Electronica Analogica Unidad 3

3.1 arquitectura interna de un amplificador operacional Los amplificadores operacionales suelen estar formados por las s

Views 134 Downloads 0 File size 1MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

3.1 arquitectura interna de un amplificador operacional Los amplificadores operacionales suelen estar formados por las siguientes etapas: 1. Una etapa amplificadora de entrada diferencial y salida diferencial: Define las características de entrada del AO. Suele ser un AD (Amplificador diferencial) basado: 1. En transistores bipolares simples o en montaje Darlington para disminuir las corrientes de entrada. 2. Transistores FET que aumentan la impedancia de entrada. 2. Una segunda etapa de entrada diferencial y salida asimétrica: Aumenta la ganancia diferencial y adapta los niveles de continua para acoplar la salida a la siguiente etapa. 3. Una etapa intermedia: Provee ganancia de potencia y adapta los niveles de continua. Además, limita el ancho de banda total del amplificador en bucle abierto que garantiza su estabilidad. Suele consistir en un amplificador en emisor común. 4. Una etapa de salida: Suele ser un amplificador de corriente que disminuye la impedancia de salida para poder alimentar cargas relativamente bajas con protección contra sobre-corriente.

3.2 Tipos de Amplificadores Operacionales

Amplificador Operacional ideal Amplificador Operacional ideal Características de un Amplificador Operacional ideal: • Rin = infinito • Ro = 0 • Av = infinito • Iin = 0 • Vd = Vo / Av = 0 • Ancho de banda infinito

Amplificador no inversor

Amplificador sumador Es probable que el más utilizado de los circuitos sea el amplificador sumador; en éste, la salida está dada por una combinación lineal de cada una de las entadas. Mediante este

circuito es posible sumar algebraicamente los voltajes de cada una de las entradas, multiplicado por un factor de ganancia constante dado por Rf / Rk.

Amplificador integrador En este caso la red de realimentación está dada por un capacitor y la expresión de la tensión de salida es proporcional a la integral de la señal de entrada e inversamente proporcional a la constante de tiempo (t =RC), que generalmente se hace igual a la unidad.

Entre las múltiples aplicaciones que tiene el amplificador operacional, es de gran importancia la del computador analógico, la cual consiste en la implementación y solución de sistemas de ecuaciones lineales además de la solución de ecuaciones diferenciales de cualquier orden.

3.3 Especificaciones de los amplificadores operacionales

Parámetros de frecuencia

3.4 Aplicaciones básicas de los amplificadores El término de amplificador operacional (operational amplifier o OA o op amp) fue asignado alrededor de 1940 para designar una clase de amplificadores que permiten realizar una serie de operaciones tales como suma, resta, multiplicación, integración, diferenciación..., importantes dentro de la computación analógica de esa época. La aparición y desarrollo de la tecnología integrada, que permitía fabricar sobre un único substrato monolítico de silicio gran cantidad de dispositivos, dio lugar al surgimiento de amplificadores operacionales integrados que desembocaron en una revolución dentro de las aplicaciones analógicas. El primer OA fue desarrollado por R.J. Widlar en Fairchild. En 1968 se introdujo el famoso OA 741 que desbancó a sus rivales de la época con una técnica de compensación interna muy relevante y de interés incluso en nuestros días. Los amplificadores basados en tecnología CMOS han surgido como parte de circuitos VLSI de mayor complejidad, aunque sus características eléctricas no pueden competir con los de la tecnología bipolar. Su campo de aplicación es más restrictivo pero su estructura sencilla y su relativa baja área de ocupación les hacen idóneos en aplicaciones donde no se necesitan altas prestaciones como son los circuitos de capacidades conmutadas (switched-capacitor). Combinando las ventajas de los dispositivos CMOS y bipolares, la tecnología Bi-CMOS permite el diseño de excelentes OAs.

Los OAs integrados están constituidos por muy diversas y complejas configuraciones que dependen de sus prestaciones y de la habilidad del diseñador a la hora de combinarlas. Tradicionalmente, un OA está formado por cuatro bloques bien diferenciados conectados en cascada: amplificador diferencial de entrada, etapa amplificadora, adaptador y desplazamiento de nivel y etapa de salida. Estos bloques están polarizados con fuentes de corrientes, circuitos estabilizadores, adaptadores y desplazadores de nivel. La figura 8.1 muestra a nivel de bloque la configuración de un OA. La etapa diferencial presenta las siguientes características: tiene dos entradas (inversora y no inversora), su relación de rechazo en modo común es muy alto, las señales van directamente acopladas a las entradas y presentan una deriva de tensión de salida muy pequeña. El amplificador intermedio proporciona la ganancia de tensión suplementaria. Suele ser un EC con carga activa y está acoplada al amplificador diferencial a través de un seguidor de emisor de muy alta impedancia de entrada para minimizar su efecto de carga. El adaptador permite acoplar la etapa intermedia con la etapa de salida que generalmente es una clase AB.

La figura 8.2.a describe el esquema de OA 741. Este OA mantiene la filosofía del diseño de circuitos integrados: gran número de transistores, pocas resistencias y un condensador para compensación interna. Esta filosofía es el resultado de la economía de fabricación de dispositivos integrados donde se combina área de silicio, sencillez de fabricación y calidad de los componentes. El 741 requiere dos tensiones de alimentación que normalmente son de ±15V. La masa del circuito es el nudo común a las dos fuentes de alimentación. La figura 8.2.b describe la versión simplificada con los elementos circuitales más importantes. En este circuito se observa la etapa diferencial constituida por los transistores Q1 y Q2, la etapa amplificadora intermedia por Q16, Q17 y Q23, y la etapa de salida push-pull por Q14 y Q20.

3.4.1 Comparador En un circuito electrónico, se llama comparador a un amplificador operacional en lazo abierto (sin realimentación entre su salida y su entrada) y suele usarse para comparar una tensión variable con otra tensión fija que se utiliza como referencia. Como todo amplificador operacional, un comparador estará alimentado por dos fuentes de corriente continua (+Vcc, -Vcc). El comparador hace que, si la tensión

de entrada en el borne positivo (en el dibujo, V1) es mayor que la tensión conectada al borne negativo (en el dibujo, V2), la salida (Vout en el dibujo) será igual a +Vcc. En caso contrario, la salida tendrá una tensión -Vcc. Lo podemos resumir de la siguiente manera: si V1 > V2 => (V1-V2)>0 => Vout = +Vcc. Si V1 < V2 => (V1-V2) Vout = -Vcc. (Suponiendo que V2 es la tensión de referencia) Funcionamiento del comparador Estudiemos el siguiente circuito:

En este circuito, se alimenta el amplificador operacional con dos tensiones +Vcc = 15V y -Vcc = -15 V. Se conecta la patilla V+ del amplificador a masa (tierra) para que sirva como tensión de referencia, en este caso 0 V. A la entrada V- del amplificador se conecta una fuente de tensión (Vi) variable en el tiempo, en este

caso es una tensión sinusoidal. Hay que hacer notar que la tensión de referencia no tiene por qué estar en la entrada V+, también puede conectarse a la patilla V-, en este caso, se conectaría la tensión que queremos comparar con respecto a la tensión de referencia, a la entrada V+ del amplificador operacional. A la salida (Vo) del amplificador operacional puede haber únicamente dos niveles de tensión que son en este caso 15 o -15 V (considerando el AO como ideal, si fuese real las tensiones de salida serían algo menores). 

Cuando la tensión sinusoidal Vi toma valores positivos, el amplificador operacional se satura a negativo; esto significa que como la tensión es mayor en la entrada V- que en la entrada V+, el amplificador entrega a su salida una tensión negativa de -15 V.

3.4.2 Seguidor 

Es aquel circuito que proporciona a la salida la misma tensión que a la entrada.



Se usa como un buffer, para eliminar efectos de carga o para adaptar impedancias (conectar un dispositivo con gran impedancia a otro con baja impedancia y viceversa)



Como la tensión en las dos patillas de entradas es igual: Vout = Vin



Zin = ∞

Presenta la ventaja de que la impedancia de entrada es elevadísima, la de salida prácticamente nula, y puede ser útil, por ejemplo, para poder leer la tensión de un sensor con una intensidad muy pequeña que no afecte apenas a la medición. De hecho, es un circuito muy recomendado para realizar medidas de tensión lo más exactas posibles, pues al medir la tensión del sensor, la corriente pasa tanto por el sensor como por el voltímetro y la tensión a la entrada del voltímetro dependerá de la relación entre la resistencia del voltímetro y la resistencia del resto del conjunto formado por sensor, cableado y conexiones. Por ejemplo, si la resistencia interna del voltímetro es Re (entrada del amplificador), la resistencia de la línea de cableado es Rl y la resistencia interna del sensor es Rg, entonces la relación entre la tensión medida por el voltímetro (Ve) y la tensión generada por el sensor (Vg) será la correspondiente a este divisor de tensión:

Por ello, si la resistencia de entrada del amplificador es mucho mayor que la del resto del conjunto, la tensión a la entrada del amplificador será prácticamente la misma que la generada por el sensor y se podrá despreciar la caída de tensión en el sensor y el cableado. Además, cuanto mayor sea la intensidad que circula por el sensor, mayor será el calentamiento del sensor y del resto del circuito por efecto Joule, lo cual

puede afectar a la relación entre la tensión generada por el sensor y la magnitud medida.

3.4.3 Inversor Se llama así este montaje porque la señal de salida es inversa de la de entrada, en polaridad, aunque pude ser mayor, igual o menor, dependiendo esto de la ganancia que le demos al amplificador en lazo cerrado. La señal, como vemos en la figura, se aplica al terminal inversor o negativo del amplificador y el positivo o no inversor se lleva a masa. La resistencia R2, que va desde la salida al terminal de entrada negativo, se llama de realimentación.

En todo A.O. podemos decir que:

Por tanto si:

con lo cual las corrientes I1 e I2:

Como quedamos que Vx=0 quedará:

Al ser Ix=0, entonces: I1=I2 y por lo tanto:

Al final tenemos:

Fórmula que nos indica que la tensión de salida Vo es la tensión de entrada Vi multiplicada por una ganancia R2/R1. El signo negativo de la expresión indica la inversión de fase entre la entrada y la salida. - Impedancia de entrada:

- Impedancia de salida:

3.4.4 No Inversor Sea el circuito:

La resistencia de entrada se obtendrá

ya que por definición, en el modelo ideal la intensidad I=0. En cuanto a la ganancia, sabemos que VVV − + = = i, si suponemos que por R1 pasa una intensidad I1 cuyo valor sería

la tensión Vo se obtendría

La ganancia será

Como se puede observar, en este caso, la ganancia será siempre positiva ya que las Ri son siempre positivas y además siempre será mayor o igual a 1. G=1 para el caso en que R1 = ∞ (circuito abierto) o R2 = 0 (sustituyendo la R por un cable) o ambas cosas a la vez. Este circuito hace la función de un circuito ADAPTADOR DE IMPEDANCIA ya que presenta una impedancia de entrada infinita y una impedancia de salida nula.

También recibe el nombre de SEGUIDOR DE TENSIÓN ya que la tensión de salida Vo coincide con la de entrada Vi. Los amplificadores se pueden encadenar. Así si se pretende conseguir un amplificador cuya ganancia sea negativa y con impedancia de entrada alta, lo conseguiremos colocando un amplificador no inversor a la entrada, el cual suministra una alta impedancia de entrada, y un segundo amplificador inversor a la salida para obtener la ganancia negativa buscada.

3.4.5 Sumador y Restador Sumador Un amplificador sumador es un circuito electrónico creado por medio de amplificadores operacionales el cual está en capacidad de sumar o unir dos señales de entrada y unirlas en una sola a la salida.

DIAGRAMA DE FUNCIONAMIENTO

Como se puede observar el diagrama de el amplificador sumador se puede ver que es un amplificador sumador pero inversor ya que básicamente su señal de entrada se encuentra por el pin negativo para lograr que sea un sumador no inversor se debe conectar a el pin positivo de entrada

FORMULAS QUE RIGEN EL COMPORTAMIENTO DE EL AMPLIFICADOR SUMADOR

Básicamente para cualquier amplificador su ganancia esta dada por la resistencia de entrada sobre la de salida todo esto multiplicado por su voltaje de entrada entonces básicamente el voltaje de salida de un sumador inversor es: Vout=V1 (-Rf/R1)+V2(-Rf/R2)

Entonces suponiendo que RF=1K , R1=1K, R2=1K y V1= 5, V2=3V El voltaje de salida del sumador debe ser -8 voltios ya que las resistencias al poseer el mismo valor la entrada debe ser la suma de los voltajes CASO SUMADOR NO INVERSOR En el caso de sumador no inversor la ganancia de salida va a ser mayor ya que la formula está ligada a un +1 es decir que su ganancia es Vou=Vn(1+RF/Rn)

Restador



Para resistencias independientes R1,R2,R3,R4:

  

Igual que antes esta expresión puede simplificarse con resistencias iguales La impedancia diferencial entre dos entradas es Zin = R1 + R2 Cabe destacar que este tipo de configuración tiene una resistencia de entrada baja en comparación con otro tipo de restadores como por ejemplo el amplificador de instrumentación.

o

3.4.6 Diferenciador

Este dispositivo nos permite obtener la derivada de la señal de entrada. En el caso general la tensión de entrada variará con el tiempo Vi= Vi(t). La principal diferencia que se observa en este circuito es la presencia de un condensador de capacidad constante C. Como se sabe la carga Q que almacena un condensador es

proporcional a su capacidad C y a la diferencia de potencial V a la que estén sometidos las armaduras de éste (Q=CV). Es fácil entender que si la tensión varía con el tiempo y la capacidad del condensador es constante, la carga que éste almacena también variará con el tiempo, Q= Q(t).

Está claro también que el primer miembro de esta igualdad representa el concepto de intensidad

. Además la diferencia de potencial en los extremos del condensador es Vi ya que una de sus armaduras tiene un potencial Vi y la otra, tiene un potencial cero ya que V-=0 al ser V+=0. La señal de salida Vo se obtiene sabiendo que Vo = -IR , sustituyendo los valores obtenidos queda

Como se puede ver en esta expresión Vo es proporcional a la derivada con respecto al tiempo de la señal de entrada. La constante de proporcionalidad RC es la conocida constante de tiempo. Para la utilización de este dispositivo debemos "vaciar" previamente el condensador de toda carga, para ello producimos un cortocircuito entre sus armaduras. A continuación, deshaciendo ese cortocircuito, dejamos que el sistema evolucione durante el tiempo deseado obteniendo su derivada a la salida. Con este dispositivo se pueden hacer muchas combinaciones, así, por ejemplo, podemos conseguir un circuito que obtenga la derivada de una señal determinada y además le sume una segunda señal, con el esquema siguiente

3.4.7 Integrador Se ha visto que ambas configuraciones básicas del AO actúan para mantener constantemente la corriente de realimentación, IF igual a IIN.

Fig. 6 Una modificación del amplificador inversor, el integrador, mostrado en la figura 6, se aprovecha de esta característica. Se aplica una tensión de entrada VIN, a RG, lo que da lugar a una corriente IIN. Como ocurría en el amplificador inversor, V(-) = 0, puesto que V(+) = 0, y por tener impedancia infinita toda la corriente de entrada Iin pasa hacia el condensador C F, llamaremos a esta corriente IF. El elemento realimentador en el integrador es el condensador CF. Por consiguiente, la corriente constante IF, en CF da lugar a una rampa lineal de tensión. La tensión de salida es, por tanto, la integral de la corriente de entrada, que es forzada a cargar CF por el lazo de realimentación.

La variación de tensión en CF es

lo que hace que la salida varíe por unidad de tiempo según:

Como en otras configuraciones del amplificador inversor, la impedancia de entrada es simplemente RG Obsérvese el siguiente diagrama de señales para este circuito

Por supuesto la rampa dependerá de los valores de la señal de entrada, de la resistencia y del condensador.