, de manera irregular, para aumentar el contraste, lo que se hace cerrándolo más de lo que conviene si se quiere aprovechar la resolución del sistema óptico. El haz luminoso procedente de la lámpara pasa directamente a través del diafragma al condensador. Gracias al sistema de lentes que posee el condensador, la luz es concentrada sobre la preparación a observar. El haz de luz penetra en el objetivo y sigue por el tubo hasta llegar al ocular, donde es captado por el ojo del observador. Cada una de las ventajas que proporciona el microscopio a la observación son denominados poderes del microscopio los cuales son: a) Poder separador. También llamado a veces poder de resolución, es una cualidad del microscopio, y se define como la distancia

mínima entre dos puntos próximos que pueden verse separados. El ojo normal no puede ver separados dos puntos cuando su distancia es menor a una décima de milímetro. En el microscopio viene limitado por la longitud de onda de la radiación empleada; en el microscopio óptico, el poder separador máximo conseguido es de 0,2 décimas de micrómetro (la mitad de la longitud de onda de la luz azul), y en el microscopio electrónico, el poder separador llega hasta 10 Å. b) Poder de definición. Se refiere a la nitidez de las imágenes obtenidas, sobre todo respecto a sus contornos. Esta propiedad depende de la calidad y de la corrección de las aberraciones de las lentes utilizadas. c) Ampliación del microscopio. En términos generales se define como la relación entre el diámetro aparente de la imagen y el diámetro o longitud del objeto. Esto quiere decir que si el microscopio aumenta 100 diámetros un objeto, la imagen que estamos viendo es 100 veces mayor linealmente que el tamaño real del objeto (la superficie de la imagen será 1002, es decir 10.000 veces mayor). Para calcular el aumento que está proporcionando un microscopio, basta multiplicar los aumentos respectivos debidos al objetivo y el ocular empleados. Por ejemplo, si estamos utilizando un objetivo de 45X y un ocular de 10X, la ampliación con que estamos viendo la muestra será: 45X x 10X = 450X, lo cual quiere decir que la imagen del objeto está ampliada 450 veces, también expresado como 450 diámetros.

5.1.3 Otros microscopios ópticos Existen diversas clases de microscopios, según la naturaleza de los sistemas de luz, y otros accesorios utilizados para obtener las imágenes. Microscopio estereoscópico: el microscopio estereoscópico hace posible la visión tridimensional de los objetos. Consta de dos tubos oculares y dos objetivos pares para cada aumento. Este microscopio ofrece ventajas

8

para observaciones que requieren pequeños aumentos. El óptimo de visión estereoscópica se encuentra entre 2 y 40X o aumento total del microscopio. Microscopio de campo oscuro. Este microscopio está provisto de un condensador paraboloide, que hace que los rayos luminosos no penetren directamente en el objetivo, sino que iluminan oblicuamente la preparación. Los objetos aparecen como puntos luminosos sobre un fondo oscuro. Microscopio de fluorescencia. La fluorescencia es la propiedad que tienen algunas sustancias de emitir luz propia cuando inciden sobre ellas radiaciones energéticas. El tratamiento del material biológico con flurocromos facilita la observación al microscopio. Microscopio de contraste de fases. Se basa en las modificaciones de la trayectoria de los rayos de luz, los cuales producen contrastes notables en la preparación.

5.2 Microscopio electrónico Un microscopio electrónico es aquél que utiliza electrones en lugar de fotones o luz visible para formar imágenes de objetos diminutos. Los microscopios electrónicos permiten alcanzar una capacidad de aumento muy superior a los microscopios convencionales (hasta 2 aumentos comparados con los de los mejores microscopios ópticos) debido a que la longitud de onda de los electrones es mucho menor que la de los fotones "visibles". El primer microscopio electrónico fue diseñado por Ernst Ruska, Max Knoll y Jhener entre 1925 y 1930, quiénes se basaron en los estudios de Louis-Victor de Broglie acerca de las propiedades ondulatorias de los electrones. Un microscopio electrónico, como el de la imagen, funciona con un haz de electrones generados por un cañón electrónico, acelerados por un alto voltaje y focalizados por medio de lentes magnéticas (todo ello al alto vacío ya que los electrones son absorbidos por el aire). Los electrones atraviesan la muestra (debidamente deshidratada) y la amplificación se produce por un conjunto de lentes magnéticas que forman una imagen sobre una placa fotográfica o sobre una pantalla sensible al impacto de los electrones que transfiere la imagen formada a la pantalla de un ordenador. Los microscopios electrónicos sólo se pueden ver en blanco y negro, puesto que no utilizan la luz, pero se le pueden dar colores en el ordenador. Como se puede apreciar, su funcionamiento es semejante a un monitor monocromático.

5.2.1 Funcionamiento del microscopio electrónico

Microscopio óptico.Descripción:A) ocular, B) objetivo, C) portador del objeto, D) lentes de la iluminación, E) sujeción del objeto, F) espejo de la iluminación.

El microscopio electrónico utiliza un flujo de electrones en lugar de luz. Consta fundamentalmente de un tubo de rayos catódicos, en el cual debe mantenerse el vacío. El cátodo está constituido por un filamento de tungsteno, que al calentarse eléctricamente emite los electrones, los cuales son atraídos hacia el ánodo por una diferencia de potencial de 50.000 a 100.000 9

voltios. La lente del condensador enfoca este haz y lo dirige hacia el objeto que se observa, cuya preparación exige técnicas especiales. Los electrones chocan contra la preparación, sobre la cual se desvían de manera desigual. Se acostumbra a utilizar el término microfotografías para las fotografías tomadas a través del microscopio óptico y micrografía o electromicrografía para las que se toman en el microscopio electrónico. Los aumentos máximos conseguidos en el microscopio electrónico son del orden de 2.000.000 (¡dos millones de aumentos!) mediante el acoplamiento al microscopio electrónico de un amplificador de imagen y una cámara de televisión. En resumen, el microscopio electrónico consta esencialmente de: Un filamento de tungsteno (cátodo) que emite electrones. Condensador o lente electromagnética, que concentra el haz de electrones. Objetivo o lente electromagnética, que amplía el cono de proyección del haz de luz. Ocular o lente electromagnética, que aumenta la imagen. Proyector o lente proyectora, que amplía la imagen. Pantalla fluorescente, que recoge la imagen para hacerla visible al ojo humano.

5.2.2 Tipos de microscopios electrónicos Existen varios tipos de microscopios electrónicos, que cada día se perfeccionan más. El microscopio electrónico de transmisión que utiliza un haz de electrones acelerados por un alto voltaje (cien mil voltios). Este haz ilumina una sección muy fina de la muestra, sean tejidos, células u otro material. El microscopio electrónico de barrido se utiliza para el estudio de la morfología y la topografía de los elementos. Estos instrumentos utilizan voltajes cercanos a los 20.000 voltios. Las

10

lentes magnéticas utilizan un haz muy fino de electrones para penetrar repetidamente la muestra, y se produce una imagen ampliada de la superficie observada en la pantalla de un monitor. El microscopio electrónico mixto tiene propiedades comunes con el de transmisión y con el de barrido y resulta muy útil para ciertas investigaciones. Hay otros microscopios analíticos que detectan señales características de los elementos que constituyen la muestra. Con estos poderosos instrumentos, que utilizan el flujo de electrones y las radiaciones electromagnéticas así como la aplicación de técnicas histoquímicas y bioquímicas, además del empleo de marcadores radiactivos, se han logrado grandes avances en la biología celular.

6 Prismáticos Comúnmente llamados binoculares, gemelos o largavistas. Es un instrumento óptico usado para ampliar la imagen de los objetos distantes observados, al igual que el monocular y el telescopio, pero a diferencia de éstos, provoca el efecto de estereoscopía en la imagen y por eso es más cómodo apreciar la distancia entre objetos distantes, también juzgar y seguir objetos en movimiento. Los prismáticos poseen un par de tubos. Cada tubo contiene una serie de lentes y un prisma, que amplía la imagen para cada ojo y eso provoca la estereoscopía.

a) Microscopio electrónico de transmisión El microscopio electrónico de transmisión emite un haz de electrones dirigido hacia el objeto cuya imagen se desea aumentar. Una parte de los electrones rebotan o son absorbidos por el objeto y otros lo atraviesan formando una imagen aumentada de la muestra. Para utilizar un microscopio electrónico de transmisión debe cortarse la muestra en capas finas, no mayores de un par de miles de ángstroms. Los microscopios electrónicos de transmisión pueden aumentar la imagen de un objeto hasta un millón de veces. b) Microscopio electrónico de barrido En el microscopio electrónico de barrido la muestra es recubierta con una capa de metal delgado, y es barrida con electrones enviados desde un cañón. Un detector mide la cantidad de electrones enviados que arroja la intensidad de la zona de muestra, siendo capaz de mostrar figuras en tres dimensiones, proyectado en una imagen de TV. Su resolución está entre 3 y 20 nm, dependiendo del microscopio. Permite obtener imágenes de gran resolución en materiales pétreos, metálicos y orgánicos. La luz se sustituye por un haz de electrones, las lentes por electroimanes y las muestras se hacen conductoras metalizando su superficie.

6.1 Funcionamiento La ampliación se logra cuando la luz atraviesa cada serie de lentes. Los prismas corrigen la imagen colocándola en la posición correcta, por medio del principio de reflexión interna total, a diferencia de los telescopios que la muestran invertida. Tradicionalmente, la mayoría de los modelos usan un par de prismas porro. El ocular de cada cámara no está alineado con el objetivo, y el prisma refleja la luz en forma de S hacia el ocular. Como abundan los modelos de prismáticos con alta ampliación de imagen, en inglés se define a los prismáticos como un par de pequeños telescopios.

11

Muchos modelos permiten ajustar la distancia entre los oculares para adaptarse a la cara de diferentes usuarios. También poseen una rueda de enfoque que se gira para enfocar la imagen. Generalmente, el ocular derecho tiene un anillo de corrección dióptrica, que se gira para conseguir la dioptría diferente en el ocular izquierdo y mejorar aún más el enfoque de la imagen observada con ambos ojos.

7 El Telescopio

6.2 Clasificación

Gracias al telescopio —desde que Galileo en 1609 lo usó para ver a la Luna, el planeta Júpiter y las estrellas— pudo el ser humano empezar a conocer la verdadera naturaleza de los objetos astronómicos que nos rodean y nuestra ubicación en el Universo.

La clasificación se basa en el nivel de ampliación de imagen y el diámetro del objetivo, medido en milímetros; se indica con dos números separados por una X. Por ejemplo, un par de prismáticos de 12X50 (se nombran como ‘’doce por cincuenta‘’), tienen un nivel de ampliación de 12X (12 aumentos) y un par de objetivos de 50 mm de diámetro.

Se denomina telescopio al instrumento óptico que permite ver objetos lejanos con mucho más detalle que a simple vista. Es herramienta fundamental de la astronomía, y cada desarrollo o perfeccionamiento del telescopio ha sido seguido de avances en nuestra comprensión del Universo.

Los prismáticos de menor alcance son de 3X10 y se usan en los teatros o los circos. Los de 7X50 y 10X50 son para la observación amateur casera, y se los usa para observaciones astronomicas sencillas. Los de 12X50 hasta 20X50 para la exploración. Todos los anteriores se sostienen con las manos, sin embargo, existen prismáticos tan grandes como 20X80, 20X140 y de mayor tamaño, que se sostienen en trípodes, debido a su peso. Los binoculares de magnificación variable como los 8-24X50 se aprovecha de una configuración interna móvil para darnos un binocular que magnifica desde 8x hasta 24x utilizando el cuerpo de un solo binocular. Esto son útiles si se requiere de un equipo de usos múltiples.

7.1 Caracterización

El nivel de ampliación práctico es hasta 10X. Los modelos sostenibles con las manos son de hasta 20X. Los modelos superiores a este nivel son tan sensibles al movimiento que cuando se sujetan con las manos, incluso firmemente, transmiten temblores a la imagen observada, provocados por los mínimos movimientos naturales de las manos. Por esa razón, los prismáticos potentes suelen fijarse a trípodes que evitan la vibración. A su vez, existen modelos que poseen dispositivos estabilizadores de imagen.

Para caracterizar un telescopio y utilizarlo se emplean una serie de parámetros y accesorios:

El parámetro más importante de un telescopio es el diámetro de su "lente objetivo". Un telescopio de aficionado generalmente tiene entre 76 y 150 mm de diámetro y permite observar algunos detalles planetarios y muchísimos objetos del cielo profundo (cúmulos, nebulosas y algunas galaxias). Los telescopios que superan los 200 mm de diámetro permiten ver detalles lunares finos, detalles planetarios importantes y una gran cantidad de cúmulos, nebulosas y galaxias brillantes.

a) Distancia focal: es la longitud focal del telescopio, que se define como la distancia

12

b) c)

d)

e)

f) g)

h)

i)

j)

desde el espejo o la lente principal hasta el foco o punto donde se sitúa el ocular. Diámetro del objetivo: diámetro del espejo o lente primaria del telescopio. Ocular: accesorio pequeño que colocado en el foco del telescopio permite magnificar la imagen de los objetos. Lente de Barlow: lente que generalmente duplica o triplica los aumentos del ocular cuando se observan los astros. Filtro: pequeño accesorio que generalmente opaca la imagen del astro pero que dependiendo de su color y material permite mejorar la observación. Se ubica delante del ocular, y los más usados son el lunar (verdeazulado, mejora el contraste en la observación de nuestro satélite), y el solar, con gran poder de absorción de la luz del Sol para no lesionar la retina del ojo. Razón Focal: es el cociente entre la distancia focal (mm) y el diámetro (mm). (f/ratio) Magnitud límite: es la magnitud máxima que teóricamente puede observarse con un telescopio dado, en condiciones de observación ideales. La fórmula para su cálculo es: (siendo D el diámetro en centímetros de la lente o el espejo del telescopio). Aumentos: La cantidad de veces que un instrumento multiplica el diámetro aparente de los objetos observados. Equivale a la relación entre la longitud focal del telescopio y la longitud focal del ocular (DF/df). Por ejemplo, un telescopio de 1000 mm de distancia focal, con un ocular de 10mm de df. proporcionará un aumento de 100 (se expresa también como 100X). Trípode: conjunto de tres patas generalmente metálicas que le dan soporte y estabilidad al telescopio. Portaocular: orificio donde se colocan el ocular, reductores o multiplicadores de focal (p.ej lentes de Barlow) o fotográficas.

7.2 Clasificación Existen varios tipos de telescopio: refractores, que utilizan lentes; reflectores, que tienen

un espejo cóncavo en lugar de la lente del objetivo, y catadióptricos, que poseen un espejo cóncavo y una lente correctora. El telescopio reflector fue inventado por Isaac Newton en 1688 y constituyó un importante avance sobre los telescopios de su época al corregir fácilmente la aberración cromática característica de los telescopios refractores.

7.2.1 Telescopio reflector Un telescopio reflector es un telescopio óptico que utiliza espejos en lugar de lentes para enfocar la luz y formar imágenes. No se sabe con certeza cuál es el primer telescopio reflector, pero la idea de la utilización de espejos cóncavos y convexos colocados en ángulos indicados para observar grandes regiones a grandes distancias, se le atribuye a Leonard Digges en su libro Pantometría. El libro póstumo fue completado y publicado por su hijo Thomas Digges en 1571. En 1636, Marin Mersenne, un religioso de la orden de los Mínimos, ideó un telescopio reflector que consistía en un espejo parabólico con un pequeño orificio frente a otro de menor tamaño de modo que la luz se reflejase hacia el ojo a través del orificio. En 1663 James Gregory tomó la idea de Mersenne y perfeccionó el telescopio agregando un pequeño espejo secundario cóncavo y elipsoidal que reflejase la luz procedente del espejo primario al segundo plano focal de la 13

Esquema interno de un telescopio refractor o de Kepler

elipse, situado en el centro del agujero de éste, y de ahí al ocular. Sir Isaac Newton perfeccionó el telescopio reflector alrededor de 1670. Los telescopios reflectores evitan el problema de la aberración cromática, una degradación notable de las imágenes en los telescopios refractores de la época (posteriormente este problema se resolvió utilizando lentes acromáticas). El reflector clásico formado por dos espejos y un ocular se conoce como reflector Newtoniano. El reflector Newtoniano se utiliza comúnmente en el mundo de la astronomía amateur. Los observatorios profesionales utilizan un diseño algo más complejo con un foco Cassegrain. En el año 2001 existían al menos 49 reflectores con espejos primarios con un diámetro superior a 2 m. Los más grandes consisten de espejos primarios modulares y pueden tener aberturas de hasta 9-10 m. Los telescopios reflectores o Newtonianos utilizan 2 espejos, un en el extremo del tubo (espejo primario),que refleja la luz y la envía al espejo secundario y este la envía al ocular.

focal. Esto permite mostrar los objetos lejanos mayores y más brillantes. Este tipo de telescopios son muy comunes en la astronomía para aficionados y en algunos telescopios solares. Sin embargo existen importantes dificultades técnicas que impiden realizar telescopios refractores de gran tamaño y de gran apertura ya que resulta difícil elaborar lentes útiles de gran tamaño y suficientemente ligeras para el objetivo. Por otro lado hay problemas de calidad de la imagen debido a pequeñas burbujas de aire atrapadas en el cristal de la lente principal y además el material de la lente resulta opaco a determinadas longitudes de onda por lo que se pierde sensibilidad en algunas partes del espectro lumínico. La mayoría de estos problemas se resuelven utilizando un telescopio reflector.

7.2.2 Telescopio refractor Un telescopio refractor es un telescopio óptico que capta imágenes de objetos lejanos utilizando un sistema de lentes convergentes en los que la luz se refracta. La refracción de la luz en la lente del objetivo hace que los rayos paralelos, procedentes de un objeto muy alejado (en el infinito), converjan sobre un punto del plano

Esquema interno de un telescopio reflector o de Newton

14

8 Fibra óptica La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el núcleo de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED. Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio o cable. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.

8.1 Características La fibra óptica es una guía de ondas dieléctrica que opera a frecuencias ópticas. Cada filamento consta de un núcleo central de plástico o cristal (óxido de silicio y germanio) con un alto índice de refracción, rodeado de una capa de un material similar con un índice de

refracción ligeramente menor. Cuando la luz llega a una superficie que limita con un índice de refracción menor, se refleja en gran parte, cuanto mayor sea la diferencia de índices y mayor el ángulo de incidencia, se habla entonces de reflexión interna total. En el interior de una fibra óptica, la luz se va reflejando contra las paredes en ángulos muy abiertos, de tal forma que prácticamente avanza por su centro. De este modo, se pueden guiar las señales luminosas sin pérdidas por largas distancias. A lo largo de toda la creación y desarrollo de la fibra óptica, algunas de sus características han ido cambiando para mejorarla. Las características más destacables de la fibra óptica en la actualidad son: Cobertura más resistente: La cubierta contiene un 25% más material que las cubiertas convencionales. Uso dual(interior y exterior): La resistencia al agua y emisiones ultravioleta, la cubierta resistente y el funcionamiento ambiental extendido de la fibra óptica contribuyen a una mayor confiabilidad durante el tiempo de vida de la fibra. Mayor protección en lugares húmedos: Se combate la intrusión de la humedad en el interior de la fibra con múltiples capas de protección alrededor de ésta, lo que proporciona a la fibra, una mayor vida útil y confiabilidad en lugares húmedos. Empaquetado de alta densidad: Con el máximo número de fibras en el menor diámetro posible se consigue una más rápida y más fácil instalación, donde el cable debe enfrentar dobleces agudos y espacios estrechos. Se ha llegado a conseguir un cable con 72 fibras de construcción súper densa cuyo diámetro es un 50% menor al de los cables convencionales. Los principios básicos de su funcionamiento se justifican aplicando las leyes de la óptica

15

geométrica, principalmente, la ley de la refracción (principio de reflexión interna total) y la ley de Snell. Su funcionamiento se basa en transmitir por el núcleo de la fibra un haz de luz, tal que este no atraviese el revestimiento, sino que se refleje y se siga propagando. Esto se consigue si el índice de refracción del núcleo es mayor al índice de refracción del revestimiento, y también si el ángulo de incidencia es superior al ángulo limite.

Debido a que las fibras monomodo son más sensibles a los empalmes, soldaduras y conectores, las fibras y los componentes de éstas son de mayor costo que los de las fibras multimodo.

8.2.2 Sensores de fibra óptica Las fibras ópticas se pueden utilizar como sensores para medir la tensión, la temperatura, la presión y otros parámetros. El tamaño pequeño y el hecho de que por ellas no circula corriente eléctrica le da ciertas ventajas respecto al sensor eléctrico. Las fibras ópticas se utilizan como hidrófonos para los sismos o aplicaciones de sónar. Se ha desarrollado sistemas hidrofónicos con más de 100 sensores usando la fibra óptica. Los hidrófonos son usados por la industria de petróleo así como las marinas de guerra de algunos países. La compañía alemana Sennheiser desarrolló un micrófono que trabajaba con un láser y las fibras ópticas.

8.2 Usos y aplicaciones Su uso es muy variado: desde comunicaciones digitales, pasando por sensores y llegando a usos decorativos, como árboles de Navidad, veladores y otros elementos similares. Aplicaciones de la fibra monomodo: Cables submarinos, cables interurbanos, etc.

8.2.1 Comunicaciones con fibra óptica La fibra óptica se emplea como medio de transmisión para las redes de telecomunicaciones, ya que por su flexibilidad los conductores ópticos pueden agruparse formando cables. Las fibras usadas en este campo son de plástico o de vidrio, y algunas veces de los dos tipos. Para usos interurbanos son de vidrio, por la baja atenuación que tienen. Para las comunicaciones se emplean fibras multimodo y monomodo, usando las multimodo para distancias cortas (hasta 5000 m) y las monomodo para acoplamientos de larga distancia.

Los sensores de fibra óptica para la temperatura y la presión se han desarrollado para pozos petrolíferos. Estos sensores pueden trabajar a mayores temperaturas que los sensores de semiconductores. Otro uso de la fibra óptica como un sensor es el giroscopio óptico que usa el Boeing 767 y el uso en microsensores del hidrógeno.

8.2.3 Iluminación Otro uso que le podemos dar a la fibra óptica es el de iluminar cualquier espacio. Debido a las ventajas que este tipo de iluminación representa en los últimos años ha empezado a ser muy utilizado. Entre las ventajas de la iluminación por fibra podemos mencionar: Ausencia de electricidad y calor: Esto se debe a que la fibra sólo tiene la capacidad de transmitir los haces de luz además de que la lámpara que ilumina la fibra no está en contacto directo con la misma.

16

Se puede cambiar de color la iluminación sin necesidad de cambiar la lámpara: Esto se debe a que la fibra puede transportar el haz de luz de cualquier color sin importar el color de la fibra. Con una lámpara se puede hacer una iluminación más amplia por medio de fibra: Esto es debido a que con una lámpara se puede iluminar varias fibras y colocarlas en diferentes lugares.

8.2.4 Más usos de la fibra óptica Se puede usar como una guía de onda en aplicaciones médicas o industriales en las que es necesario guiar un haz de luz hasta un blanco que no se encuentra en la línea de visión. La fibra óptica se puede emplear como sensor para medir tensiones, temperatura, presión así como otros parámetros. Es posible usar latiguillos de fibra junto con lentes para fabricar instrumentos de visualización largos y delgados llamados endoscopios. Los endoscopios se usan en medicina para visualizar objetos a través de un agujero pequeño. Los endoscopios

industriales se usan para propósitos similares, como por ejemplo, para inspeccionar el interior de turbinas. Las fibras ópticas se han empleado también para usos decorativos incluyendo iluminación, árboles de Navidad. Líneas de abonado Las fibras ópticas son muy usadas en el campo de la iluminación. Para edificios donde la luz puede ser recogida en la azotea y ser llevada mediante fibra óptica a cualquier parte del edificio. También es utilizada para trucar el sistema sensorial de los taxis provocando que el taxímetro (algunos le llaman cuentafichas) no marque el costo real del viaje. Se emplea como componente en la confección del hormigón translúcido, invención creada por el arquitecto húngaro Ron Losonczi, que consiste en una mezcla de hormigón y fibra óptica formando un nuevo material que ofrece la resistencia del hormigón pero adicionalmente, presenta la particularidad de dejar traspasar la luz de par en par.

17