Imforme Trabajo y Energia

“AÑO DE LA INVERSIÓN PARA EL DESARROLLO RURAL Y LA SEGURIDAD ALIMENTARIA” FACULTAD DE INGENIERIA CIVIL TÍTULO : TRAB

Views 104 Downloads 0 File size 542KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

“AÑO DE LA INVERSIÓN PARA EL DESARROLLO RURAL Y LA SEGURIDAD ALIMENTARIA”

FACULTAD DE INGENIERIA CIVIL

TÍTULO

:

TRABAJO Y ENERGÍA

ASIGNATURA

:

Dinámica

DOCENTE

:

Ing. Mego Chávez Orlando

INTEGRANTES

:

Bartra Chujutally, David Enrique Isminio Riquelme, Jhonny Quispe Terrones, Elías Román Ruiz, Walter Michael

TARAPOTO – PERU

2013

INDICE

INTRODUCCION La primera contribución importante se debe a Aristóteles. Define, el movimiento, lo dinámico, como "La realización acto, de una capacidad o posibilidad de ser potencia, en tanto que se está actualizando". El problema está en que Aristóteles invierte el estudio de la cinemática y dinámica, estudiando primero las causas del movimiento y después el movimiento de los cuerpos. Ya con Galileo sus experimentos sobre cuerpos uniformemente acelerados condujeron a Newton a formular sus leyes fundamentales del movimiento, las cuales presentó en su obra principal Philosophiae Naturalis, los científicos actuales consideran que las leyes que formuló Newton dan las respuestas correctas a la mayor parte de los problemas relativos a los cuerpos en movimiento, pero existen excepciones. En particular, las ecuaciones para describir el movimiento no son adecuadas cuando un cuerpo viaja a altas velocidades con respecto a la velocidad de la luz o cuando los objetos son de tamaño extremadamente pequeños comparables a los tamaños moleculares. La comprensión de las leyes de la dinámica clásica le ha permitido al hombre determinar el valor, dirección y sentido de la fuerza que hay que aplicar para que se produzca un determinado movimiento o cambio en el cuerpo. Por ejemplo, para hacer que un cohete se aleje de la Tierra, hay que aplicar una determinada fuerza para vencer la fuerza de gravedad que lo atrae; de la misma manera, para que un mecanismo transporte una determinada carga hay que aplicarle la fuerza adecuada en el lugar adecuado.

TRABAJO Y ENERGIA 1.

CONCEPTOS BASICOS Se denomina trabajo infinitesimal realizado por una fuerza sobre una partícula que experimenta un desplazamiento elemental, al producto escalar de la fuerza por el desplazamiento. 1.1. SISTEMA DE COORDENADAS Un sistema de coordenadas es un conjunto de valores que permiten definir inequívocamente la posición de cualquier punto de un espacio euclídeo (o más generalmente variedad diferenciable), como por ejemplo los sistemas de coordenadas ortogonales, caracterizados por un punto denominado origen y un conjunto de ejes perpendiculares que constituyen lo que se denomina sistema de referencia Podemos llamarla bidimensional. 1.2. SISTEMA DE UNIDADES SI El Sistema Internacional de Unidades (abreviado SI del francés: Le Systeme International of Unités), también denominado Sistema Internacional de Medidas, es el nombre que recibe el sistema de unidades que se usa en todos los países y es la forma actual del sistema métrico decimal. El SI también es conocido como «sistema métrico», especialmente en las naciones en las que aún no se ha implantado para su uso cotidiano. Fue creado en 1960 por la Conferencia General de Pesos y Medidas, que inicialmente definió seis unidades físicas básicas. En 1971 se añadió la séptima unidad básica, el mol.

Una de las principales características, que constituye la gran ventaja del Sistema Internacional, es que sus unidades están basadas en fenómenos físicos fundamentales. La única excepción es la unidad de la magnitud masa, el kilogramo,

que está definida como «la masa del prototipo internacional del kilogramo» o aquel cilindro de platino e iridio almacenado en una caja fuerte de la Oficina Internacional de Pesos y Medidas. Las unidades del SI son la referencia internacional de las indicaciones de los instrumentos de medida y a las que están referidas a través de una cadena ininterrumpida de calibraciones o comparaciones. Esto permite alcanzar la equivalencia de las medidas realizadas por instrumentos similares, utilizados y calibrados en lugares apartados y por ende asegurar, sin la necesidad de ensayos y mediciones duplicadas, el cumplimiento de las características de los objetos que circulan en el comercio internacional y su intercambiabilidad. W = mg(N)

(g = 9.81 m/s^2)

1.3. DIAGRAMA DE CUERPO LIBRE Un diagrama de cuerpo libre es una representación gráfica utilizada a menudo por físicos e ingenieros para analizar las fuerzas que actúan sobre un cuerpo libre. El diagrama de cuerpo libre es un elemental caso particular de un diagrama de fuerzas. En español, se utiliza muy a menudo la expresión diagrama de fuerzas como equivalente a diagrama de cuerpo libre, aunque lo correcto sería hablar de diagrama de fuerzas sobre un cuerpo libre o diagrama de fuerzas de sistema aislado. Estos diagramas son una herramienta para descubrir las fuerzas desconocidas que aparecen en las ecuaciones del movimiento del cuerpo. El diagrama facilita la identificación de las fuerzas y momentos que deben tenerse en cuenta para la resolución del problema. También se emplean para el análisis de las fuerzas internas que actúan en estructuras 1.4. ECUACIONES DEL MOVIMIENTO Existen varias formas de plantear ecuaciones de movimiento que permitan predecir la evolución en el tiempo de un sistema mecánico en función de las condiciones iniciales y las fuerzas actuantes. En mecánica clásica existen varias formulaciones posibles para plantear ecuaciones. La mecánica newtoniana que recurre a escribir directamente ecuaciones diferenciales ordinarias de segundo orden en términos de fuerzas y en coordenadas cartesianas. Este sistema conduce a ecuaciones difícilmente integrables por medios elementales y sólo se usa en problemas extremadamente sencillos, normalmente usando sistemas de referencia inerciales. La mecánica lagrangiana, este método usa también ecuaciones diferenciales ordinarias de segundo orden, aunque permite el uso de coordenadas totalmente generales, llamadascoordenadas generalizadas, que se adapten mejor a la geometría del problema planteado. Además las ecuaciones son válidas en cualquier sistema de referencia sea éste inercial o no. Además de obtener sistemas más fácilmente integrables el teorema de Noether y las transformaciones de

coordenadas permiten encontrar integrales de movimiento, también llamadas leyes de conservación, más sencillamente que el enfoque newtoniano. La mecánica hamiltoniana es similar a la anterior pero en él las ecuaciones de movimiento son ecuaciones diferenciales ordinarias son de primer orden. Además la gama de transformaciones de coordenadas admisibles es mucho más amplia que en mecánica lagrangiana, lo cual hace aún más fácil encontrar integrales de movimiento y cantidades conservadas.

1.5. SEGUNDA LEY DE NEWTON O LEY DE FUERZA La segunda ley del movimiento de Newton dice que el cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime. Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, esto es, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto. En términos matemáticos esta ley se expresa mediante la relación:

Donde es la cantidad de movimiento y la fuerza total. Si suponemos la masa constante y nos manejamos con velocidades que no superen el 10% de la velocidad de la luz podemos reescribir la ecuación anterior siguiendo los siguientes pasos: Sabemos que es la cantidad de movimiento, que se puede escribir m.V donde m es la masa del cuerpo y V su velocidad.

Consideramos a la masa constante y podemos escribir modificaciones a la ecuación anterior:

aplicando estas

Que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad, distinta para cada cuerpo, es su masa de inercia. Veamos lo siguiente, si despejamos m de la ecuación anterior obtenemos que m es la relación que existe entre y . Es decir la relación que hay entre la fuerza aplicada al cuerpo y la aceleración obtenida. Cuando un cuerpo tiene una gran resistencia a cambiar su aceleración (una gran masa) se dice que tiene mucha inercia. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo. Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo. De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido. La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a). Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con una resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la de la gravedad. 2.

EL TRABAJO Se considera una partícula de masa m sobre la que actúa una fuerza F(r). Si en un tiempo dt la partícula sufre un desplazamiento dr debido a la acción de la fuerza, el trabajo realizado por ella durante tal desplazamiento.

Se denomina trabajo infinitesimal, al producto escalar del vector fuerza por el vector desplazamiento.

Obsérvese el carácter escalar del trabajo cuyas dimensiones son ML2T-2 siendo el Julio la unidad en el S.I. Si pretendemos calcular el trabajo finito entre dos posiciones (A y B) habríamos de integrar la expresión.

Si pretendemos calcular el trabajo finito entre dos posiciones (A y B) habríamos de integrar la expresión (1.1) quedándonos:

A y B, límites de integración (posiciones de la partícula); C, línea de circulación (trayectoria).

En general el trabajo realizado sobre una partícula depende de la fuerza que lo realiza, de las posiciones inicial y final y de la trayectoria seguida por la partícula. En el caso particular de una fuerza constante que coincide en dirección y sentido con el desplazamiento:

Quedándonos la expresión particular para el trabajo aprendida en cursos anteriores.. Se define potencia instantánea a la variación con el tiempo del trabajo... P=dT/dt, P=Fdr/dt, P=Fv; la potencia media se obtendría multiplicando la fuerza escalarmente por el incremento de la velocidad. La ecuación de dimensiones de la potencia es ML2T-3 y su unidad en el S.I. el watio; otras unidades utilizadas son el caballo de vapor (CV=735 w) y el caballo de vapor inglés (HP=746w).

Donde Ft es la componente de la fuerza a lo largo del desplazamiento, ds es el módulo del vector desplazamiento dr, y q el ángulo que forma el vector fuerza con el vector desplazamiento. El trabajo total a lo largo de la trayectoria entre los puntos A y B es la suma de todos los trabajos infinitesimales

Su significado geométrico es el área bajo la representación gráfica de la función que relaciona la componente tangencial de la fuerzaFt, y el desplazamiento s. Ejemplo: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria para deformar un muelle es F=1000·x N, donde x es la deformación. El trabajo de esta fuerza se calcula mediante la integral

El área del triángulo de la figura es (0.05·50)/2=1.25 J Cuando la fuerza es constante, el trabajo se obtiene multiplicando la componente de la fuerza a lo largo del desplazamiento por el desplazamiento. W=Ft·s Ejemplo Calcular el trabajo de una fuerza constante de 12 N, cuyo punto de aplicación se traslada 7 m, si el ángulo entre las direcciones de la fuerza y del desplazamiento son 0º, 60º, 90º, 135º, 180º.

Si la fuerza y el desplazamiento tienen el mismo sentido, el trabajo es positivo Si la fuerza y el desplazamiento tienen sentidos contrarios, el trabajo es negativo Si la fuerza es perpendicular al desplazamiento, el trabajo es nulo. 3.

ENERGÍA CINÉTICA Supongamos que F es la resultante de las fuerzas que actúan sobre una partícula de masa m. El trabajo de dicha fuerza es igual a la diferencia entre el valor final y el valor inicial de la energía cinética de la partícula.

En la primera línea hemos aplicado la segunda ley de Newton; la componente tangencial de la fuerza es igual a la masa por la aceleración tangencial. En la segunda línea, la aceleración tangencial at es igual a la derivada del módulo de la velocidad, y el cociente entre el desplazamiento ds y el tiempo dt que tarda en desplazarse es igual a la velocidad v del móvil. Se define energía cinética como la expresión

El teorema del trabajo-energía indica que el trabajo de la resultante de las fuerzas que actúa sobre una partícula modifica su energía cinética. Ejemplo: Hallar la velocidad con la que sale una bala después de atravesar una tabla de 7 cm de espesor y que opone una resistencia constante de F=1800 N. La velocidad inicial de la bala es de 450 m/s y su masa es de 15 g. El trabajo realizado por la fuerza F es -1800·0.07=-126 J La velocidad final v es

3.1. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA Si solamente una fuerza conservativa F actúa sobre una partícula, el trabajo de dicha fuerza es igual a la diferencia entre el valor inicial y final de la energía potencial

Como hemos visto en el apartado anterior, el trabajo de la resultante de las fuerzas que actúa sobre la partícula es igual a la diferencia entre el valor final e inicial de la energía cinética.

Igualando ambos trabajos, obtenemos la expresión del principio de conservación de la energía EkA+EpA=EkB+EpB La energía mecánica de la partícula (suma de la energía potencial más cinética) es constante en todos los puntos de su trayectoria. 3.2. COMPROBACIÓN DEL PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA

Un cuerpo de 2 kg se deja caer desde una altura de 3 m. Calcular La velocidad del cuerpo cuando está a 1 m de altura y cuando llega al suelo, aplicando las fórmulas del movimiento rectilíneo uniformemente acelerado La energía cinética potencial y total en dichas posiciones Tomar g=10 m/s2

Posición inicial x=3 m, v=0. Ep=2·10·3=60 J, Ek=0, EA=Ek+Ep=60 J Cuando x=1 m

Ep=2·10·1=20 J, Ek=40, EB=Ek+Ep=60 J Cuando x=0 m

Ep=2·10·0=0 J, Ek=60, EC=Ek+Ep=60 J La energía total del cuerpo es constante. La energía potencial disminuye y la energía cinética aumenta. 3.3. FUERZAS NO CONSERVATIVAS Para darnos cuenta del significado de una fuerza no conservativa, vamos a compararla con la fuerza conservativa peso. 3.4. EL PESO ES UNA FUERZA CONSERVATIVA. Calculemos el trabajo de la fuerza peso cuando la partícula se traslada de A hacia B, y a continuación cuando se traslada de B hacia A.

WAB=mg x WBA=-mg x El trabajo total a lo largo el camino cerrado A-B-A, WABA es cero.

3.5. LA FUERZA DE ROZAMIENTO ES UNA FUERZA NO CONSERVATIVA Cuando la partícula se mueve de A hacia B, o de B hacia A la fuerza de rozamiento es opuesta al movimiento, el trabajo es negativo por que la fuerza es de signo contrario al desplazamiento WAB=-Fr x WBA=-Fr x El trabajo total a lo largo del camino cerrado A-B-A, WABA es distinto de cero WABA=-2Fr x

3.6. BALANCE DE ENERGÍA En general, sobre una partícula actúan fuerzas conservativas Fc y no conservativas Fnc. El trabajo de la resultante de las fuerzas que actúan sobre la partícula es igual a la diferencia entre la energía cinética final menos la inicial.

El trabajo de las fuerzas conservativas es igual a la diferencia entre la energía potencial inicial y la final

Aplicando la propiedad distributiva del producto escalar obtenemos que

El trabajo de una fuerza no conservativa modifica la energía mecánica (cinética más potencial) de la partícula. Ejemplo 1 Un bloque de masa 0.2 kg inicia su movimiento hacia arriba, sobre un plano de 30º de inclinación, con una velocidad inicial de 12 m/s. Si el coeficiente de rozamiento entre el bloque y el plano es 0.16. Determinar: La longitud x que recorre el bloque a lo largo del plano hasta que se para La velocidad v que tendrá el bloque al regresar a la base del plano

Cuando el cuerpo asciende por el plano inclinado La energía del cuerpo en A es EA=½0.2·122=14.4 J La energía del cuerpo en B es EB=0.2·9.8·h=1.96·h =0.98·x J El trabajo de la fuerza de rozamiento cuando el cuerpo se desplaza de A a B es W=-Fr·x=-μ·mg·cosθ·x=-0.16·0.2·9.8·cos30·x=-0.272·x J De la ecuación del m, h=x·sen30º=5.75 m

balance

energético W=EB-EA,

despejamos x=11.5

Cuando el cuerpo desciende La energía del cuerpo en B es EB=0.2·9.8·h=1.96·h =0.98·x=0.98·11.5=11.28 J La energía del cuerpo en la base del plano EA==½0.2·v2 El trabajo de la fuerza de rozamiento cuando el cuerpo se desplaza de B a A es W=-Fr·x=-μ·mg·cosθ·x=-0.16·0.2·9.8·cos30·11.5=-3.12 J De la ecuación del balance energético W=EA-EB, despejamos v=9.03 m/s. Ejemplo 2 Una partícula de masa m desliza sobre una superficie en forma de cuarto de circunferencia de radio R, tal como se muestra en la figura. Las fuerzas que actúan sobre la partícula son: El peso mg La reacción de la superficie N, cuya dirección es radial La fuerza de rozamiento Fr, cuya dirección es tangencial y cuyo sentido es opuesto a la velocidad de la partícula.

Descomponiendo el peso mg, a lo largo de la dirección tangencial y normal, escribimos la ecuación del movimiento de la partícula en la dirección tangencial mat=mg·cosθ-Fr Donde at=dv/dt es la componente tangencial de la aceleración. Escribimos en forma de ecuación diferencial la ecuación del movimiento

Calculamos el trabajo Wr realizado por la fuerza de rozamiento. La fuerza de rozamiento es de sentido contrario al desplazamiento

Teniendo en cuenta que el deslazamiento es un pequeño arco de circunferencia dl=R·dθ y que

El trabajo realizado por la fuerza no conservativa Fr vale

Si el móvil parte del reposo v=0, en la posición θ=0. Cuando llega a la posición θ La energía cinética se ha incrementado en mv2/2. La energía potencial ha disminuido en mgRsenθ. El trabajo de la fuerza de rozamiento es igual a la diferencia entre la energía final y la energía inicial o bien, la suma de la variación de energía cinética más la variación de energía potencial. El trabajo total de la fuerza de rozamiento cuando la partícula describe el cuarto de círculo es

TEOREMA DEL TRABAJO Y DE LA ENERGÍA CINÉTICA Sea F la fuerza neta aplicada a una partícula que se mueve a través de una trayectoria C entre las posiciones A y B...

Sabemos que Al ser F la fuerza (Newton; F=ma,F=mdv/dt),sustituyendo nos queda:

neta

El trabajo total realizado sobre una partícula que se desplaza entre dos posiciones A y B a través de C coincide con la variación de la energía cinética de la partícula entre ambas posiciones.

RELACIÓN ENTRE ENERGÍA Y TRABAJO El trabajo es una manifestación de la energía. Ahora bien, por su definición, el trabajo es una magnitud escalar que atendiendo a la disposición de la fuerza y el desplazamiento puede ser positiva, negativa o nula:   

Cuando el trabajo es positivo, se dice que la fuerza inductora ha aportado energía. Así sucede cuando se comprime un muelle o se levanta un peso. Si el trabajo es negativo, la fuerza ha absorbido energía (por ejemplo, al soltar un muelle o dejar caer un objeto). Si el trabajo es nulo, no existen variaciones en el balance energético del sistema.

Ejemplo de trabajo nulo, donde el cuerpo se desliza por una superficie horizontal que es perpendicular al peso (en el ejemplo, esta fuerza ni absorbe ni aporta energía).