FACTOR DE POTENCIA

Indice 1. ¿Que es el factor de potencia? 2. ¿Porque existe bajo factor de potencia? 3. ¿Porque resulta dañino tener un b

Views 97 Downloads 0 File size 337KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Indice 1. ¿Que es el factor de potencia? 2. ¿Porque existe bajo factor de potencia? 3. ¿Porque resulta dañino tener un bajo factor de potencia? 4. ¿Cómo puedo mejorar el factor de potencia? 5. Ejemplo de aplicación para determinar la potencia reactiva capacitiva necesaria para corregir el factor de potencia. 7. ¿Dónde instalar los capacitores? 8. Conclusiones 9. Bibliografía 1. ¿Qué es Factor de Potencia? Denominamos factor de potencia al cociente entre la potencia activa y la potencia aparente, que es coincidente con el coseno del ángulo entre la tensión y la corriente cuando la forma de onda es sinusoidal pura, etc. O sea que el factor de potencia debe tratarse que coincida con el coseno phi pero no es lo mismo. Es aconsejable que en una instalación eléctrica el factor de potencia sea alto y algunas empresas de servicio electroenergético exigen valores de 0,8 y más. O es simplemente el nombre dado a la relación de la potencia activa usada en un circuito, expresada en vatios o kilovatios (KW), a la potencia aparente que se obtiene de las líneas de alimentación, expresada en voltio-amperios o kilovoltio-amperios (KVA). Las cargas industriales en su naturaleza eléctrica son de carácter reactivo a causa de la presencia principalmente de equipos de refrigeración, motores, etc. Este carácter reactivo obliga que junto al consumo de potencia activa (KW) se sume el de una potencia llamada reactiva (KVAR), las cuales en su conjunto determinan el comportamiento operacional de dichos equipos y motores. Esta potencia reactiva ha sido tradicionalmente suministrada por las empresas de electricidad, aunque puede ser suministrada por las propias industrias. Al ser suministradas por las empresas de electricidad deberá ser producida y transportada por las redes, ocasionando necesidades de inversión en capacidades mayores de los equipos y redes de transmisión y distribución. Todas estas cargas industriales necesitan de corrientes reactivas para su operación. 2.¿ Por qué existe un bajo factor de potencia? La potencia reactiva, la cual no produce un trabajo físico directo en los equipos, es necesaria para producir el flujo electromagnético que pone en funcionamiento elementos tales como: motores, transformadores, lámparas fluorescentes, equipos de refrigeración y otros similares. Cuando la cantidad de estos equipos es apreciable los requerimientos de potencia reactiva también se hacen significativos, lo cual produce una disminución del exagerada del factor de potencia. Un alto consumo de energía reactiva puede producirse como consecuencia principalmente de:    

Un gran número de motores. Presencia de equipos de refrigeración y aire acondicionado. Una sub-utilización de la capacidad instalada en equipos electromecánicos, por una mala planificación y operación en el sistema eléctrico de la industria. Un mal estado físico de la red eléctrica y de los equipos de la industria.

Cargas puramente resistivas, tales como alumbrado incandescente, resistencias de calentamiento, etc. no causan este tipo de problema ya que no necesitan de la corriente reactiva. 3. ¿Por qué resulta dañino y caro mantener un bajo factor de Potencia? El hecho de que exista un bajo factor de potencia en su industria produce los siguientes inconvenientes: Al suscriptor:     

Aumento de la intensidad de corriente Pérdidas en los conductores y fuertes caídas de tensión Incrementos de potencia de las plantas, transformadores, reducción de su vida útil y reducción de la capacidad de conducción de los conductores La temperatura de los conductores aumenta y esto disminuye la vida de su aislamiento. Aumentos en sus facturas por consumo de electricidad.

A la empresa distribuidora de energía:   

Mayor inversión en los equipos de generación, ya que su capacidad en KVA debe ser mayor, para poder entregar esa energía reactiva adicional. Mayores capacidades en líneas de transmisión y distribución así como en transformadores para el transporte y transformación de esta energía reactiva. Elevadas caídas de tensión y baja regulación de voltaje, lo cual puede afectar la estabilidad de la red eléctrica.

Una forma de que las empresas de electricidad a nivel nacional e internacional hagan reflexionar a las industrias sobre la conveniencia de generar o controlar su consumo de energía reactiva ha sido a través de un cargo por demanda, facturado en Bs./KVA, es decir cobrándole por capacidad suministrada en KVA. Factor donde se incluye el consumo de los KVAR que se entregan a la industria. 4. ¿Cómo puedo mejorar el Factor de Potencia? Mejorar el factor de potencia resulta práctico y económico, por medio de la instalación de condensadores eléctricos estáticos, o utilizando motores sincrónicos disponibles en la industria (algo menos económico si no se dispone de ellos). A continuación se tratará de explicar de una manera sencilla y sin complicadas ecuaciones ni términos, el principio de cómo se mejora el factor de potencia: El consumo de KW y KVAR (KVA) en una industria se mantienen inalterables antes y después de la compensación reactiva (instalación de los condensadores), la diferencia estriba en que al principio los KVAR que esa planta estaba requiriendo, debían ser producidos, transportados y entregados por la empresa de distribución de energía eléctrica, lo cual como se ha mencionado anteriormente, le produce consecuencias negativas . Pero esta potencia reactiva puede ser generada y entregada de forma económica, por cada una de las industrias que lo requieran, a través de los bancos de capacitores y/o motores sincrónicos, evitando a la empresa de distribución de energía eléctrica, el generarla transportarla y distribuirla por sus redes. Veamos un ejemplo: Un capacitor instalado en el mismo circuito de un motor de inducción tiene como efecto un intercambio de corriente reactiva entre ellos. La corriente de adelanto almacenada por el capacitor entonces alimenta la corriente de retraso requerida por el motor de inducción.

La figura 4 muestra un motor de inducción sin corrección de factor de potencia. El motor consume sólo 80 amp. para su carga de trabajo. Pero la corriente de magnetización que requiere el motor es de 60 amp, por lo tanto el circuito de alimentación debe conducir: 100amp.

(802 + 602) = 100 amp .

Por la línea de alimentación fluye la corriente de trabajo junto con la corriente no útil o corriente de magnetización. Después de instalar un capacitor en el motor para satisfacer las necesidades de magnetización del mismo, como se muestra en la figura 5, el circuito de alimentación sólo tiene que conducir y suministrar 80 amp. para que e1 motor efectúe el mismo trabajo. Ya que el capacitor se encarga de entregar los 60 amp. Restantes. El circuito de alimentación conduce ahora únicamente corriente de trabajo. Esto permite conectar equipo eléctrico adicional en el mismo circuito y reduce los costos por consumo de energía como consecuencia de mantener un bajo factor de potencia. 5. Ejemplo de aplicación para determinar la potencia reactiva capacitiva necesaria para corregir el factor de potencia: (Fuente: Instalaciones Eléctricas, Tomo I, Albert F. Spitta - Günter G. Seip) Si se desea alcanzar un valor determinado del factor de potencia cos fi2 en una instalación cuyo factor de potencia existente cos fi1 se desconoce, se determina éste con ayuda de un contador de energía activa, un amperímetro y un voltímetro. P: Potencia activa, en kW S1: Potencia aparente, en kVA Qc: Potencia del capacitor, en kVAr U: Tensión, en V I: Intensidad de corriente, en A n: Número de vueltas del disco contador por min. c: Constante del contador (indicada en la placa de tipos del contador como      velocidad de rotación por kWh). cos fi1: Factor de potencia real cos fi2: Factor de potencia mejorado Valores medidos: U= 380V; I= 170A. Valores indicados por el contador: n= 38r/min.; c= 30 U/kWh. El factor de potencia cos fi1 existente se ha de compensar hasta que alcance un valor de cos fi2= 0,9. Potencia activa: P= n.60/c = (38 r/min . 60)/(30 U/kWh) = 76 kW Potencia aparente: S1= (U.I.1,73)/1000 = (380V . 170A . 1,73)/1000 = 112 kVA Factor de potencia existente: cos fi1= P/S1= 76 kW/112 kVA = 0,68 Ya que cos fi= P/S y tan fi= Q/P; y a cada ángulo fi corresponde un valor determinado de la tangente y del coseno, se obtiene la potencia reactiva: antes de la compensación Q1= P.tan fi1;  y después de la compensación Q2= P.tan fi2; resultando, según las funciones trigonométricas: de cos fi1= 0,68 se deduce tan fi1= 1,08 y de cos fi2= 0,9 se deduce tan fi2= 0,48 Por consiguiente, se precisa una potencia del capacitor de: Qc= P.(tan fi1 - tan fi2) = 76 kW (1,08 - 0,48) = 45,6 kVAr   Analizando la correspondiente tabla , se llega al mismo resultado de la siguiente forma: en ella se indican los valores de tan fi1 tan fi2 . En el presente ejemplo resulta, para un valor de cos fi1= 0,68 y uno deseado de cos

fi2= 0,9; un factor de F= 0,595 kVar/kW. En tal caso, la potencia del capacitor necesaria es: Qc= P.F = 76 kW . 0,595 (kVAr/kW) = 45,6 kVAr Se elige el capacitor de magnitud inmediata superior, en éste caso el de 50 kVAr. Como medir potencia y factor de potencia con amperímetro Este método es muy práctico por que en ocasiones no tenemos un wattmetro a la mano o bien no lo podemos comparar por el costo tan elevado, pues bien aquí tienes un método práctico que solo necesitas una resistencia (puede ser una como las que usan las parrillas), un amperímetro o un volmetro y aplicar unas formulas matemáticas (ley de los senos y cosenos) Procedimiento: a) conecta en paralelo la resistencia con la carga que quieres medir el f.p. b) anota los valores RMS de la corriente que entrega la fuente, la corriente que pasa por la resistencia y la corriente que pasa por la carga ¡Listo! c) ahora resuelve tu problema como un análisis vectorial y aplicando las leyes de Kirchoff suponiendo que el ángulo del voltaje es cero y calcula el ángulo. Como ya conoces las magnitudes IL, IT, IR Calcula el ángulo b por lo tanto, q = 180 - b F.P = COS (180 - b ) Watts = P VI Cos ( 180 - b ) Como medir potencia y f.p con un volmetro Este método es similar al visto anteriormente pero ahora con un vólmetro y un circuito en serie y suponiendo que la corriente tiene un ángulo de cero. f.p= Cos ( 180-b ) Watts=P=VI Cos (180 -b ) 6. ¿ Cómo determinar la cantidad de condensadores necesarios? Midiendo la energía activa y reactiva que consumen las instalaciones existentes, se puede calcular la potencia necesaria (KVAR) que deben tener los condensadores para lograr la compensación deseada. Sin embargo, es recomendable la instalación de registradores de potencia durante el tiempo necesario para cubrir (medir) por lo menos un ciclo completo de operación de la industria, incluyendo sus períodos de descanso. Por lo general se recomienda realizar registros trifásicos donde se monitoree para cada fase y para el total de la planta: Potencia Activa (KW) y Reactiva (KVAR), Voltaje y Energía (KWH). Los valores de corriente, potencia aparente (KVA) y factor de potencia (FP) se calculan a partir de las lecturas anteriores, sin embargo, si el registrador dispone de la suficiente capacidad podrán se leídos también. Los intervalos de medición recomendados oscilan entre cada 5 y cada 15 min. como máximo. Por supuesto, a menores intervalos de medición, tendremos mayor exactitud en cuanto a la curva real de la industria, sin embargo esto dependerá de la capacidad del registrador que se utilice y del tipo de empresa a registrar. Aquellas empresas donde sus ciclos de carga varían lentamente, podría extenderse aún mas el intervalo de medición. De esta forma se podrá obtener una curva de carga completa la cual mostrará la máxima capacidad posible de instalar sin el riesgo de caer en sobrecompensación reactiva. También es importante, registrar con las mediciones, el grado de distorsión armónica existente; con el objeto de evitar la posibilidad de resonancia entre estos y los bancos de capacitores a instalar .

7. ¿ Dónde instalar los capacitores ? Para la instalación de los capacitores deberán tomarse en cuenta diversos factores que influyen en su ubicación como lo son: La variación y distribución de cargas, el factor de carga, tipo de motores, uniformidad en la distribución de la carga, la disposición y longitud de los circuitos y la naturaleza del voltaje. Se puede hacer una corrección del grupo de cargas conectando en los transformadores primarios y secundarios de la planta, por ejemplo, en un dispositivo principal de distribución o en una barra conductora de control de motores. La corrección de grupo es necesaria cuando las cargas cambian radicalmente entre alimentadores y cuando los voltajes del motor son bajos, como por ejemplo, 230 V. Cuando los flujos de potencia cambian frecuentemente entre diversos sitios de la planta y cargas individuales, se hace necesario efectuar la corrección primero en una parte de la planta, verificar las condiciones obtenidas y después compensar en la otra. Sin embargo, es más ventajoso usar un capacitor de grupo ubicado lo mas equidistante que se pueda de las cargas. Esto permite la desconexión de una parte de los capacitores de acuerdo a condiciones específicas de cargas variables. Cuando la longitud de los alimentadores es considerable, se recomienda la instalación de capacitores individuales a los motores, por supuesto se necesitarán varios condensadores de diferentes capacidades, resultando esto en un costo mayor. Sin embargo deberá evaluarse el beneficio económico obtenido con la compensación individual. Considerando que el costo de los capacitores para bajos voltajes es más del doble que los de altos voltajes. Por esto, cuando el voltaje de los circuitos de motores es de 230 V, es más económico usar una instalación de grupo si es que ésta se puede efectuar en el primario a 2.400 ó 4.160 V. Debemos también considerar que, cuando los capacitores se instalan antes del banco principal de transformadores, éstos no se benefician y no se alivia su carga en KVA. Esta es una buena razón para usar capacitores de 230 V a pesar de su alto costo. Correcciones aisladas La corrección aislada del factor de potencia se debe hacer conectando los capacitores tan cerca como sea posible de la carga o de las terminales de los alimentadores. Debe recordar que la corrección se lleva a cabo sólo del punto considerado a la fuente de energía y no en dirección opuesta. Los capacitores instalados cerca de las cargas pueden dejar de operar automáticamente cuando las cargas cesan, incrementan el voltaje y por ende el rendimiento del motor 8. Conclusiones

1.

2.

3. 4.

5.

6.

El factor de potencia se puede definir como la relación que existe entre la potencia activa (KW) y la potencia aparente (KVA) y es indicativo de la eficiencia con que se está utilizando la energía eléctrica para producir un trabajo útil. El origen del bajo factor de potencia son las cargas de naturaleza inductiva, entre las que destacan los motores de inducción, los cuales pueden agravarlo si no se operan en las condiciones para las que fueron diseñados. El bajo factor de potencia es causa de recargos en la cuenta de energía eléctrica, los cuales llegan a ser significativos cuando el factor de potencia es reducido. Un bajo factor de potencia limita la capacidad de los equipos con el riesgo de incurrir en sobrecargas peligrosas y pérdidas excesivas con un dispendio de energía. El primer paso en la corrección del factor es el prevenirlo mediante la selección y operación correcta de los equipos. Por ejemplo, adecuando la carga de los motores a su valor nominal. Los capacitores de potencia son la forma más práctica y económica para mejorar el factor de potencia, sobre todo en instalaciones existentes.

7.

El costo de los capacitores se recupera rápidamente, tan sólo por los ahorros que se tienen al evitar los recargos por bajo factor de potencia en el recibo de energía eléctrica. 8. Entre más cerca se conecten los capacitores de la carga que van a compensar, mayores son los beneficios que se obtienen. 9. Cuando las variaciones de la carga son significativas, es recomendable el empleo de bancos de capacitores automáticos. 10. a corrección del factor de potencia puede ser un problema complejo. Recurrir a especialistas es conveniente, si no se cuenta con los elementos necesarios para resolverlo. 9. Bibliografía    

http://personales.ciudad.com.ar/montajesindustriales/index.html http://www.aener.com/ http://www.ingelectricista.com.ar/cosfi.htm Instalaciones Eléctricas, Tomo I, Albert F. Spitta - Günter G. Seip

 QUÉ ES EL FACTOR DE POTENCIA DIFERENTES TIPOS DE RESISTENCIAS De acuerdo con la Ley de Ohm, para que exista un circuito eléctrico cerrado tiene que existir: 1.- una fuente de fuerza electromotriz (FEM) o diferencia de potencial, es decir, una tensión o voltaje (V) aplicado al circuito; 2.- el flujo de una intensidad de corriente ( I ) fluyendo por dicho circuito; 3.- una carga, consumidor o resistencia conectada al mismo. Sin embargo, un circuito eléctrico puede contener uno o varios tipos diferentes de resistencias conectadas, entre las que se encuentran:   

Resistencia activa (R) Reactancia inductiva o inductancia (XL) Reactancia capacitiva o capacitancia (XC)

Resistencia activa (R) Es la oposición que ofrecen las bombillas incandescentes y halógenas, los calentadores eléctricos con resistencia de alambre nicromo, las resistencias de carbón de los circuitos electrónicos, etc, al flujo de la corriente eléctrica por un circuito cerrado cualquiera. La resistencia activa representa lo que se denomina una “carga resistiva”. Secador eléctrico manual para el pelo. En su interior se. puede observar una resistencia activa (R) de alambre. nicromo, que hace función de elemento calefactor. Reactancia inductiva (XL) La reactancia inductiva es la oposición o resistencia que ofrecen al flujo de la corriente por un circuito eléctrico cerrado las bobinas o enrollados hechos con alambre de cobre, ampliamente utilizados en motores eléctricos, transformadores de tensión o voltaje y otros dispositivos. Esta reactancia representa una  “carga inductiva” para el circuito de corriente alterna donde se encuentra conectada. Los motores  de corriente alterna constituyen cargas inductivas cuando funcionan conectados a un circuito eléctrico.

Reactancia capacitiva (XC) La reactancia capacitiva es la oposición o resistencia que ofrecen al flujo de la corriente eléctrica los capacitores o condensadores. Esta reactancia representa una “carga capacitiva” para el circuito de corriente alterna donde se encuentra conectada. En la foto de la derecha podemos ver varios capacitores (o condensadores) y filtros conectados en la placa de un circuito electrónico en función de cargas capacitivas 

Intensidad de la corriente en fase con el voltaje La corriente ( I ) que fluye por un circuito eléctrico de corriente alterna, así como la tensión o voltaje (V) aplicado al mismo, se puede representar gráficamente por medio de dos sinusoides, que sirven para mostrar cada una de las magnitudes. Para un circuito cerrado con una carga resistiva conectada al mismo, tanto la sinusoide de la corriente como la del voltaje aplicado al circuito, coincidirán tanto en fase como en frecuencia. En un circuito con carga resistiva, las sinusoides de. intensidad "I" y voltaje "V" de la corriente alterna, coinciden. en fase y frecuencia.

Intensidad de la corriente atrasada con relación al voltaje Cuando la carga conectada en el circuito de corriente alterna es inductiva, como la de los motores y transformadores, por ejemplo, la sinusoide de la corriente ( I ) se atrasa o desfasa en relación con la tensión o voltaje (V). Es decir, cuando el voltaje ya ha alcanzado un cierto valor en la sinusoide, superior a “0” volt, en ese preciso instante y con cierto retraso la intensidad de la corriente comienza a incrementar su valor, a partir de “0” ampere. En un circuito de corriente alterna con carga inductiva, la. sinusoide "I" de la intensidad de la corriente, se atrasa con. respecto a la sinusoide "V" de la tensión o voltaje . Tal como se puede observar en las coordenadas de la figura, cuando la sinusoide del voltaje alcanza su valor máximo de 90º, en ese mismo momento y con 90º de retraso con respecto a éste, comienza a crecer el valor de la sinusoide de la intensidad, partiendo de 0º.

Intensidad de la corriente adelantada con relación al voltaje Si lo que se conecta al circuito de corriente alterna es una carga capacitiva, como un capacitor o condensador, por ejemplo, entonces ocurrirá todo lo contrario al caso anterior, es decir, la sinusoide que representa la intensidad "I" de la corriente se desfasará ahora también, pero en esta ocasión en sentido contrario, es decir, adelantándose a la tensión o voltaje. Por tanto, en este caso cuando la corriente alcanza un cierto valor en la sinusoide, superior a “0” ampere, entonces en ese momento el voltaje comienza a aumentar su valor partiendo de “0” volt. En un circuito de corriente alterna con carga capacitiva, la. sinusoide  de  la  intensidad  "I"  de  la  corriente  alterna, se< adelanta con respecto a la sinusoide "V" del voltaje. Como se puede observar en las coordenadas de la figura y al contrario

del ejemplo anterior, cuando la sinusoide de la intensidad alcanza su valor máximo de 90º, en ese mismo momento y con 90º de retraso con respecto a ésta, comienza a crecer el valor de la sinusoide del voltaje, a partir de 0º. DIFERENTES TIPOS DE POTENCIAS Del mayor o menor retraso o adelanto que provoque un equipo eléctrico cualquiera en la corriente ( I) que fluye por un circuito, en relación con el voltaje o tensión (V), así será el factor de potencia o Cos que tenga dicho equipo. En un circuito eléctrico de corriente alterna se pueden llegar a encontrar tres tipos de potencias eléctricas diferentes:   

Potencia activa (P) (resistiva) Potencia reactiva (Q) (inductiva) Potencia aparente (S) (total)

Potencia activa o resistiva (P) Cuando conectamos una resistencia (R) o carga resistiva en un circuito de corriente alterna, el trabajo útil que genera dicha carga determinará la potencia activa que tendrá que proporcionar la fuente de fuerza electromotriz (FEM). La potencia activa se representa por medio de la letra (P) y su unidad de medida es el watt (W). Los múltiplos más utilizados del watt son: el kilowatt (kW) y el megawatt (MW) y los submúltiplos, el miliwatt (mW) y el microwatt ( W). La fórmula matemática para hallar la potencia activa que consume un equipo eléctrico cualquiera cuando se encuentra conectado a un circuito monofásico de corriente alterna es la siguiente:

De P = Potencia I = Intensidad de Cos = Valor

donde: de consumo eléctrico, expresada en watt (W) la corriente que fluye por el circuito, en ampere (A) del factor de potencia o coseno de “fi”

(En los dispositivos que poseen solamente carga resistiva, el factor de potencia es siempre igual a “1”, mientras que en los que poseen carga inductiva ese valor será siempre menor de “1”).

Potencia reactiva o inductiva (Q) Esta potencia la consumen los circuitos de corriente alterna que tienen conectadas cargas reactivas, como pueden ser motores, transformadores de voltaje y cualquier otro dispositivo similar que posea bobinas o enrollados. Esos dispositivos no sólo consumen la potencia activa que suministra la fuente de FEM, sino también potencia reactiva. La potencia reactiva o inductiva no proporciona ningún tipo de trabajo útil, pero los dispositivos que poseen enrollados de alambre de cobre, requieren ese tipo de potencia para poder producir el campo magnético con el cual funcionan. La unidad de medida de la potencia reactiva es el volt-ampere reactivo (VAR).

La fórmula matemática para hallar la potencia reactiva de un circuito eléctrico es la siguiente:

  De

donde:

Q = Valor de la carga reactiva o inductiva, en volt-ampere reactivo (VAR) S = Valor de la potencia aparente o total, expresada en volt-ampere (VA) P = Valor de la potencia activa o resistiva, expresada en watt (W)

Potencia aparente o total (S) La potencia aparente (S), llamada también "potencia total", es el resultado de la suma geométrica de las potencias activa y reactiva. Esta potencia es la que realmente suministra una planta eléctrica cuando se encuentra funcionando al vacío, es decir, sin ningún tipo de carga conectada, mientras que la potencia que consumen las cargas conectadas al circuito eléctrico es potencia activa ( P). La potencia aparente se representa con la letra “S” y su unidad de medida es el volt-ampere (VA). La fórmula matemática para hallar el valor de este tipo de potencia es la siguiente:

De S V I

donde: = = =

Potencia aparente Voltaje de Intensidad de la

o la corriente

total,

expresada en volt-ampere corriente, expresado en eléctrica, expresada en ampere

(VA) volt (A)

La potencia activa, por ejemplo, es la que proporciona realmente el eje de un motor eléctrico cuando le está transmitiendo su fuerza a otro dispositivo mecánico para hacerlo funcionar. Midamos en ese caso con un voltímetro la tensión o voltaje (V) que llega hasta los bornes del motor y seguidamente, por medio de un amperímetro, la intensidad de corriente en ampere (A) que fluye por el circuito eléctrico de ese motor. A continuación multipliquemos las cifras de los dos valores obtenidos y el resultado de la operación será el valor de la potencia aparente (S), expresada en volt-ampere (VA) que desarrolla dicho motor y no precisamente su potencia activa (P) en watt (W). La cifra que se obtiene de la operación matemática de hallar el valor de la potencia aparente (S) que desarrolla un dispositivo será siempre superior a la que corresponde a la potencia activa (P), porque al realizar esa operación matemática no se está tomando en cuenta el valor del factor de potencia o coseno de “fi” (Cos ).

FACTOR DE POTENCIA (I)

Triángulo de potencias El llamado triángulo de potencias es la mejor forma de ver y comprender de forma gráfica qué es el factor de potencia o coseno de “fi” (Cos ) y su estrecha relación con los restantes tipos de potencia presentes en un circuito eléctrico de corriente alterna.

 

Como se podrá observar en el triángulo de la ilustración, el factor de potencia o coseno de “fi” ( Cos ) representa el valor del ángulo que se forma al representar gráficamente la potencia activa (P) y la potencia aparente (S), es decir, la relación existente entre la potencia real de trabajo y la potencia total consumida por la carga o el consumidor conectado a un circuito eléctrico de corriente alterna. Esta relación se puede representar también, de forma matemática, por medio de la siguiente fórmula:

El resultado de esta operación será “1” o un número fraccionario menor que “1” en dependencia del factor de potencia que le corresponde a cada equipo o dispositivo en específico. Ese número responde al valor de la función trigonométrica “coseno”, equivalente a los grados del ángulo que se forma entre las potencias (P) y (S). Si el número que se obtiene como resultado de la operación matemática es un decimal menor que “1” (como por ejemplo 0,95), dicho número representará el factor de potencia correspondiente al defasaje en grados existente entre la intensidad de la corriente eléctrica y la tensión o voltaje en el circuito de corriente alterna. Lo ideal sería que el resultado fuera siempre igual a “1”, pues así habría una mejor optimización y aprovechamiento del consumo de energía eléctrica, o sea, habría menos pérdida de energía no aprovechada y una mayor eficiencia de trabajo en los generadores que producen esa energía. En los circuitos de resistencia activa, el factor de potencia siempre es “1”, porque como ya vimos anteriormente en ese caso no existe desfasaje entre la intensidad de la corriente y la tensión o voltaje. Pero en los circuitos inductivos, como ocurre con los motores, transformadores de voltaje y la mayoría de los dispositivos o aparatos que trabajan con algún tipo de enrollado o bobina, el valor del factor de potencia se muestra con una fracción decimal menor que “1” (como por ejemplo 0,8), lo que indica el retraso o desfasaje que produce la carga inductiva en la sinusoide correspondiente a la intensidad de la corriente con respecto a la sinusoide de la tensión o voltaje. Por tanto, un motor de corriente alterna con un  factor  de  potencia  o  Cos = 0,95 ,  por  ejemplo,  será  mucho  más  eficiente  que  otro  que  posea  un  Cos = 0,85 . FACTOR DE POTENCIA (II)

Valor correspondiente a la función trigonométrica “coseno” de diferentes ángulos agudos Ángulo agudo Función “coseno” 15º 0,97 30º 0,87 45º 0,71 60º 0,50 75º 0,26

El dato del factor de potencia de cada motor es un valor fijo, que aparece generalmente indicado en una placa metálica pegada a su cuerpo o carcasa, donde se muestran también otros datos de interés, como su tensión o voltaje de trabajo en volt (V), intensidad de la corriente de trabajo en amper (A) y su consumo de energía eléctrica en watt (W) o kilowatt (kW). Ya vimos anteriormente que la potencia de un motor eléctrico o de cualquier otro dispositivo que contenga bobinas o enrollados se puede calcular empleando la siguiente fórmula matemática:

El resultado de esta operación matemática estará dada siempre en watt (W), por lo que para convertir en kilowatt (kW) el valor obtenido, será necesario dividir primero la cifra resultante entre 1000. Por otra parte, como el valor de (P) viene dado en watt, sustituyendo (P) en la fórmula anterior podemos decir también que:

   , por tanto

De

donde:

W = Potencia de consumo del dispositivo o equipo en watt V = Tensión o voltaje aplicado al circuito I = Valor del flujo de corriente que fluye por el circuito en amper ( A) Cos = Factor de potencia que aparece señalado en la placa del dispositivo o equipo Si conocemos la potencia en watt de un dispositivo o equipo, su voltaje de trabajo y su factor de potencia, y quisiéramos hallar cuántos ampere (A) de corriente fluyen por el circuito (digamos, por ejemplo, en el caso de un motor), despejando (I) en la fórmula anterior tendremos:

El resultado de esa operación lo obtendremos directamente en ampere (A). En caso que el valor de la potencia esté dada en kilowatt (kW), podemos utilizar la misma fórmula, pero habrá que multiplicar la cifra correspondiente a los kilowatt por 1000 para convertirlos en watt:

El resultado de esta otra operación matemática será, igualmente, el valor de la corriente que fluye por el circuito, en ampere (A). Habíamos visto también que una carga capacitiva (compuesta por condensadores o capacitores) conectada a un circuito eléctrico de corriente alterna provoca el adelantamiento de la sinusoide de intensidad de la corriente con relación a la sinusoide de la tensión o voltaje. Esto produce un efecto de desfasaje entre ambas magnitudes eléctricas, pero ahora en sentido inverso al desfasaje que provocan las cargas inductivas.   Por tanto, cuando en la red de suministro eléctrico de una industria existen muchos motores y transformadores funcionando, y se quiere mejorar el factor de potencia, será necesario emplear bancos de capacitores dentro de la propia industria, conectados directamente a la red principal. En algunas empresas grandes se pueden encontrar también motores de corriente alterna del tipo "sincrónicos" funcionando al vacío, es decir, sin carga, para mejorar también el factor de potencia. Banco de capacitores instalados en un circuito eléctrico de fuerza, con el fin de. mejorar el coseno de "fi" o factor de potencia en una instalación industrial.   De esa forma los capacitores, al actuar sobre la sinusoide de la corriente, produce el efecto contrario al de la inductancia, impidiendo que la corriente (I) se atrase mucho en relación con el voltaje (V).  Así se tratará de que las sinusoides se pongan en fase y que el valor del factor de potencia se aproxime lo más posible a “1”.   QUÉ ES LA POTENCIA ELÉCTRICA CONCEPTO DE ENERGÍA

Para entender qué es la potencia eléctrica es necesario conocer primeramente el concepto de “energía”, que no es más que la capacidad que tiene un mecanismo o dispositivo eléctrico cualquiera para realizar un trabajo. Cuando conectamos un equipo o consumidor eléctrico a un circuito alimentado por una fuente de fuerza electromotriz (F.E.M), como puede ser una batería, la energía eléctrica que suministra fluye por el conductor, permitiendo que, por ejemplo, una bombilla de alumbrado, transforme esa energía en luz y calor, o un motor pueda mover una maquinaria. De acuerdo con la definición de la física, “la energía ni se crea ni se destruye, se transforma”. En el caso de la energía eléctrica esa transformación se manifiesta en la obtención de luz, calor, frío, movimiento (en un motor), o en otro trabajo útil que realice cualquier dispositivo conectado a un circuito eléctrico cerrado. La energía utilizada para realizar un trabajo cualquiera, se mide en “joule” y se representa con la letra “J”.

POTENCIA ELÉCTRICA Potencia es la velocidad a la que se consume la energía. Si la energía fuese un líquido, la potencia sería los litros por segundo que vierte el depósito que lo contiene. La potencia se mide en joule por segundo (J/seg) y se representa con la letra “P”. Un J/seg equivale a 1 watt (W), por tanto, cuando se consume 1 joule de potencia en un segundo, estamos gastando o consumiendo 1 watt de energía eléctrica. La unidad de medida de la potencia eléctrica “P” es el “watt”, y se representa con la letra “W”.

CÁLCULO DE LA POTENCIA DE UNA CARGA ACTIVA (RESISTIVA) La forma más simple de calcular la potencia que consume una carga activa o resistiva conectada a un circuito eléctrico es multiplicando el valor de la tensión en volt (V) aplicada por el valor de la intensidad (I) de la corriente que lo recorre, expresada en ampere. Para realizar ese cálculo matemático se utiliza la siguiente fórmula:

(Fórmula 1)

  El resultado de esa operación matemática para un circuito eléctrico monofásico de corriente directa o de corriente alterna estará dado en watt (W). Por tanto, si sustituimos la “P” que identifica la potencia por su equivalente, es decir, la “W” de watt, tenemos también que: P = W, por tanto,

 

Si ahora queremos hallar la intensidad de corriente ( I ) que fluye por un circuito conociendo la potencia en watt que posee el dispositivo que tiene conectado y la tensión o voltaje aplicada, podemos despejar

la fórmula anterior de la siguiente forma y realizar la operación matemática correspondiente:

(Fórmula 2)

 

Si observamos la fórmula 1 expuesta al inicio, veremos que el voltaje y la intensidad de la corriente que fluye por un circuito eléctrico, son directamente proporcionales a la potencia, es decir, si uno de ellos aumenta o disminuye su valor, la potencia también aumenta o disminuye de forma proporcional. De ahí se deduce que, 1 watt (W) es igual a 1 ampere de corriente ( I ) que fluye por un circuito, multiplicado por 1 volt (V) de tensión o voltaje aplicado, tal como se representa a continuación.

1 watt = 1 volt · 1 ampere Veamos, por ejemplo, cuál será la potencia o consumo en watt de una bombilla conectada a una red de energía eléctrica doméstica monofásica de 220 volt, si la corriente que circula por el circuito de la bombilla es de 0,45 ampere. Sustituyendo

los

P P P Es

valores

en

=

la

V 220

= la

potencia

de

1

tenemos:

·

I 0,45 watt

·

= decir,

fórmula

100 consumo

de

la

bombilla

será

de

100

W

.

De igual forma, si queremos hallar la intensidad de la corriente que fluye por la bombilla conociendo su potencia y la tensión o voltaje aplicada al circuito, podemos utilizar la fórmula 2, que vimos al principio. Si realizamos la operación utilizando los mismos datos del ejemplo anterior, tendremos:

De acuerdo con esta fórmula, mientras mayor sea la potencia de un dispositivo o equipo eléctrico conectado a un circuito consumiendo energía eléctrica, mayor será la intensidad de corriente que fluye por dicho circuito, siempre y cuando el valor del voltaje o tensión se mantenga constante. La unidad de consumo de energía de un dispositivo eléctrico se mide en watt-hora (vatio-hora), o en kilowatt-hora (kW-h) para medir miles de watt. Normalmente las empresas que suministran energía eléctrica a la industria y el hogar, en lugar de facturar el consumo en watt-hora, lo hacen en kilowatt-hora (kW-h). Si, por ejemplo, tenemos encendidas en nuestra casa dos lámparas de 500 watt durante una hora, el reloj registrador del consumo eléctrico registrará 1 kW-h consumido en ese período de tiempo, que se sumará a la cifra del consumo anterior. Una bombilla de 40 W consume o gasta menos energía que otra de 100 W. Por eso, mientras más equipos conectemos a la red eléctrica, mayor será el consumo y más dinero habrá que abonar después

a la empresa de servicios a la que contratamos la prestación del suministro de energía eléctrica. Para hallar la potencia de consumo en watt de un dispositivo, también se pueden utilizar, indistintamente, una de las dos fórmulas que aparecen a continuación:

En el primer caso, el valor de la potencia se obtiene elevando al cuadrado el valor de la intensidad de corriente en ampere (A) que fluye por el circuito, multiplicando a continuación ese resultado por el valor de la resistencia en ohm (

) que posee la carga o consumidor conectado al propio circuito.

En el segundo caso obtenemos el mismo resultado elevando al cuadrado el valor del voltaje de la red eléctrica y dividiéndolo a continuación por el valor en ohm ( conectada.

) que posee la resistencia de la carga

Placa colocada al costado de un motor monofásico de corriente alterna, donde  aparece, entre  otros< datos, su potencia en kilowatt (kW), o en C.V. (H.P.).

El consumo en watt (W) o kilowatt (kW) de cualquier carga, ya sea ésta una resistencia o un consumidor cualquiera de corriente conectado a un circuito eléctrico, como pudieran ser motores, calentadores, equipos de aire acondicionado, televisores u otro dispositivo similar, en la mayoría de los casos se puede conocer leyéndolo directamente en una placa metálica ubicada, generalmente, en la parte trasera de dichos equipos. En los motores esa placa se halla colocada en uno de sus costados y en el caso de las bombillas de alumbrado el dato viene impreso en el cristal o en su base.