Estrctura de La Tierra

“Universidad nacional Daniel Alcides carrion ” ESTRUCTURA Y COMPOSICIÓN DE LA TIERRA ”UNIVERSIDAD NACIONAL DANIEL ALCI

Views 123 Downloads 4 File size 985KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

“Universidad nacional Daniel Alcides carrion ” ESTRUCTURA Y COMPOSICIÓN DE LA TIERRA

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION”

INDICE

ESTRUCTURA Y COMPOSICIÓN DE LA TIERRA 1. Origen y características de la tierra ______________________

3

2. Estructura y composición ____________________________

4-9

2.1 Estructura interna 2.1.1 Geosfera 2.2 Estructura externa 2.2.1 Hidrosfera 2.2.2 Atmosfera 3. gravedad________________________________________________________ 9-13 3.1Isaac Newton y la ley de la gravitación universal 4 campo magnético terrestre ____________________________ 13-15 4.1 magnetosfera 5. ondas sísmicas _____________________________________ 15-19 5.1 tipos de ondas sísmicas 5.1.1 ondas sísmicas internas 5.1.2Ondas sísmicas superficiales

GEOLOGIA

Páá giná 2

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION”

1:ORIGEN Y CARACTERISTICAS DE LA TIERRA La tierra (de Terra, nombre latino de Gea, deidad griega de la feminidad y la fecundidad) es un planeta del Sistema Solar que gira alrededor de su estrella en la tercera órbita más interna. Es el más denso y el quinto mayor de los ocho planetas del Sistema Solar. También es el mayor de los cuatro terrestres. La Tierra se formó hace aproximadamente 4500 millones de años y la vida surgió unos mil millones de años después. Es el hogar de millones de especies, incluyendo los seres humanos y actualmente el único cuerpo astronómico donde se conoce la existencia de vida. La atmósfera y otras condiciones abióticas han sido alteradas significativamente por la biosfera del planeta, favoreciendo la proliferación de organismos aerobios, así como la formación de una capa de ozono que junto con el campo magnético terrestre bloquean la radiación solar dañina, permitiendo así la vida en la Tierra. Las propiedades físicas de la Tierra, la historia geológica y su órbita han permitido que la vida siga existiendo. Se estima que el planeta seguirá siendo capaz de sustentar vida durante otros 500 millones de años, ya que según las previsiones actuales, pasado ese tiempo la creciente luminosidad del Sol terminará causando la extinción de la biosfera. La superficie terrestre o corteza está dividida en varias placas tectónicas que se deslizan sobre el magma durante periodos de varios millones de años. La superficie está cubierta por continentes e islas, estos poseen varios lagos, ríos y otras fuentes de agua, que junto con los océanos de agua salada que representan cerca del 71% de la superficie construyen la hidrosfera. No se conoce ningún otro planeta con este equilibrio de agua líquida, que es indispensable para cualquier tipo de vida conocida. Los polos de la Tierra están cubiertos en su mayoría de hielo sólido (Indlandsis de la Antártida) o de banquisas (casquete polar ártico). El interior del planeta es geológicamente activo, con una gruesa capa de manto relativamente sólido, un núcleo externo líquido que genera un campo magnético, y un núcleo de hierro sólido interior aproximadamente del 88%. La Tierra interactúa con otros objetos en el espacio, especialmente el Sol y la Luna. En la actualidad, la Tierra completa una órbita alrededor del Sol cada vez que realiza 366,26 giros sobre su eje, lo cual es equivalente a 365,26 días solares o a un año sideral. El eje de rotación de la Tierra se encuentra inclinado 23,4° con respecto a la perpendicular a su plano orbital, lo que produce las variaciones estacionales en la superficie del planeta con un período de un año tropical (365,24 días solares). La Tierra posee un único satélite natural, la Luna, que comenzó a orbitar la Tierra hace 4530 millones de años, esta produce las mareas, estabiliza la inclinación del eje terrestre y reduce gradualmente la velocidad de rotación del planeta. Hace aproximadamente 3800 a 4100 millones de años, durante el llamado bombardeo intenso tardío,

GEOLOGIA

Páá giná 3

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” numerosos asteroides impactaron en la Tierra, causando significativos cambios en la mayor parte de su superficie. Tanto los recursos minerales del planeta como los productos de la biosfera aportan recursos que se utilizan para sostener a la población humana mundial. Sus habitantes están agrupados en unos 200 estados soberanos independientes, que interactúan a través de la diplomacia, los viajes, el comercio, y la acción militar. Las culturas humanas han desarrollado muchas ideas sobre el planeta, incluida la personificación de una deidad, la creencia en una Tierra plana o en la Tierra como centro del universo, y una perspectiva moderna del mundo como un entorno integrado que requiere administración.

2:COMPOSICIÓN Y ESTRUCTURA La Tierra es un planeta terrestre, lo que significa que es un cuerpo rocoso y no un gigante gaseoso como Júpiter. Es el más grande de los cuatro planetas terrestres del Sistema Solar en tamaño y masa, y también es el que tiene la mayor densidad, la mayor gravedad superficial, el campo magnético más fuerte y la rotación más rápida de los cuatro. 59También es el único planeta terrestre con placas tectónicas activas.60 El movimiento de estas placas produce que la superficie terrestre esté en constante cambio, siendo responsables de la formación de montañas, de la sismicidad y del vulcanismo. El ciclo de estas placas también juega un papel preponderante en la regulación de la temperatura terrestre, contribuyendo al reciclaje de gases con efecto invernadero como el dióxido de carbono, por medio de la renovación permanente de los fondos oceánicos.

La forma de la Tierra es muy parecida a la de un esferoide oblato, una esfera achatada por los polos, resultando en un abultamiento alrededor del ecuador. Este abultamiento está causado por la rotación de la Tierra, y ocasiona que el diámetro en el ecuador sea 43 km más largo que el diámetro de un polo a otro. Hace aproximadamente 22 000 años la Tierra tenía una forma más esférica, la mayor parte del hemisferio norte se encontraba cubierto por hielo, y a medida de que el hielo se derretía causaba una menor presión en la superficie terrestre en la que se sostenían causando esto un tipo de «rebote»,este fenómeno siguió ocurriendo hasta a mediados de los años noventa cuando los científicos se percataron de que este proceso se había invertido, es decir, el abultamiento aumentaba, las observaciones del satélite GRACE muestran que al menos desde el 2002, la pérdida de hielo de Groenlandia y de la Antártida ha sido la principal responsable de esta tendencia. El diámetro medio de referencia para el esferoide es de unos 12 742 km, que es aproximadamente 40 000 km/π, ya que el metro se definió originalmente como la diezmillonésima parte de la distancia desde el ecuador hasta el Polo Norte desde París, Francia. La topografía local se desvía de este esferoide idealizado, aunque las diferencias a escala global son muy pequeñas: la Tierra tiene una desviación de aproximadamente una parte entre 584, o el 0,17%, desde el esferoide de referencia, que es menor a la tolerancia del 0.22% permitida en las bolas de billar. Las mayores desviaciones locales en la superficie rocosa de la Tierra son el monte Everest (8 848 m sobre el nivel local del mar) y el Abismo Challenger, al sur de la Fosa de las Marianas (10 911 m bajo el nivel local del mar). Debido a la protuberancia ecuatorial, los lugares de la superficie más alejados del centro de la Tierra son GEOLOGIA

Páá giná 4

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” el Huascarán en Perú y el volcán Chimborazo en Ecuador, siendo este segundo el más alejado.

2.1ESTRUCCTURA INTERNA DE LA TIERRA

Geosfera:

La Geosfera es la parte del planeta Tierra formada por material rocoso (sólido o fluido), sin tener en cuenta la hidrosfera ni la atmósfera. Nuestro planeta, como otros planetas terrestres (planetas cuyo volumen está ocupado principalmente de material rocoso), está dividido en capas de densidad creciente. La Tierra tiene una corteza externa de silicatos solidificados, un manto viscoso, y un núcleo con otras dos capas, una externa sólidamente, mucho más fluida que el manto y una interna sólida. Muchas de las rocas que hoy forman parte de la corteza se formaron hace menos de 100 millones (1×10 8) de años. Sin embargo, las formaciones minerales más antiguas conocidas tienen 4.400 millones (44×10 8) de años, lo que nos indica que, al menos, el planeta ha tenido una corteza sólida desde entonces. 1 Gran parte de nuestro conocimiento acerca del interior de la Tierra ha sido inferido de otras observaciones. Por ejemplo, la fuerza de la gravedad es una medida de la masa terrestre. Después de conocer el volumen del planeta, se puede calcular su densidad. El cálculo de la masa y volumen de las rocas de la superficie, y de las masas de agua, nos permiten estimar la densidad de la capa externa. La masa que no está en la atmósfera o en la corteza debe encontrarse en las capas internas.

Estructura de la geosfera La estructura de la tierra puede establecerse según dos criterios diferentes. Según su composición química, el planeta puede dividirse en corteza, manto y núcleo (externo e interno);

GEOLOGIA

Páá giná 5

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” según sus propiedades físicas se definen la litosfera, la astenosfera, la mesosfera y el núcleo (externo e interno).2 Las capas se encuentran a las siguientes profundidades: 3

La división de la tierra en capas ha sido determinada indirectamente utilizando el tiempo que tardan en viajar las ondas sísmicas reflejadas y refractadas, creadas por terremotos. Las ondas transversales (S, o secundarias) no pueden atravesar el núcleo, ya que necesitan un material viscoso o elástico para propagarse, mientras que la velocidad de propagación es diferente en las demás capas. Los cambios en dicha velocidad producen una refracción debido a la Ley de Snell. Las reflexiones están causadas por un gran incremento en la velocidad sísmica (velocidad de propagación) y son parecidos a la luz reflejada en un espejo.

Capas definidas por su composición

Vista esquemática del interior de la Tierra. 1: Corteza continental - 2: Corteza oceánica - 3: Manto superior - 4: Manto inferior - 5: Núcleo externo - 6: Núcleo interno - A: Discontinuidad de Mohorovičić - B:-Discontinuidad de Gutenberg - C: Discontinuidad de Wiechert-Lehmann.

Corteza : La corteza terrestre es una capa comparativamente fina; su grosor oscila entre 11 km en las dorsales oceánicas y 70 km en las grandes cordilleras terrestres como los Andes y el Himalaya.2 Los fondos de las grandes cuencas oceánicas están formados por la corteza oceánica, con un espesor medio de 7 km; está compuesta por rocas máficas (silicatos de hierro y magnesio) con una densidad media de 3,0 g/cm3.

GEOLOGIA

Páá giná 6

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” Los continentes están formados por la corteza continental, que está compuesta por rocas félsicas (silicatos de sodio, potasio y aluminio), más ligeras, con una densidad media de 2,7 g/cm3. La frontera entre corteza y manto se manifiesta en dos fenómenos físicos. En primer lugar, hay una discontinuidad en la velocidad sísmica, que se conoce como la Discontinuidad de Mohorovicic, o "Moho". Se cree que este fenómeno es debido a un cambio en la composición de las rocas, de unas que contienen feldespatos plagioclásicos (situadas en la parte superior) a otras que no poseen feldespatos (en la parte inferior). En segundo lugar, existe una discontinuidad química entre cúmulos ultramáficos y harzburgitas tectonizadas, que se ha observado en partes profundas de la corteza oceánica que han sido obducidas dentro de la corteza continental y conservadas como secuencias ofiolíticas.

Manto : El manto terrestre se extiende hasta una profundidad de 2.890 km, lo que le convierte en la capa más grande del planeta. La presión, en la parte inferior del manto, es de unos 140 GPa (1,4 M atm). El manto está compuesto por rocas silíceas, más ricas en hierro y magnesio que la corteza. Las grandes temperaturas hacen que los materiales silíceos sean lo suficientemente dúctiles como para fluir, aunque en escalas temporales muy grandes. La convección del manto es responsable, en la superficie, del movimiento de las placas tectónicas. Como el punto de fusión y la viscosidad de una sustancia dependen de la presión a la que esté sometida, la parte inferior del manto se mueve con mayor dificultad que el manto superior, aunque también los cambios químicos pueden tener importancia en este fenómeno. La viscosidad del manto varía entre 1021 y 1024 Como comparación, la viscosidad del agua es aproximadamente 10-3 Pa.s, lo que ilustra la lentitud con la que se mueve el manto. ¿Por qué es sólido el núcleo interno, líquido el externo, y semisólido el manto? La respuesta depende tanto de los puntos de fusión de las diferentes capas (núcleo de hierro-níquel, manto, y corteza de silicatos) como del incremento de la temperatura y presión conforme nos movemos hacia el centro de la Tierra. En la superficie, tanto las aleaciones de hierro-níquel como los silicatos están suficientemente fríos como para ser sólidos. En el manto superior, los silicatos son normalmente sólidos (aunque hay puntos locales donde están derretidos), pero como están bajo condiciones de alta temperatura y relativamente poca presión, las rocas en el manto superior tienen una viscosidad relativamente baja. En contraste, el manto inferior está sometido a una presión mucho mayor, lo que hace que tenga una mayor viscosidad en comparación con el manto superior. El núcleo externo, formado por hierro y níquel, es líquido a pesar de la presión porque tiene un punto de fusión menor que los silicatos del manto. El núcleo interno, por su parte, es sólido debido a la enorme presión que hay en el centro del planeta.

Núcleo: La densidad media de la Tierra es 5.515 kg/m 3. Esta cifra lo convierte en el planeta más denso del sistema solar. Si consideramos que la densidad media de la corteza es aproximadamente GEOLOGIA

Páá giná 7

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” 3.000 kg/m3, debemos asumir que el núcleo terrestre debe estar compuesto de materiales más densos. Los estudios sismológicos han aportado más evidencias sobre la densidad del núcleo. En sus primeras fases, hace unos 4.500 millones de años, los materiales más densos, derretidos, se habrían hundido hacia el núcleo en un proceso llamado diferenciación planetaria, mientras que otros menos densos habrían migrado hacia la corteza. Como resultado de este proceso, el núcleo está compuesto ampliamente de hierro (Fe)(80%), junto con níquel (Ni) y varios elementos más ligeros. Otros elementos más densos, como el plomo (Pb) o el uranio (U) son muy raros, o permanecieron en la superficie unidos a otros elementos más ligeros. Diversas mediciones sísmicas muestran que el núcleo está compuesto de dos partes, una interna sólida de 1.220 km de radio y una capa externa, semisólida que llega hasta los 3.400 km. El núcleo interno sólido fue descubierto en 1936 por Inge Lehmann y se cree de forma más o menos unánime que está compuesto de hierro con algo de níquel. Algunos científicos creen que el núcleo interno podría estar en forma de un cristal de hierro. 5 6 El núcleo externo rodea al interno y se cree que está compuesto por una mezcla de hierro, níquel y otros elementos más ligeros. Recientes propuestas sugieren que la parte más interna del núcleo podría estar enriquecida con elementos muy pesados, con mayor número atómico que el cesio (Cs)(trans-Cesio, elementos con número atómico mayor de 55). Esto incluiría oro (Au), mercurio (Hg) y uranio (U).7 Se aceptaba, de manera general, que los movimientos de convección en el núcleo externo, combinados con el movimiento provocado por la rotación terrestre (efecto Coriolis), son responsables del campo magnético terrestre, mediante un proceso descrito por la hipótesis de la dínamo. El núcleo interno está demasiado caliente para mantener un campo magnético permanente (ver temperatura de Curie) pero probablemente estabilice el creado por el núcleo externo. Pruebas recientes sugieren que el núcleo interno podría rotar ligeramente más rápido que el resto del planeta.8 En agosto de 2005 un grupo de geofísicos publicaron, en la revista Science que, de acuerdo con sus cálculos, el núcleo interno rota aproximadamente entre 0,3 y 0,5 grados más al año que la corteza. 9 10 Las últimas teorías científicas explican el gradiente de temperatura de la Tierra como una combinación del calor remanente de la formación del planeta, calor producido por la desintegración de elementos radiactivos y el enfriamiento del núcleo interno.

Minerales encontrados : Los diferentes minerales encontrados en las diferentes capas terrestres, son resultado de la combinación de diversos elementos químicos que se encuentran en el interior del planeta Tierra.

Materiales encontrados en las capas terrestres

GEOLOGIA

Páá giná 8

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION”

Hierro

Turmalina

Bauxita

Niquel

Calcita

Obsidiana

Azufre

Pirita

Malaquita

Esquisto

Oro

Magnesio

Potasio

Silicio

2.2Estructura externa de la tierra Hidrosfera

La abundancia de agua en la superficie de la Tierra es una característica única que distingue al "Planeta Azul" de otros en el Sistema Solar. La hidrosfera de la Tierra está compuesta fundamentalmente por océanos, pero técnicamente incluye todas las superficies de agua en el mundo, incluidos los mares interiores, lagos, ríos y aguas subterráneas hasta una profundidad GEOLOGIA

Páá giná 9

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” de 2000 m. El lugar más profundo bajo el agua es el Abismo Challenger de la Fosa de las Marianas, en el Océano Pacífico, con una profundidad de -10 911,4 m.nota 11 104 La masa de los océanos es de aproximadamente 1,35×10 18 toneladas métricas, o aproximadamente 1/4400 de la masa total de la Tierra. Los océanos cubren un área de 361,84×106 km2 con una profundidad media de 3682,2 m, lo que resulta en un volumen estimado de 1,3324×109 km3.105 Si se nivelase toda la superficie terrestre, el agua cubriría la superficie del planeta hasta una altura de más de 2,7 km. El área total de la Tierra es de 5,1×108 km2. Para la primera aproximación, la profundidad media sería la relación entre los dos, o de 2,7 km. Aproximadamente el 97,5% del agua es salada, mientras que el restante 2,5% es agua dulce. La mayor parte del agua dulce, aproximadamente el 68,7%, se encuentra actualmente en estado de hielo.106 La salinidad media de los océanos es de unos 35 gramos de sal por kilogramo de agua (35 ‰).107 La mayor parte de esta sal fue liberada por la actividad volcánica, o extraída de las rocas ígneas ya enfriadas.108 Los océanos son también un reservorio de gases atmosféricos disueltos, siendo estos esenciales para la supervivencia de muchas formas de vida acuática.109 El agua de los océanos tiene una influencia importante sobre el clima del planeta, actuando como un foco calórico de gran tamaño.110 Los cambios en la distribución de la temperatura oceánica pueden causar alteraciones climáticas, tales como la Oscilación del Sur, El Niño.111

Atmósfera La presión atmosférica media al nivel del mar se sitúa en torno a los 101,325 kPa, con una escala de altura de aproximadamente 8,5 km.1 Está compuesta principalmente de un 78% de nitrógeno y un 21% de oxígeno, con trazas de vapor de agua, dióxido de carbono y otras moléculas gaseosas. La altura de la troposfera varía con la latitud, entre 8 km en los polos y 17 km en el ecuador, con algunas variaciones debido a la climatología y los factores estacionales.112 La biosfera de la Tierra ha alterado significativamente la atmósfera. La fotosíntesis oxigénica evolucionó hace 2700 millones de años, formando principalmente la atmósfera actual de nitrógeno-oxígeno. Este cambio permitió la proliferación de los organismos aeróbicos, así como la formación de la capa de ozono que bloquea la radiación ultravioletaproveniente del Sol, permitiendo la vida fuera del agua. Otras funciones importantes de la atmósfera para la vida en la Tierra incluyen el transporte de vapor de agua, proporcionar gases útiles, quemar los meteoritos pequeños antes de que alcancen la superficie, y moderar la temperatura. 113 Este último fenómeno se conoce como el efecto invernadero: trazas de moléculas presentes en la atmósfera capturan la energía térmica emitida desde el suelo, aumentando así la temperatura media. El dióxido de carbono, elvapor de agua, el metano y el ozono son los principales gases de efecto invernadero de la atmósfera de la Tierra. Sin este efecto de retención del calor, la temperatura superficial media sería de -18 °C y la vida probablemente no existiría. 94

Clima y tiempo atmosférico

GEOLOGIA

Páá giná 10

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” La atmósfera terrestre no tiene unos límites definidos, haciéndose poco a poco más delgada hasta desvanecerse en el espacio exterior. Tres cuartas partes de la masa atmosférica están contenidas dentro de los primeros 11 km de la superficie del planeta. Esta capa inferior se llama troposfera. La energía del Sol calienta esta capa y la superficie bajo ésta, causando la expansión del aire. El aire caliente se eleva debido a su menor densidad, siendo sustituido por aire de mayor densidad, es decir, aire más frío. Esto da como resultado lacirculación atmosférica que genera el tiempo y el clima a través de la redistribución de la energía térmica.114 Las líneas principales de circulación atmosférica las constituyen los vientos alisios en la región ecuatorial por debajo de los 30° de latitud, y los vientos del oeste en latitudes medias entre los 30° y 60°.115 Las corrientes oceánicas también son factores importantes para determinar el clima, especialmente la circulación termohalina que distribuye la energía térmica de los océanos ecuatoriales a las regiones polares.116 El vapor de agua generado a través de la evaporación superficial es transportado según los patrones de circulación de la atmósfera. Cuando las condiciones atmosféricas permiten la elevación del aire caliente y húmedo, el agua se condensa y se deposita en la superficie en forma de precipitaciones.114 La mayor parte del agua es transportada a altitudes más bajas mediante los sistemas fluviales y por lo general regresa a los océanos o es depositada en los lagos. Este ciclo del agua es un mecanismo vital para sustentar la vida en la tierra y es un factor primario de la erosión que modela la superficie terrestre a lo largo de períodos geológicos. Los patrones de precipitación varían enormemente, desde varios metros de agua por año a menos de un milímetro. La circulación atmosférica, las características topológicas y las diferencias de temperatura determinan las precipitaciones medias de cada región. 117 La cantidad de energía solar que llega a la Tierra disminuye al aumentar la latitud. En las latitudes más altas la luz solar incide en la superficie en un ángulo menor, teniendo que atravesar gruesas columnas de atmósfera. Como resultado, la temperatura media anual del aire a nivel del mar se reduce en aproximadamente 0,4 °C por cada grado de latitud alejándose del ecuador.118 La Tierra puede ser subdividida en franjas latitudinales más o menos homogéneas con un clima específico. Desde el ecuador hasta las regiones polares, se encuentran la zona intertropical (o ecuatorial), el clima subtropical, el clima templado y los climas polares.119 El clima también puede ser clasificado en función de la temperatura y las precipitaciones, en regiones climáticas caracterizadas por masas de aire bastante uniformes. La metodología de clasificación más usada es la clasificación climática de Köppen (modificada por el estudiante de Wladimir Peter Köppen, RudolphGeiger), que cuenta con cinco grandes grupos (zonas tropicales húmedas, zonas aridas, zonas húmedas con latitud media, clima continental y frío polar), que se dividen en subtipos más específicos.

Atmósfera superior

Por encima de la troposfera, la atmósfera suele dividir en estratosfera, mesosfera y termosfera.113 Cada capa tiene un gradiente adiabático diferente, GEOLOGIA

Páá giná 11

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” que define la tasa de cambio de la temperatura con respecto a la altura. Más allá de éstas se encuentra la exosfera, que se atenúa hasta penetrar en la magnetosfera, donde los campos magnéticos de la Tierra interactúan con el viento solar.120 Dentro de la estratosfera se encuentra la capa de ozono; un componente que protege parcialmente la superficie terrestre de la luz ultravioleta, siendo un elemento importante para la vida en la Tierra. La línea de Kármán, definida en los 100 km sobre la superficie de la Tierra, es una definición práctica usada para establecer el límite entre la atmósfera y el espacio . La energía térmica hace que algunas de las moléculas en el borde exterior de la atmósfera de la Tierra incrementen su velocidad hasta el punto de poder escapar de la gravedad del planeta. Esto da lugar a una pérdida lenta pero constante de la atmósfera hacia el espacio. Debido a que el hidrógeno no fijado tiene un bajo peso molecular puede alcanzar la velocidad de escape más fácilmente, escapando así al espacio exterior a un ritmo mayor que otros gases. La pérdida de hidrógeno hacia el espacio contribuye a la transformación de la Tierra desde su inicial estado reductor a su actual estado oxidante. La fotosíntesis proporcionó una fuente de oxígeno libre, pero se cree que la pérdida de agentes reductores como el hidrógeno fue una condición previa necesaria para la acumulación generalizada de oxígeno en la atmósfera. Por tanto, la capacidad del hidrógeno para escapar de la atmósfera de la Tierra puede haber influido en la naturaleza de la vida desarrollada en el planeta . En la atmósfera actual, rica en oxígeno, la mayor parte del hidrógeno se convierte en agua antes de tener la oportunidad de escapar. En cambio, la mayor parte de la pérdida de hidrógeno actual proviene de la destrucción del metano en la atmósfera superior.

3.GRAVEDAD 3.1Isaac Newton y la ley de la gravitación universal La gravitación es la fuerza de atracción mutua que experimentan los cuerpos por el hecho de tener una masa determinada. La existencia de dicha fuerza fue establecida por el matemático y físico inglés Isaac Newton en el s. XVII, quien, además, desarrolló para su formulación el llamado cálculo de fluxiones (lo que en la actualidad se conoce como cálculo integral).

Isaac Newton nació el 25 de diciembre de 1642, en Woolsthorpe, Lincolnshire. Cuando tenía tres años, su madre viuda se volvió a casar y lo dejó al cuidado de su abuela. Al enviudar por segunda vez, decidió enviarlo a una escuela primaria en Grantham. En el verano de 1661 ingresó en el Trinity College de la Universidad de Cambridge, donde recibió su título de profesor.

GEOLOGIA

Páá giná 12

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” Durante esa época se dedicó al estudio e investigación de los últimos avances en matemáticas y a la filosofía natural. Casi inmediatamente realizó descubrimientos fundamentales que le fueron de gran utilidad en su carrera científica. También resolvió cuestiones relativas a la luz y la óptica, formuló las leyes del movimiento y dedujo a partir de ellas la ley de la gravitación universal. La ley formulada por Newton y que recibe el nombre de ley de la gravitación universal, afirma que la fuerza de atracción que experimentan dos cuerpos dotados de masa es directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que los separa (ley de la inversa del cuadrado de la distancia). La ley incluye una constante de proporcionalidad (G) que recibe el nombre de constante de la gravitación universal y cuyo valor, determinado mediante experimentos muy precisos, es de: 6,670. 10-11 Nm²/kg². Para determinar la intensidad del campo gravitatorio asociado a un cuerpo con un radio y una masa determinados, se establece la aceleración con la que cae un cuerpo de prueba (de radio y masa unidad) en el seno de dicho campo. Mediante la aplicación de la segunda ley de Newton tomando los valores de la fuerza de la gravedad y una masa conocida, se puede obtener la aceleración de la gravedad.Dicha aceleración tiene valores diferentes dependiendo del cuerpo sobre el que se mida; así, para la Tierra se considera un valor de 9,8 m/s² (que equivalen a 9,8 N/kg), mientras que el valor que se obtiene para la superficie de la Luna es de tan sólo 1,6 m/s², es decir, unas seis veces menor que el correspondiente a nuestro planeta, y en uno de los planetas gigantes del sistema solar, Júpiter, este valor sería de unos 24,9 m/s². En un sistema aislado formado por dos cuerpos, uno de los cuales gira alrededor del otro, teniendo el primero una masa mucho menor que el segundo y describiendo una órbita estable y circular en torno al cuerpo que ocupa el centro, la fuerza centrífuga tiene un valor igual al de la centrípeta debido a la existencia de la gravitación universal. A partir de consideraciones como ésta es posible deducir una de las leyes de Kepler (la tercera), que relaciona el radio de la órbita que describe un cuerpo alrededor de otro central, con el tiempo que tarda en barrer el área que dicha órbita encierra, y que afirma que el tiempo es proporcional a 3/2 del radio. Este resultado es de aplicación universal y se cumple asimismo para las órbitas elípticas, de las cuales la órbita circular es un caso particular en el que los semiejes mayor y menor son iguales.

4.Campo magnético terrestre

El magnetismo de la tierra:(también llamado campo geomagnético), es el campo magnético que se extiende desde el núcleo interno de la Tierra hasta el límite en el GEOLOGIA

Páá giná 13

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” que se encuentra con el viento solar; una corriente de partículas energéticas que emana del Sol. Su magnitud en la superficie de la Tierra varía de 25 a 65 μT (microteslas) ó (0,25-0,65 G). Se puede considerar en aproximación el campo creado por un dipolo magnético inclinado un ángulo de 10 grados con respecto al eje de rotación (como un imán de barra). Sin embargo, al contrario que el campo de un imán, el campo de la Tierra cambia con el tiempo porque se genera por el movimiento de aleaciones de hierro fundido en el núcleo externo de la Tierra (la geodinamo). El polo norte magnético se desplaza, pero de una manera suficientemente lenta como para que las brújulas sean útiles en la navegación. Al cabo de ciertos periodos de duración aleatoria (con un promedio de duración de varios cientos de miles de años), el campo magnético de la Tierra se invierte (el polo norte y sur geomagnético permutan su posición). Estas inversiones dejan un registro en las rocas que permiten a los paleomagnetistas calcular la deriva de continentes en el pasado y los fondos oceánicos resultado de la tectónica de placas. La región por encima de la ionosfera —que se extiende varias decenas de miles de kilómetros en el espacio— es llamada la magnetosfera. Esta nueva capa protege a la Tierra de los rayos cósmicos que destruirían la atmósfera externa, incluyendo la capa de ozono que protege a la Tierra de la dañina radiación ultravioleta.

Magnetosfera Buena parte de las partículas cargadas provenientes del viento solar son atrapadas en los cinturones de Van Allen. Un pequeño número de partículas del viento solar consigue llegar, siguiendo una línea del campo magnético hasta la alta atmósfera y la ionosfera en las zonas aurorales. El único momento en el que el viento solar es observable desde la Tierra es cuando es suficientemente fuerte como para producir fenómenos como la aurora y las tormentas geomagnéticas. Las auroras de cierta magnitud en cuanto a brillo calientan notoriamente la ionosfera, causando que su plasma se expanda hacia la magnetosfera, incrementando el tamaño de la geosfera de plasma, y causando el escape de masa de la atmósfera en el viento solar. Las tormentas geomagnéticas ocurren cuando la presión de los plasmas contenidos dentro de la magnetosfera es suficientemente grande como para hincharse y en consecuencia distorsionar el campo geomagnético.

El viento solar es responsable de la forma promedio de la magnetosfera terrestre. Las fluctuaciones en su velocidad, densidad y dirección afectan notablemente al entorno local del planeta. Por ejemplo, los niveles de radiación ionizante e interferencias de baja frecuencia pueden varia en factores de cientos a miles; la forma y localización de la magnetopausa y la onda de choque (en la cara situada a contracorriente) puede variar en varios radios terrestres, exponiendo a los satélites geosíncronos a los efectos del viento solar directo. Esos fenómenos GEOLOGIA

Páá giná 14

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” son conocidos de manera colectiva como meteorología espacial. El procedimiento de desprendimiento y pérdida de masa atmosférica se provoca cuando el gas es atrapado en burbujas de campo magnético, que son arrancadas por el viento solar. 17Además, las variaciones en la intensidad del campo magnético se han correlacionado con la variación de la precipitación en los trópicos.18

5. ONDAS SÍSMICAS Las ondas sísmicas son un tipo de onda elástica fuerte en la propagación de perturbaciones temporales del campo de tensiones que generan pequeños movimientos en las placas tectónicas.Las ondas sísmicas pueden ser generadas por movimientos telúricos naturales, los más grandes de los cuales pueden causar daños en zonas donde hay asentamientos urbanos. Existe toda una rama de la sismología que se encarga del estudio de este tipo de fenómenos físicos. Las ondas sísmicas pueden ser generadas también artificialmente como por ejemplo el uso de explosivos o camiones (vibroseis). La sísmica es la rama de la sismología que estudia estas ondas artificiales por ejemplo la exploración del petróleo.

5.1Tipos de ondas sísmicas

Hay dos tipos de ondas sísmicas: las ondas internas (o de cuerpo) y las ondas superficiales. Existen otros modos de propagación de las ondas distintos a los que se describen en este artículo, pero son de importancia relativamente menor para las ondas producidas por la tierra, a pesar de que son importantes en el caso de la astrosismología, especialmente en la heliosismología.

5.1.1Ondas internas Las ondas internas viajan a través del interior. Siguen caminos curvos debido a la variada densidad y composición del interior de la Tierra. Este efecto es similar al de refracción de ondas de luz. Las ondas internas transmiten los temblores preliminares de un terremoto pero poseen poco poder destructivo. Las ondas internas son divididas en dos grupos: ondas primarias (P) y secundarias (S). Ondas P

GEOLOGIA

Páá giná 15

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION”

Onda P plana longitudinal.

Las ondas P (primarias o primae del verbo griego) son ondas longitudinales o compresionales, lo cual significa que el suelo es alternadamente comprimido y dilatado en la dirección de la propagación. Estas ondas generalmente viajan a una velocidad 1.73 veces de las ondas S y pueden viajar a través de cualquier tipo de material líquido o sólido. Velocidades típicas son 1450m/s en el agua y cerca de 5000m/s en el granito. Ondas P de segunda especie De acuerdo a la teoría de Biot, en el caso de medios porosos saturados por un fluido, las perturbaciones sísmicas se propagarán en forma de una onda rotacional (Onda S) y dos compresionales. Las dos ondas compresionales se suelen denominar como ondas P de primera y segunda especie. Las ondas de presión de primera especie corresponden a un movimiento del fluido y del sólido en fase, mientras que para las ondas de segunda especie el movimiento del sólido y del fluido se produce fuera de fase. Biot demuestra que las ondas de segunda especie se propagan a velocidades menores que las de primera especie, por lo que se las suele denominar ondas lenta y rápida de Biot, respectivamente. Las ondas lentas son de naturaleza disipativa y su amplitud decae rápidamente con la distancia hacia la fuente. 1 Ondas S

Onda de corte Plana.

Las ondas S (secundarias o secundae) son ondas en las cuales el desplazamiento es transversal a la dirección de propagación. Su velocidad es menor que la de las ondas primarias. Debido a ello, éstas aparecen en el terreno algo después que las primeras. Estas ondas son las que generan las oscilaciones durante el movimiento sísmico y las que producen la mayor parte de los daños. Solo se trasladan a través de elementos sólidos.

5.1.2 Ondas Superficiales GEOLOGIA

Páá giná 16

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” Cuando las ondas internas llegan a la superficie, se generan las ondas L (love), que se propagan por la superficie de discontinuidad de la interfase de la superficie terrestre (tierraaire y tierra-agua). Son las causantes de los daños producidos por los sismos en las construcciones. Estas ondas son las que poseen menor velocidad de propagación a comparación de las otras dos.

Oscilaciones libres Se producen únicamente mediante terremotos muy fuertes o de gran intensidad y pueden definirse como vibraciones de la Tierra en su totalidad. 2 Ondas de Love Las ondas de Love son ondas superficiales que producen un movimiento horizontal de corte en superficie. Se denominan así en honor al matemático neocelandés Augustus Edward HoughLove quien desarrolló un modelo matemático de estas ondas en 1911. La velocidad de las ondas Love es un 90% de la velocidad de las ondas S y es ligeramente superior a la velocidad de las ondas Rayleigh. Estas ondas solo se propagan por las superficies.

Ondas de Rayleigh Las ondas Rayleigh (erróneamente llamadas Raleigh), también denominadas ground roll, son ondas superficiales que producen un movimiento elíptico retrógrado del suelo. La existencia de estas ondas fue predicha por John William Strutt, Lord Rayleigh, en 1885. Son ondas más lentas que las ondas internas y su velocidad de propagación es casi un 70% de la velocidad de las ondas S.

Escala de Mercalli Modificada Los niveles bajos de la escala están asociados por la forma en que las personas sienten el temblor, mientras que los grados más altos se relacionan con el daño estructural observado. La tabla siguiente es una guía aproximada de los grados de la Escala de Mercalli Modificada. 1 2 Grado

GEOLOGIA

Descripción

Páá giná 17

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” 3 4

I. Muy débil

Imperceptible para la mayoría excepto en condiciones favorables. Aceleración menor a 0,5 Gal.3 4 Perceptible sólo por algunas personas en reposo, particularmente

II. Débil

aquellas que se encuentran ubicadas en los pisos superiores de los edificios. Los objetos colgantes suelen oscilar. Aceleración entre 0,5 y 2,5 Gal.3 4 Perceptible por algunas personas dentro de los edificios, especialmente

III. Leve

en pisos altos. Muchos no lo perciben como un terremoto. Los automóviles detenidos se mueven ligeramente. Sensación semejante al paso de un camión pequeño. Aceleración entre 2,5 y 6,0 Gal.3 4 Perceptible por la mayoría de personas dentro de los edificios, por pocas personas en el exterior durante el día. Durante la noche algunas

IV. Moderado

personas pueden despertarse. Perturbación en cerámica, puertas y ventanas. Las paredes suelen hacer ruido. Los automóviles detenidos se mueven con más energía. Sensación semejante al paso de un camión grande. Aceleración entre 6,0 y 10 Gal.3 4 Sacudida sentida casi por todo el país o zona y algunas piezas de vajilla o cristales de ventanas se rompen; pocos casos de agrietamiento

V. Poco Fuerte

de aplanados; caen objetos inestables. Se observan perturbaciones en los árboles, postes y otros objetos altos. Se detienen los relojes de péndulo. Aceleración entre 10 y 20 Gal.3 4 Sacudida sentida por todo el país o zona. Algunos muebles pesados

VI. Fuerte

cambian de sitio y provoca daños leves, en especial en viviendas de material ligero. Aceleración entre 20 y 35 Gal.3 4 Ponerse de pie es difícil. Muebles dañados. Daños insignificantes en estructuras de buen diseño y construcción. Daños leves a moderados

VII. Muy fuerte

en estructuras ordinarias bien construidas. Daños considerables en estructuras pobremente construidas. Mampostería dañada. Perceptible por personas en vehículos en movimiento. Aceleración entre 35 y 60 Gal.3 4 Daños leves en estructuras especializadas. Daños considerables en estructuras ordinarias bien construidas, posibles derrumbes. Daño

VIII. Destructivo

severo en estructuras pobremente construidas. Mampostería seriamente dañada o destruida. Muebles completamente sacados de lugar. Aceleración entre 60 y 100 Gal.3 4 Pánico generalizado. Daños considerables en estructuras

IX. Muy destructivo

especializadas, paredes fuera de plomo. Grandes daños en importantes edificios, con derrumbes parciales. Edificios desplazados fuera de las bases. Aceleración entre 100 y 250 Gal.3 4

GEOLOGIA

Páá giná 18

”UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRION” Algunas estructuras de madera bien construidas quedan destruidas. La

X. Desastroso

mayoría de las estructuras de mampostería y el marco destruido con sus bases. Vías ferroviarias dobladas. Aceleración entre 250 y 500 Gal.3 4 Pocas estructuras de mampostería, si las hubiera, permanecen en pie.

XI. Muy desastroso

Puentes destruidos. Vías ferroviarias curvadas en gran medida. Aceleración mayor a 500 Gal.3 4 Destrucción total con pocos supervivientes. Los objetos saltan al aire.

XII. Catastrófico

Los niveles y perspectivas quedan distorsionados. Imposibilidad de mantenerse en pie.

GEOLOGIA

Páá giná 19