Fuerza Fisica

Fuerza . Descomposición de las fuerzas que actúan sobre un sólido situado en un plano inclinado. En física, la fuerza e

Views 74 Downloads 0 File size 384KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Fuerza .

Descomposición de las fuerzas que actúan sobre un sólido situado en un plano inclinado. En física, la fuerza es una magnitud vectorial que mide la Intensidad del intercambio de momento lineal entre dos partículas o sistemas de partículas. Según una definición clásica, fuerza es todo agente capaz de modificar la cantidad de movimiento o la forma de los materiales. No debe confundirse con los conceptos de esfuerzo o de energía. En el Sistema Internacional de Unidades, la unidad de medida de fuerza es el newton que se representa con el símbolo: N , nombrada así en reconocimiento a Isaac Newton por su aportación a la física, especialmente a la mecánica clásica. El newton es una unidad derivada que se define como la fuerza necesaria para proporcionar una aceleración de 1 m/s² a un objeto de 1 kg de masa.

Introducción La fuerza es un modelo matemático de intensidad de las interacciones, junto con la energía. Así por ejemplo la fuerza gravitacional es la atracción entre los cuerpos que tienen masa, el peso es la atracción que la Tierra ejerce sobre los objetos en las cercanías de su superficie, la fuerza elástica es el empuje o tirantez que ejerce un resorte comprimido o estirado respectivamente, etc. En física hay dos tipos de ecuaciones de fuerza: las ecuaciones "causales" donde se especifica el origen de la atracción o repulsión: por ejemplo la ley de la gravitación universal de Newton o la ley de Coulomb y las ecuaciones de los efectos (la cual es fundamentalmente la segunda ley de Newton). La fuerza es una magnitud física de carácter vectorial capaz de deformar los cuerpos (efecto estático), modificar su velocidad o vencer su inercia y ponerlos en movimiento si estaban inmóviles (efecto dinámico). En este sentido la fuerza puede definirse como toda acción o influencia capaz de modificar el estado de movimiento o de reposo de un cuerpo (imprimiéndole una aceleración que modifica el módulo o la dirección de su velocidad). Comúnmente nos referimos a la fuerza aplicada sobre un objeto sin tener en cuenta al otro objeto u objetos con los que está interactuando y que experimentarán, a su vez, otras fuerzas. Actualmente, cabe definir la fuerza como un ente físico-matemático, de carácter vectorial, asociado con la interacción del cuerpo con otros cuerpos que constituyen su entorno.

Tipos de Fuerza En mecánica newtoniana La fuerza se puede definir a partir de la derivada temporal del momento lineal:

Si la masa permanece constante, se puede escribir:

(*) donde m es la masa y a la aceleración, que es la expresión tradicional de la segunda ley de Newton. En el caso de la estática, donde no existen aceleraciones, las fuerzas actuantes pueden deducirse de consideraciones de equilibrio. La ecuación (*) es útil sobre todo para describir el movimiento de partículas o cuerpos cuya forma no es relevante para el problema planteado. Pero incluso si se trata de estudiar la mecánica de sólidos rígidos se necesitan postulados adicionales para definir la velocidad angular del sólido, o su aceleración angular así como su relación con las fuerzas aplicadas. Para un sistema de referencia arbitrario la ecuación (*) debe substituirse por:1

Donde:

Fricción La fricción en sólidos puede darse entre sus superficies libres en contacto. En el tratamiento de los problemas mediante mecánica newtoniana, la fricción entre sólidos frecuentemente se modeliza como una fuerza tangente sobre cualquiera de los planos del contacto entre sus superficies, de valor proporcional a la fuerza normal. El rozamiento entre sólido-líquido y en el interior de un líquido o un gas depende esencialmente de si el flujo se considera laminar o turbulento y de su ecuación constitutiva.

Fuerza gravitatoria

Fuerzas gravitatorias entre dos partículas. En mecánica newtoniana la fuerza de atracción entre dos masas, cuyos centros de gravedad están lejos comparadas con las dimensiones del cuerpo,2 viene dada por la ley de la gravitación universal de Newton:

Donde: es la fuerza que actúa sobre el cuerpo 2, ejercida por el cuerpo 1. constante de la gravitación universal. vector de posición relativo del cuerpo 2 respecto al cuerpo 1. es el vector unitario dirigido desde 1 hacía 2. masas de los cuerpos 1 y 2. Cuando la masa de uno de los cuerpos es muy grande en comparación con la del otro (por ejemplo, si tiene dimensiones planetarias), la expresión anterior se transforma en otra más simple:

Donde: es la fuerza del cuerpo de gran masa ("planeta") sobre el cuerpo pequeño. es un vector unitario dirigido desde el centro del "planeta" al cuerpo de pequeña masa. es la distancia entre el centro del "planeta" y el del cuerpo pequeño. Véase también: Gravedad

Fuerzas de campos estacionarios Artículo principal: Campo (física)

En mecánica newtoniana también es posible modelizar algunas fuerzas constantes en el tiempo como campos de fuerza. Por ejemplo la fuerza entre dos cargas eléctricas inmóviles, puede representarse adecuadamente mediante la ley de Coulomb:

Donde: es la fuerza ejercida por la carga 1 sobre la carga 2. una constante que dependerá del sistema de unidades para la carga. vector de posición de la carga 2 respecto a la carga 1. valor de las cargas. También los campos magnéticos estáticos y los debidos a cargas estáticas con distribuciones más complejas pueden resumirse en dos funciones vectoriales llamadas campo eléctrico y campo magnético tales que una partícula en movimiento respecto a las fuentes estáticas de dichos campos viene dada por la expresión de Lorentz:

Donde: es el campo eléctrico. es el campo magnético. es la velocidad de la partícula. es la carga total de la partícula. Los campos de fuerzas no constantes sin embargo presentan una dificultad especialmente cuando están creados por partículas en movimiento rápido, porque en esos casos los efectos relativistas de retardo pueden ser importantes, y la mecánica clásica, da lugar a un tratamiento de acción a distancia que puede resultar inadecuado si las fuerzas cambian rápidamente con el tiempo.

Fuerza eléctrica La fuerza eléctrica también son de acción a distancia, pero a veces la interacción entre los cuerpos actúa como una fuerza atractiva mientras que, otras veces, tiene el efecto inverso, es decir puede actuar como una fuerza repulsiva.

Unidades de fuerza En el Sistema Internacional de Unidades (SI) y en el Cegesimal (cgs), el hecho de definir la fuerza a partir de la masa y la aceleración (magnitud en la que intervienen longitud y tiempo), conlleva a que la fuerza sea una magnitud derivada. Por en contrario, en el Sistema Técnico la fuerza es una Unidad Fundamental y a partir de ella se define la unidad de masa en este sistema, la unidad técnica de masa, abreviada u.t.m. (no tiene símbolo). Este hecho atiende a las evidencias que posee la física actual,

expresado en el concepto de fuerzas fundamentales, y se ve reflejado en el Sistema Internacional de Unidades.    

Sistema Internacional de Unidades (SI) o newton (N) Sistema Técnico de Unidades o kilogramo-fuerza (kgf) o kilopondio (kp) Sistema Cegesimal de Unidades o dina (dyn) Sistema anglosajón de unidades o Poundal o Libra fuerza (lbf) o KIP (= 1000 lbf)

Equivalencias 1 newton = 100 000 dinas 1 kilogramo-fuerza = 9,806 65 newtons 1 libra fuerza ≡ 4,448 222 newtons

"Fuerza" gravitatoria En la teoría de la relatividad general el campo gravitatorio no se trata como un campo de fuerzas real, sino como un efecto de la curvatura del espacio-tiempo. Una partícula másica que no sufre el efecto de ninguna otra interacción que la gravitatoria seguirá una trayectoria geodésica de mínima curvatura a través del espacio-tiempo, y por tanto su ecuación de movimiento será:

Donde: son las coordenadas de posición de la partícula. el parámetro de arco, que es proporcional al tiempo propio de la partícula. son los símbolos de Christoffel correspondientes a la métrica del espaciotiempo. La fuerza gravitatoria aparente procede del término asociado a los símbolos de Christoffel. Un observador en "caída libre" formará un sistema de referencia en movimiento en el que dichos símbolos de Christoffel son nulos, y por tanto no percibirá ninguna fuerza gravitatoria tal como sostiene el principio de equivalencia que ayudó a Einstein a formular sus ideas sobre el campo gravitatorio.

Fuerza electromagnética El efecto del campo electromagnético sobre una partícula relativista viene dado por la expresión covariante de la fuerza de Lorentz:

Donde: son las componentes covariantes de la cuadrifuerza experimentada por la partícula. son las componentes del tensor de campo electromagnético. son las componentes de la cuadrivelocidad de la partícula. La ecuación de movimiento de una partícula en un espacio-tiempo curvo y sometida a la acción de la fuerza anterior viene dada por:

Donde la expresión anterior se ha aplicado el convenio de sumación de Einstein para índices repetidos, el miembro de la derecha representa la cuadriaceleración y siendo las otras magnitudes: son las componentes contravarianetes de la cuadrifuerza electromagnética sobre la partícula. es la masa de la partícula. Concepto de la fuerza en la física

Para la física, la fuerza es cualquier acción, esfuerzo o influencia que puede alterar el estado de movimiento o de reposo de cualquier cuerpo. Esto quiere decir que una fuerza puede dar aceleración a un objeto, modificando su velocidad, su dirección o el sentido de su movimiento. El primer físico en describir el concepto de fuerza fue Arquímedes, aunque sólo lo hizo en términos estáticos. Galileo Galilei le otorgó la definición dinámica, mientras que Isaac Newton fue quien pudo formular en forma matemática la definición moderna de fuerza. Según la definición que hace la física de este concepto, la fuerza es el resultado de la masa de algo por su aceleración (F= masa x aceleración) y que dependiendo de la perspectiva y de los resultados se dividen en tres tipos de fuerzas: *Eléctrica(se realiza con una fuente de energía que se mueve a una velocidad determinada dentro de un campo magnético, transformando la energía en electricidad); *Mecánica (producida mediante un objeto mecánico con una determinada intensidad y que provoca cambios en el receptor); *Magnética (ejercida de un polo a otro y como consecuencia del movimiento de partículas cargas, electrones por ejemplo).

Tipos de fuerza

Aquella magnitud vectorial mediante la que se puede poner en movimiento un cuerpo, deformarlo o modificar su velocidad se la conoce bajo en nombre fuerza. Esta es capaz de transformar el estado de reposo o de movimiento de un cuerpo y se la mide en newtons (N). Existen distintos tipos de fuerzas, algunos de ellos son: Fuerza elástica: es la que logran ejercer los resortes que, fuera de su posición normal, es decir, cuando están comprimidos o estirados y logran ejercer fuerza, ya sea empujando o tironeando un cuerpo. Fuerza de rozamiento: es la fuerza de contacto que surge cuando un cuerpo es deslizado sobre una superficie y se opone a este movimiento. Dentro de esta fuerza encontramos dos tipos: las dinámicas y las estáticas. La fuerza estática establece la fuerza mínima que se precisa para mover un cuerpo. Esta fuerza es equivalente a la fuerza que se necesite para mover un cuerpo, aunque en sentido contrario. La fuerza que se opone al movimiento de un cuerpo es la de rozamiento dinámico. Fuerza normal: es aquella que ejerce una superficie cuando reacciona ante un cuerpo que se desliza sobre ella. Fuerza gravitatoria: es aquella fuerza de atracción que surge entre dos cuerpos. Esta fuerza está condicionada por la distancia y masa de ambos cuerpos y disminuye al cuadrado a medida que se incrementa la distancia. Dentro de este tipo de fuerza se encuentra el peso que es la fuerza gravitatoria que se ejerce por la aceleración del planeta, ya sea la Tierra o cualquier otro. Esta fuerza gravitatoria depende de la distancia y la gravedad en la que se encuentre el cuerpo. El par de reacción del peso se encuentra en el planeta. Fuerza electromagnética: es la que repercute sobre aquellos cuerpos que se encuentran eléctricamente cargado. Está presente en las transformaciones químicas y físicas tanto de átomos como de moléculas. Interacción nuclear fuerte: es la que logra mantener los componentes de los núcleos atómicos unidos. Actúa entre dos nucleones, neutrones o protones de forma indistinta y tiene mayor intensidad que la electromagnética.

Interacción nuclear débil: es la que logra la desintegración beta de los neutrones, los neutrinos, son sólo sensibles a esta clase de interacción. Este tipo de fuerza tiene menor alcance que la interacción nuclear fuerte y su intensidad es menor a la electromagnética.

http://www.tiposde.org/ciencias-naturales/30-tipos-de-fuerza/#ixzz3OF21Melj