Ejemplo Viga Pretensada

CE6340 Prestressed Beam Example 1/73 Design of a Multi Span Prestressed AASHTO Girder CODE: AASHTO LRFD 4nd edition,

Views 75 Downloads 0 File size 869KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

CE6340

Prestressed Beam Example

1/73

Design of a Multi Span Prestressed AASHTO Girder CODE: AASHTO LRFD 4nd edition, 2007 Unit definitions kN  1000N GPa  109Pa

6

MPa  10 Pa

kip  1000 lbf

ksi  1 

kip 2

in

Materials Cast in Place Slab Concrete Strength at 28 Days

fc_s := 5.0 ksi γc_s := 150 

lbf ft

Concrete unit weight

3

Precast Beam fci := 5.0 ksi

Concrete Strength at Release

fc := 6  ksi

Concrete Strength at 28 Days

γc := 150 

Concrete unit weight

lbf ft

3

Prestressing Strands

0.5 in, low relaxation

d strand := 0.5 in

Strand Diameter 2

Astrand := 0.153 in

Area of one strand

fpu := 270  ksi

Ultimate Strength

Hoop Reinforcement Area: Av := 2

4    in 4 8 

π

2

2

Av = 0.39 in

Aditional Dead Loads on Girders p fws := 2  in 140 

lbf ft

wbarrier := 0.405

3

kip ft

p fws = 0.162 psi

= 5910.53

kg 2

2 inches of Asphalt

Weight of one New Jersey Barrier

s

p. 1/73

psf  1 

lbf ft

2

metro  1m

CE6340

Prestressed Beam Example

p. 2/73

2/73

CE6340

Prestressed Beam Example

Span Information: nspan := 2

Number of Spans in Structure

jspan := 1

Span under Investigation

 120.0  L :=  120.0   ft    0.0 

Lenght of Each Span

Loh := 6  in

Precast Overhang (additional length of beam after CL of Bearing)

Lcc :=

 6.0  left support (abutment)   in  18.0  right support (pier)

 120  L =  120   ft    0 

Distance from center line of bearing to centerline of pier or abutment end

Bridge Cross-Section: Number of Beams

Nb := 6

select from 1 to 6 for AASHTO TYPE GIRDERS I to VI :

igirder_type := 5 Wdeck := ( 5  7 )  ft + 8  ft Shoulder_Ratio :=

4 7

= 0.57

Wdeck = 43 ft

width of deck

Ratio S_ext/S

t s_total := 10 in

t s_total = 10 in

Total Slab Thickness

t s := 9  in

t s = 9  in

Structural Slab Thickness Haunch Thickness

t h := 1  in Wbarrier := 19 in

S :=

Wdeck

(Nb - 1 + 2 Shoulder_Ratio)

Sext := Shoulder_Ratio S

Wbarrier = 19 in

Width of Barrier

S = 7  ft

Beam Spacing

Sext = 4  ft

Length of Exterior Shoulder

p. 3/73

3/73

CE6340

Prestressed Beam Example

4/73

Properties of Concrete 1.5

fc_s  γc_s  Ec_s := 33000    ksi ksi  kip   ft3   

Ec_s = 4286.8 ksi

modulus of elasticity of concrete slab A 5.4.2.4

Eci = 4286.8 ksi

modulus of elasticity at release

A 5.4.2.4

Ec = 4696 ksi

modulus of elasticity at service

A 5.4.2.4

Modulus of Rupture

A5.4.2.6

Yield Strength for low lax

A 5.4.4.1 Table 1

1.5

fci  γc  Eci := 33000    ksi ksi  kip   ft3    1.5

fc  γc  Ec := 33000     ksi ksi  kip   ft3   

fr := 0.37

fc ksi

 ksi

fr = 0.91 ksi

Properties of Strands fpy := 0.9 fpu

fpy = 243  ksi

Stress Limits for prestressing strand fpj := 0.75 fpu

fpj = 202.5 ksi

Before Transfer (at jacking)

A 5.9.3 Table 1

fservice := 0.80 fpy

fservice = 194.4 ksi

At Service Limit State (After all losses)

A 5.9.3 Table 1

Ep := 28500 ksi

Modulus of Elasticity

A 5.4.4.2

p. 4/73

CE6340

Prestressed Beam Example

5/73

Reinforcing Bars fy := 60 ksi

Yield Strength

Es := 29000  ksi

Modulus of Elasticity

A 5.4.3.2

Compute Simple Span of precast Beams for dead loads on stage I

C 4.62.2.1 Table 1 - L

ispan := 1 .. nspan

Span of Simple Beam (for dead loads on simple span) Lspan

ispan

Lspan =

:= L

ispan

- Lcc - Lcc 1

2

 118     ft  118 

Lenght of Span under Investigation

Average Length of Adjacent Spans for dist. factor calculations in Negative Moment Region (for negative moment & interior reaction near int. Support) iave :=

( 1 .. 2 ) if nspan = 1 ( 1 .. nspan + 1 ) otherwise

Lave

iave

:=

L L

iave

if iave = 1 if iave = nspan + 1

iave-1

L

iave- 1

+L

2

iave

 120  Lave =  120   ft    120 

otherwise

p. 5/73

CE6340

Prestressed Beam Example

6/73

Define Additional Section Data Wroad := Wdeck - 2  Wbarrier Wroad = 39.83 ft

roadway width, face of barrier to face of barrier

Waxle := 6  ft

space between wheels on one axle

Wlane := 12ft

width of design lane

 Wroad    Wlane 

Nlane := floor

Nlane = 3

number of lanes

d top_cover := 2in

Slab: Concrete cover required over bot bars

d bot_cover := 1in

Slab: Concrete cover required over bottom bars

A 5.12.3 Table -1

Cross-Sectional Properties Non Composite Properties from reference: AASHTO GIRDER DATA Reference:F:\Manuel Coll\02 Material de Cursos\002 CE 6340 WI 2012\Worksheets Used in CE6340 WI2010\AASHTO GIRDER DATA.mcd(R)

2

A = 1013 in

St = 16790.59 in

I = 521180 in 3

4

h = 63 in 3

Sb = -16307.26 in

p. 6/73

yb = 31.96 in

CE6340

Prestressed Beam Example

Composite Section Properties

Interior Span

b eff := S 1

b eff :=

b eff

2

b eff =

n :=

2

1

Exterior Span

+ Sext

 84     in  90 

(Cambio en codigo 2010)

Effective Flange width (Interior, Exterior)

Ec_s Ec

n = 0.91

I I    3 3  n  b f_top th n  b f_top th   12 12 Inertia :=     n b eff  ts3 n b eff  ts3  1 2   12 12  

A 4.6.2.6.1

Modular Ratio Between Slab & Beam

Girder Haunch Slab

 521180 521180  4 Inertia =  3.2 3.2   in    4658.38 4991.12 

A  A    Area :=  n  b f_top t h n  b f_top t h   n beff  ts n b eff  ts  1 2  

 1013 1013  2 Area =  38.34 38.34   in    690.13 739.43 

yb      h + th  Arm :=  2   t   h + th + s  2  

 31.96  Arm =  63.5   in    68.5 

p. 7/73

7/73

CE6340

Prestressed Beam Example

j := 1 .. 2

i := 1 .. 3

3



Ac := j

8/73

Ac =

Area

i, j

i=1

 1741.47  2    in  1790.77 

Area of Composite Section (Interior, Exterior)

3

 (Areai, jArmi)

yb_c :=

i =1

j

yb_c =

3



Area

 47.13     in  47.72 

Distance from centroid to bottom fiber

i, j

i =1

3

Ic := j



3

Inertia

i, j

i=1

+

Area  Arm - y 2 b_c i j   i, j

(



i=1

)

h c := h + th + t s

h c = 73 in

yt_c := h - yb_c

yt_c =

ys_c := h c - yb_c

ys_c = 

Sb_c := j

Sb_c =

Ic

j

yb_c

St_c := j

j

 -23006.38  3    in  -23188.35 

Moment of Inertia Composite Secion

Overall depth of composite section

 15.87     in  15.28 

Distance from centroid to top of precast girder

 25.87    in  25.28 

Distance from centroid to bot of slab

Ic

j

yt_c

j

St_c =

 1084403.1  4   in  1106618.1 

Ic = 

Ss_c := j

 68351.43  3    in  72436.93 

Ic

j

ys_c

Ss_c =

j

 41925.32  3    in  43779.67 

Section Modulus of Composite Section

Area of bottom half of composite girder section 2

 hc  - t f_bot 2 

Abot := b f_bot t f_bot + Taper + t w 

2

Abot = 552  in

p. 8/73

Ac 2

=

 870.74  2    in  895.38 

CE6340

Prestressed Beam Example

9/73

Define Life Load Shear & Moment Envelopes

Reference:F:\Manuel Coll\02 Material de Cursos\002 CE 6340 WI 2012\Worksheets Used in CE6340 WI2010\Presstress Beam Design - Subrutine 1 - Multi

m := metro

Define ten Points & 0.05*L for Girder of Span being Investigated ten := 10

tentotal := ten + 3

iten := 1 .. tentotal

xten

iten

:=

xten

iten- 1

xten

iten- 1

xspan xspan

jspan

+

+

Lspan

Lspan

jspan

2ten

+ Lcc

jspan + 1

jspan

ten

1

- Lcc

if iten > 2 if ( 1 < iten < 4 )  ( tentotal - 2 < iten < tentotal)

if iten = 1 2

if iten = tentotal

p. 9/73

1   2   3 4   5 6 iten =  7    8 9   10    11   12     13 

 0.5    6.4    12.3   24.1     35.9   47.7  xten =  59.5   ft    71.3   83.1    94.9    106.7   112.6     118.5 

CE6340

Prestressed Beam Example

10/73

Define area outside precompresed tensile zone in span being analized, for tensile stress limits at transfer (Compression zone in final configuration): top_comp_zone

iten

:=

1 if xten

- xspan

1 if xten

- xspan

iten iten

1 if 0.2 L

jspan

jspan jspan

 0.7 L  0.3 L

 xten

jspan jspan

- xspan

iten

jspan

 jspan = 1  jspan = nspan  0.8 L

jspan

 1 < jspan < nspan

0 otherwise

bot_comp_zone

iten

:=

1 if xten

- xspan

1 if xten

- xspan

iten iten

1 if 0.25 L



jspan

jspan jspan

(

 0.75 L  0.25 L

 xten

iten

jspan jspan

- xspan

 jspan = 1  jspan = nspan

jspan

)  (x

ten iten

- xspan

jspan

)  0.75Ljspan  1 < jspan < nspan

0 otherwise

top_comp_zone

iten

:= 1

bot_comp_zone

iten

:= 0

1    1   1  1    1  1  top_comp_zone =  1    1  1    1   1  1    1 

Note: is a simply suported precast beam made continuous by the slab, so top is compression zone.

0    0   0  0    0  0  bot_comp_zone =  0    0  0    0   0  0    0 

p. 10/73

CE6340

Prestressed Beam Example

11/73

Live Load Shear & Moment Envelopes 3

4 10

M truck

3

2 10

kip ft M train kip ft

0

M enve kip ft M fatigue kip ft

3

- 2 10

3

- 4 10

0

100

200 xpoi ft

200

Vtruck

100

kip Venve kip

0

Vfatigue kip - 100

- 200

0

100

200 xpoi ft

p. 11/73

CE6340

Prestressed Beam Example

12/73

Define Shear & Moment for unit uniform load on Simple Span girder (NC - Non Composite):

 Lspanjspan

Vnc ( x , w) := w 



M nc ( x , w) :=

w 2

2

(

 x - xspan

(

- x - xspan

jspan

jspan

)

- Lcc

- Lcc  Lspan 1

  1

jspan

)

Shear at x distance from left support

(

- x - xspan

jspan

- Lcc

)

Moment at x distance from left support

1

Define functions for uniform dead loads on Composite bridge (Stage 2 Loads)

 xspannspan+ 1   1   Vec_M := ILMpos( x , k) + ILMneg( x , k) dx  k kip   0 ft 

 xspannspan+1   1   Vec_V := ILVpos( x , k) + ILVneg( x , k) dx  k kip   0 ft 

M c( x , w) := linterp( xpoi , Vec_M , x)  w Vc( x , w) := linterp( xpoi , Vec_V , x)  w

Define Negative Moment Regions at span under investigation:

Span_Neg_Zone( x) :=

3 if linterp( xpoi , Vec_M , x) < -0.001 ft  2

L

(1) Positive Moment Region (2) Left Negative Moment Region (3) Right Negative Moment Region

jspan

2

(

 x - xspan

2 if linterp( xpoi , Vec_M , x) < -0.001 ft  0  ft  x - xspan

Neg

iten

(

:= Span_Neg_Zone xten

)

iten

p. 12/73

)  Ljspan

L

2

1 otherwise

jspan

jspan



jspan

2

1   1   1 1   1 1 Neg =  1    1 1   3   3 3   3

CE6340

Prestressed Beam Example

13/73

Calculation of Distribution factors

Figure 1 Sketch of Transverse Section of the Bridge Distribution factors for moment on interior girder (Table 4.6.2.2b-1) Compute transverse to longitudinal stiffness ratio: LDF := L 1

jspan

ts

+ yt + t h

2

Ec

Kg :=

2

Ec_s

jspan

LDF := Lave 3

 I + A e 2 g  

4

longitudinal stiffness parameter

Kg = 2052545.19 in

0.4

0.3

0.6

0.2

S  S   Kg  gm_int_2 := 0.075 +      j  9.5 ft   LDFj   L  t 3     DFj s 

(

gm_int := max gm_int_1 , gm_int_2

gm_int_f := j

psi = 1  psi

distance from center of gravity of precast beam to center of gravity of deck

eg = 36.54 in

S    S    Kg  gm_int_1 := 0.06 +   j  4300mm   LDFj   L  t 3     DFj s 

j

jspan + 1

 120  LDF =  120   ft    120 

1: for positivmoment 2 & 3 for negative moment regions.

j := 1 .. 3 eg :=

LDF := Lave

gm_int_1 1.20

j

j

j

)

0.1

0.1

t s = 9  in

 0.337  gm_int_f =  0.337     0.337 

Equation 4.6.2.2.1-1

 0.4  gm_int_1 =  0.4     0.4 

Distribution Factor for one lane loaded

 0.58  gm_int_2 =  0.58     0.58 

Distribution Factor for two or more lanes loaded

4

Kg = 2052545.19 in

Fatigue distribution factor for moment on interior girder p. 13/73

 0.58  gm_int =  0.58     0.58 

 120  LDF =  120   ft    120  S = 7  ft

CE6340

Prestressed Beam Example

14/73

Distribution factor for moment on exterior girder (Table 4.6.2.2.2d-1) Lever rule:

Figure 2 Notional Model Applying the Lever Rule c := S + Sext - Wbarrier - 2  ft - Waxle glever_rule :=

Waxle + 2  c 2 S

 1.20

c = 1.42 ft

distance from 1st interior girder to inside wheel

glever_rule = 0.757

distribution factor for moment on exterior girder, Lever Rule, including multiple presence factor

Rigid body analysis (C4.6.2.2.2d)

Figure 3 Truck Positions for Rigid Body Analysis

p. 14/73

CE6340

Prestressed Beam Example

15/73

itruck := 1 .. Nlane index for calculation ibeam := 1 .. Nb

xbeam

ibeam

:= ( Nb - ibeam)  S -

( Nb - 1) S 2

 17.5   10.5    3.5   xbeam =  ft  -3.5   -10.5     -17.5 

 Wroad  etruck :=  - 0.6m - 0.9m - ( itruck - 1 )  Wlane itruck 2   Xext := xbeam

Xext = 17.5 ft

1

Wroad 12 ft

= 3.32

distances from center of bridge to each girder

 15  etruck =  3   ft    -9 

distance from centerline of bridge to exterior girder

 (x

beam

itruck

Xext R

itruck

:=

itruck Nb

+



ibeam

etruck

j =1

 (x

beam

distances from center of bridge to each truck

j

ibeam

)

2

 0.47  R =  0.7     0.68 

ibeam

)

2

= 857.5 ft

2

Nb = 6

rigid body distribution factors, from Eqn. C4.6.2.2.2d-1

ibeam

 1.20  MPF :=  1.00     0.85  grigid_body

itruck

:=

multiple presence factor, from Table 3.6.1.1.2-1

(Ritruck MPFitruck) if itruck < 3 (Ritruck MPF3) otherwise

grigid_body := max( grigid_body)

 0.57  grigid_body =  0.7     0.58  distribution factor for moment for rigid body analysis

grigid_body = 0.7

p. 15/73

CE6340

Prestressed Beam Example

16/73

Table 4.6.2.2.2d-1 distance from exterior girder to face of parapet d e := Sext - Wbarrier e := 0.77 +

d e = 2.42 ft

de

e = 1.03

2800mm

(

)

gm_ext := max e gm_int_2 , glever_rule , grigid_body j

 0.58  gm_int_2 =  0.58     0.58 

j

 0.757  gm_ext =  0.757     0.757 

Table 4.6.2.2.2d-1

 0.6  e gm_int_2 =  0.6  j    0.6  for moment on exterior girder distribution factor glever_rule = 0.76

 glever_rule  gm_ext_f := max ,R  1 j  1.2 

gm_ext_f

 0.63  =  0.63     0.63 

Distribution factors for shear on interior girder gv_int_1 := 0.36 +

gv_int_2 := 0.2 +

S 7600mm S

3600mm

-

S      10700mm 

gv_int_1 = 0.64

distribution factor for shear on interior girder, one lane loaded

gv_int_2 = 0.75

distribution factor for shear on interior girder, more than one lane loaded

2

gv_int := max( gv_int_1 , gv_int_2)

gv_int_f :=

gv_int_1

e := 0.64 +

1.20

de 3800mm

gv_ext := max( e gv_int_2 , glever_rule , grigid_body)

 glever_rule  ,R  1  1.2 

gv_ext_f := max

gv_int_f = 0.53

fatigue distribution factor for shear on interior girder

e = 0.83

Table 4.6.2.2.3b-1

gv_ext = 0.76

distribution factor for shear on exterior girder

gv_ext_f = 0.631

fatigue distribution factor for shear in exterior girder

p. 16/73

CE6340

Prestressed Beam Example

17/73

Summary of Distribution Factors For Positive Moment Region Strength & Service moment on interior girder

 0.579  gm_int =  0.579     0.579 

Fatigue moment on interior girder

 0.337  gm_int_f =  0.337     0.337 

moment on exterior girder

 0.757  gm_ext =  0.757     0.757 

moment on exterior girder

gm_ext_f

 0.631  =  0.631     0.631 

shear on interior girder

gv_int = 0.75

shear on interior girder

gv_int_f = 0.53

shear on exterior girder

gv_ext = 0.757

shear on exterior girder

gv_ext_f = 0.631

Distribution Factors (interior, exterior) j := 1 .. 2

interior, exterior

i := 1 .. 3

positive, negative start, negative end

i gm :=

gv :=

gm_f

 gm_inti     gm_ext  i 

 gv_int     gv_ext 

i

gv_f :=

:=

 gm_int_f i     gm_ext_f  i 

 gv_int_f     gv_ext_f 

gm =

 0.579 0.579 0.579     0.757 0.757 0.757 

DF for moment

gv =

 0.75     0.76 

DF for shear

gm_f =

 0.34 0.34 0.34     0.63 0.63 0.63 

DF for moment, one lane loaded only & no multiple presence factor

 0.53    0.63 

DF for shear, one lane loaded only & no multiple presence factor

gv_f = 

p. 17/73

CE6340

Prestressed Beam Example

Define functions of moments and shear envelopes for LL+I:

(

)

(

)

(

)

(

)

1 M LLI_max ( j , x) := linterp xpoi , M enve , x  gm

2 M LLI_min( j , x) := linterp xpoi , M enve , x  gm 1 VLLI_max ( j , x) := linterp xpoi , Venve , x  gv

1, j

j , Span_Neg_Zone ( x)

j

2 VLLI_min( j , x) := linterp xpoi , Venve , x  gv

j

Define functions of moments and shear envelopes for Fatigue Truck:

(

)

(

)

(

)

(

)

1 M fatigue_max ( j , x) := linterp xpoi , M fatigue , x  gm_f 2 M fatigue_min( j , x) := linterp xpoi , M fatigue , x  gm_f 1 Vfatigue_max ( j , x) := linterp xpoi , Vfatigue , x  gv_f 2 Vfatigue_min( j , x) := linterp xpoi , Vfatigue , x  gv_f

1, j

j , Span_Neg_Zone( x)

j

j

Dead Loads placed on simple span:

 S   wslab := γc_s  t s_total S  Sext +  2  1   1 

wgirder := A γc 

wslab =

 0.88  kip    0.94  ft

wgirder =

1   1 

whaunch := t h b f_top γc 

 1.06  kip    1.06  ft

whaunch =

 0.04  kip    0.04  ft

p. 18/73

18/73

CE6340

Prestressed Beam Example

19/73

Dead Loads Placed on the Continuous Structure: Permanent Loads (curbs & future wearing surface) may be distributed uniformly among all beams if the following conditions are met: -

width of deck is constant beams are parallel & have aproximately the same stiffness curvature in plan less than 4 degrees (changed, check limits in section 4.6.1.2.4) cross section of bridge is consistent with one of the sections given in Table 4.6.2.2.1 Number of beams is not less than 4 road way part of the overhang less than 910 mm (3 ft)

Box_1 :=

"OK!" if Nb  4  d e  910  mm

Box_1 = "OK!"

"NOT GOOD!" otherwise

dead load distribution factor:

 S  W  deck gdead :=  S Sext +  2  W  deck

      

gdead =

wDC1 := wslab + wgirder + whaunch

wDC2 :=

2  wbarrier Nb

1   1 



 S   wDW := p fws  S  Sext +  2 

A 4.6.2.2.1

 0.16     0.17 

 1.97  kip   2.04  ft

wDC1 = 

 0.14  kip   0.14  ft

wDC2 = 

wDW =

 0.16  kip    0.18  ft

wDW := p fws Wdeck gdead

p. 19/73

CE6340

Prestressed Beam Example

20/73

Define function for Factored Forces: ηD := 1.0

Bridge with ductility requirements of the specification and redundant

ηR := 1.0

Typical Bridge

ηI := 1.0

  0.95      ηD ηR ηI  

η := max 

η=1

For Normal superstructure design maximum loads will control

A 1.3.2.1

Define the load factors for the different combinations

 1.25  1.00 γDC :=   1.00  0.00 

0.9 

 0  0   0 

 1.50 0.659    1.00 0   γDW := γ :=  1.00 0  LL  0.00 0   

 1.75 1.75     1.00 0   0.80 0   0.75 0   

p. 20/73

Strength-I Service-I (Compresion) Service-III (Tension) Fatigue

CE6340

Prestressed Beam Example

21/73

Compute Moment & Shear Envelopes at ten points & at 0.05*L: i := iten

j := 1 .. 2

M slab_haunch M girder

j ,i

M DC1 M DC2 M DW

(

:= M nc xten , wslab + whaunch

(

i

j

:= M nc xten , wgirder i

(

j

:= M nc xten , wDC1

j ,i

i

(

i

(

i

:= M c xten , wDC2

j ,i

j ,i

j ,i

:= M c xten , wDW

j

j

j

)

)

VDC2

)

VDW

(

M f_min

j ,i

j ,i

(

i

:= Vc xten , wDW

j

j

)

)

VLL_min

:= VLLI_min j , xten

(

i

:= M fatigue_min j , xten

M LL_max =

i

)

)

:= M fatigue_max j , xten

(

(

:= Vc xten , wDC2

j ,i

j

:= VLLI_max j , xten

:= M LLI_min j , xten

M f_max

i

VLL_max

M LL_min

i

(

:= Vnc xten , wDC1

j ,i

j ,i

)

i

)

i

(

(

:= Vnc xten , wgirder

j ,i

VDC1

:= M LLI_max j , xten

j ,i

) Vgirder

)

M LL_max

j ,i

j

i

j ,i

)

)

Vf_max Vf_min

j ,i

j ,i

j ,i

(

i

(

i

)

)

(

:= Vfatigue_max j , xten

(

i

:= Vfatigue_min j , xten

i

)

)

 30.3 387.3 739 1241.1 1542.6 1674.9 1645.2 1470.3 1157.2 714.7 259.2 128.9 26.1     kip ft  30.3 387.3 739 1241.1 1542.6 1674.9 1645.2 1470.3 1157.2 714.7 259.2 128.9 26.1 

T

M enve =

0 372.25  0 1253.54 2137.78 2667.09 2896.8 2837.29 2519.32 1955.1 1160.88 360.79   -0 -165.17 -330.35 -495.52 -660.7 -825.87 -991.05 -1156.22 -1321.4 -1832.58 -2970.77 -1832.33 -

p. 21/73

CE6340

Prestressed Beam Example

22/73

Preliminary Strand Arrangement: Compute Stresses in the bottom beam fibers due to dead load & live loads at midspan

SERVICE III

fbottom

j ,i

:=

s := 3

γDC

k := 1

 M DC1

s, k

Sb

j ,i

+

Note: s = Load case; k = max (1), min(0); j = ten point; i = interior (1) exterior (2)

γDC

s,k

 M DC2

j ,i

+ γDW

 M DW

s, k

Sb_c

j ,i

+ γLL

γLL

 M LL_max

s, k

j ,i

j

s, k

= 0.8

max( M DC1) = 3544.46  kip

max( M DC2) = 136.02 kip  ft max( M DW ) = 176.32 kip  ft

max( M LL_max) = 1674.92  kip fbottom =

 -0.02 -0.68 -1.29 -2.26 -2.92 -3.28 -3.36 -3.14 -2.65 -1.88 -0.88 -0.33 0.25     ksi  -0.02 -0.7 -1.32 -2.31 -2.99 -3.36 -3.43 -3.22 -2.72 -1.93 -0.9 -0.34 0.26 

A 5.9.4.2.2 Table 1



fc



ksi

ften := - 0.19

Sb = -16307.26 Sb_c =



 ksi



ften = -0.465 ksi

 -23006.38   -23188.35

Service III Concrete Stress Limit for Tension after Losses

Estimate Eccentricity of Centroid of Strands: yb = 31.96 in e := -( yb - 12 in)

e = -19.96 in

Estimated eccentricity between centroid of strands & centroid of girder at point of maximum tension

fb := min( fbottom )

fb = -3.43 ksi

maximum tension in beam

Preq = 1342.8 kip

Estimated total prestress force required:

Preq :=

ften - fb

1 + e  A S  b 

Note: Prestress force acts on noncomposite section

p. 22/73

CE6340

Prestressed Beam Example

23/73

Total Loss in the prestressing steel stress (estimated STANDARD SPECS Table 9.16.2.2)

ΔfpT := 45 ksi fpe := fpj - ΔfpT 2

Astrand = 0.15 in

Pe := Astrand fpe

Nstrand :=

Nstrand :=

fpj = 202.5 ksi

Effective stress in strands after losses

fpe = 157.5 ksi

Effective prestressing force in one strand

Pe = 24.1 kip

Preq

Nstrand = 55.72

Pe

floor( Nstrand + 1)   floor( Nstrand + 1 )   floor( Nstrand + 1 ) if = floor  2 2      floor( Nstrand + 2 ) otherwise   

Estimated number of strands required

Nstrand = 56

yb = 31.96 in

Nstrand := 56 Nstrand_line := 6

 13    13 Nstrand_line =    13  3  

para reducir la eccentricidad de los tendones

Nstrand_line := 8

1

select par number of strands

2

Nstrand_line := 8 3

Arrange Strands

nlayer :=

          

dummy  0 i0 while dummy < Nstrand ii+1 dummy 

dummy + Nstrand_line if i < rows( Nstrand_line) i

dummy + Nstrand_line

(

)

rows Nstrand_line

otherwise

i

          

6    8 Nstrand_line =   8  3   

h = 63 in

p. 23/73

CE6340

Prestressed Beam Example

ilayer := 1 .. nlayer

nlayer = 15

Number of Strands per Layer Nstrand_layer

ilayer

:=

Nstrand_line

ilayer

Nstrand_line

if ilayer < rows( Nstrand_line)

(

)

rows Nstrand_line

if ilayer  rows( Nstrand_line)

nlayer-1     Nstrand Nstrand_layer   if ilayer = nlayer i   i =1  



0 otherwise h = 63 in

nlayer 2 in = 30 in

Eccentricity of Centroid of Strands:

24/73

6    y = 31.96 in 8  b  82 in nlayer = 30 in 3    3  3    3   Nstrand_layer =  3  3    3  3  3    3  3    1 

N

strand_layer

= 56

nlayer



yb_strand :=

ilayer = 1

Nstrand_layerilayer ( ilayer 2  in) Nstrand

yb_strand = 12.79 in yb = 31.96 in

ecc := yb_strand - yb

ecc = -19.17 in

Define Eccentricity at ten points: eten

iten

:= ecc

e = -19.96 in

T

eten = ( -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 )  in

p. 24/73

OK

CE6340

Prestressed Beam Example

25/73

Compute Prestress Loss; Low Relaxation Strand Elastic Shortening

(



T

M g := max M girder j

A 5.9.5.2.3a

)

j

Mg =



 1836.59     kip ft  1836.59 

Moment due to weight of member

xx es porciento estimado de esfuerzo "at jacking" (fpj) que se pierde por encogimiento Elastico

xx := 1

Pt := ( xx) ( fpj Astrand Nstrand)

% of Total force at transfer assumed

Pt = 1735.02  kip

PP := 1624.5 = 1624.5 Pt := PP  kip fcgp :=

Pt A

+

(Pt ecc) ecc I

I = 521180 in +

M g ecc

M g ecc

I

I

 1.94  fcgp =    ksi  1.94  ΔfpES :=

Ep Eci

 fcgp

Pt_revised := ( fpj - ΔfpES)  Astrand Nstrand

=

 -0.81     ksi  -0.81 

4

ecc = -19.17 in

2

A = 1013 in

Concrete Stresses at center of gravity of prestressing tendons due to prestressing force at transfer and the self weight of the member at section of maximum moment

 12.89    ksi  12.89 

ΔfpES = 

Losses due to Elastic Shortening

 1624.58    kip  1624.58 

Pt_revised = 

equal to assumed OK!

Programa en mathcad para calcular perdida elastica: (el mismo calculo pero con iteracion programada)

p. 25/73

CE6340

Ptt :=

Prestressed Beam Example

26/73

xx  1.0

j

flag  0

Pt = 1624.5 kip

while flag = 0 pt  xx ( fpj Astrand Nstrand) fcgp  loss 

pt A Ep Eci

+

( pt ecc)  ecc I

+

Concrete Stresses at center of gravity of prestressing tendons due to prestressing force at transfer and the self weight of the member at section of maximum moment

M g  ecc j

I fcgp :=

 fcgp

pt_new  ( fpj - loss)  Astrand Nstrand flag 

0 if

Pt A

+

(Pt ecc) ecc I

+

M g ecc

fcgp =

I

Losses due to Elastic Shortening

pt - pt_new > 0.25 kip

1 if xx < 0.00

ΔfpES :=

1 otherwise

Ep Eci

 12.89    ksi  12.89 

ΔfpES = 

 fcgp

xx  xx - 0.001 pt

A 5.9.5.4 Refined estimate of Time dependent Losses 2

Aps := Astrand Nstrand

Aps = 8.57 in

Servie life of bridge (days)

t i := 2

Age in days to Transfer

t d := 30

Age in days to concrete deck placement A 5.9.5.4.2 Average annual ambient relative humidity (%)

H := 70 VSratio = 4.56 in

 

ks := max 1.0 , 1.45 - 0.13  khc := 1.56 - 0.008 H kf :=

max( Ptt ) = -0  kip

Area of prestress strands

t f := 100  365

From Transfer to Deck Placement

5 1+

fci

VSratio  in

 

 1.94     ksi  1.94 

ks = 1 khc = 1 kf = 0.83

ksi

p. 26/73

CE6340

Prestressed Beam Example

ktd( t ) :=

t     fci  64 - 4 + t  ksi  

ti = 2

ktd( t f - t i) = 1

Ψb( t , t i) := 1.9 ks khc  kf  ktd( t )  t i

- 0.118

khs := 2.00 - 0.014 H

27/73

t d = 30

Creep Coefficient

ti = 2

A 5.4.2.3.2-1

khs = 1.02 -3

ε bid := ks khs kf  ktd( t d - t i)  0.48 10

ε bid = 1.587  10

-4

Shrinkage Strain

A 5.4.2.3.3-1

1

Kid := 1+

2 Ep Aps  A ecc    ( 1 + 0.7 Ψb( tf , ti) )  1 + Eci A  I 

1   1 

Ep Eci

t f = 36500

 3.78    ksi  3.78 

ΔfpSR := ε bid Ep Kid 

ΔfpCR :=

Kid = 0.84

ΔfpSR = 

 fcgp  Ψ b( t f , t i)  Kid

ΔfpCR =

 15.72     ksi  15.72 

Losses due to shinkage

Losses Due to Creep

Relaxation of Strands: ΔfpR1 := j

1 30.0

 fpj



 fpy



- 0.55  max( fpj , 0.55 fpy)



 1.91    ksi  1.91 

ΔfpR1 = 

ΔfpR1 := 1.2 ksi j

Relaxation at transfer

A 5.9.5.4.2c

Losses due to relaxation at transfer use 1.2 ksi acording to AASHTO 5.9.5.4.2c for low relaxation strands

-20.71

(-ΔfpSR - ΔfpCR - ΔfpR1) =  -20.71   ksi 



Loses from transfer to deck placement

p. 27/73

Ψb( t f , t i) = 1.46

CE6340

Prestressed Beam Example

From deck placement to final time

eccc := ( yb_strand - yb_c)

Kdf := j

eccc =

28/73

A 5.9.5.4.3

 -34.35     in  -34.94 

Distance from centroid of composite section to centroid of strands

1

 Ac  eccc Ep Aps  j j 1+   1+  Eci Ac Ic j  j

2

( )  (1 + 0.7Ψ (t , t ))  

b f

i

-3

-4

ε bdf := ks khs kf  ktd( t f - t i)  0.48 10 ΔfpSD := ε bdf  Ep Kdf

ε bdf = 4.075  10

ΔfpSD =

 9.75     ksi  9.75 

ΔPt := Aps ( ΔfpSR - ΔfpCR - ΔfpR1)

(

(

7

)

(

7

Δfcd :=

ΔPt A

j

ΔfpCD := j

ΔfpCD =

j

+

 1599.08    kip  ft  1707.87 

Moment due to slab & Haunch

M slab = 

M rail =

 122.18     kip ft  122.18 

Moment due to Railing

)

M fws =

 147.83     kip ft  158.39 

Moment due to FWS

(ΔP ecc)ecc + M t

 -112.55     kip  -112.55 

)

M rail := M c xten , wDC2

M fws := M c xten , wDW

Losses due to shinkage

ΔPt =

M slab := M nc xten , wslab + whaunch 7

j

I

slab  ecc j

I

+

(M

rail j

)(

+ M fws  yb_strand - yb_c j

Ic

j

 Ep  Ep   fcgp j  ( Ψb( tf , ti) - Ψb( td , ti) )  Kdf j +  Δfcd j  Ψb( tf , td)  Kdf j  Eci  Ec

 3.98     ksi  3.7 

 0.84     0.84 

Kdf =

Losses Due to Creep p. 28/73

j

)

Δfcd =

 -1     ksi  -1.05 

CE6340

Prestressed Beam Example

29/73

Relaxation from deck placement to final time: ΔfpR2 := ΔfpR1 j

j

 1.2    ksi  1.2 

ΔfpR2 = 

Losses due to relaxation after transfer

Deck Shrinkage Gain

VSratio :=

2  S t s_total

VSratio = 8.94 in

2  S + 2  t s_total

 

ks := max 1.0 , 1.45 - 0.13 

VSratio  in

 

khc := 1.56 - 0.008 H

ks = 1

khc = 1

5

kf := 1+

ktd( t ) :=

kf = 1

0.80fc_s ksi

t     0.80fc_s  64 - 4 + t ksi  

Ψd( t , t i) := 1.9 ks khc  kf  ktd( t )  t i

- 0.118

Creep Coefficient

khs := 2.00 - 0.014 H

khs = 1.02 -3

-4

ε ddf := ks khs kf  ktd( t f - t d)  0.48 10

(

ed := Arm - yb_c j

Δfcdf := j

3

j

j

ε ddf = 4.89  10

)

ε ddf b eff  t s Ec_s 1 + 0.7 Ψ d( t f , t d)

A 5.4.2.3.2-1

( )

eccc  ed 1 j j  Ac Ic j  j



  p. 29/73

Shrinkage Strain

A 5.4.2.3.3-1

CE6340

Prestressed Beam Example

30/73

Ψb( t f , t d) = 1.06 ΔfpSS := j

Ep Ec

 Δfcdf  Kdf  ( 1 + 0.7 Ψ b( t f , t d) ) j

ΔfpSS =

j

 9.31     ksi  9.68 

t s = 9  in Ψd( t f , t d) = 1.27

Total Losses

A 5.9.5.1-1

b eff =

ΔfpT := ΔfpES + ( ΔfpSR + ΔfpCR + ΔfpR1) + ( ΔfpSD + ΔfpCD + ΔfpR2) - ΔfpSS

ΔfpT =

 39.22     ksi  38.57 

Δfcdf =

Total Losses Refined Estimate

Time Dependen Losses from Lump Sump Estimate: Using Table 1 A5.9.5.3 for T beams

Partial Prestress Ratio

PPR := 1.0

 

Δfpt := 33.0 ksi  1.0 - 0.15 Δfpt = 33 ksi

A 5.5.4.2.1-2

fc - 6.0 ksi  6.0 ksi

 + 6.0 PPR ksi - 6.0 ksi 

1   1 

ΔfpT2 =

Total Losses Lump Sum Estimate using Equation 1

A5.9.5.3-1

γh := 1.7 - 0.01 H γh = 1

H = 70

γst :=

5 fci   1 +  ksi  

A 5.9.5.3 Table 1

Lump sum estimate of time dependent Losses

ΔfpT2 := ΔfpES + Δfpt 

 45.89     ksi  45.89 

γst = 0.83

Δfpr := 2.4 ksi

For Low Relaxation Strand 5.9.5.3

fpj = 202.5 ksi

Stress prior to transfer

p. 30/73

 84     in  90 

Total Losses Lump Sum Estimate

 1.05     ksi  1.09 

CE6340

ΔfpLT :=

Prestressed Beam Example

10 fpj Aps A

 γh γst + 12.0 ksi ( γh γst) + Δfpr

1   1 

ΔfpT2 := ΔfpES + ΔfpLT 

ΔfpT2 =

31/73

Total Time Dependent Losses Lump Sum Estimate

 39.56     ksi  39.56 

A5.9.5.3-1

Total Losses ΔfpLT = 26.67 ksi Lump Sum Estimate

Summary of Loss Calculations: Instantaneous

Tr ansfer to Deck Placement

 12.89    ksi  12.89 

 3.78    ksi  3.78 

ΔfpES = 

ΔfpSR = 

ΔfpCR =

 15.72     ksi  15.72   1.2    ksi  1.2 

Deck to Final Time ΔfpSD =

 9.75     ksi  9.75 

ΔfpCD =

 3.98     ksi  3.7   1.2    ksi  1.2 

ΔfpR1 = 

ΔfpR2 = 

ΔfpSS =

 9.31     ksi  9.68 

(GAIN)

ΔfpT := ΔfpT2

ΔfpT =

 39.56     ksi  39.56 

Total Loss used for calculations

Both methods for calculation of the prestressed losses are valid for the design per AASTHO LRFD 5.9.5. Since we took the time to compute the refined estimates, those will be used for the design. fpt := fpj - ΔfpES j

A 5.9.3.1 Table 1

j

 189.61    ksi  189.61 

fpt = 

(

Effective stress in strands at transfer

)

fpe := min fpj - ΔfpT , 0.8 fpy j

fpe =

 162.94     ksi  162.94 

j

0.8 fpy = 194.4 ksi

A 5.9.3.1 Table 1

Effective stress in strands after all losses

p. 31/73

CE6340

Prestressed Beam Example

Tr ansfer lenght:

A 5.11.4.1

Ltransfer := 60 d strand

Tr ansfer length of strand

Ltransfer = 30 in

Strand Arrangement: Force reduction factor due to transfer length of strands -Loh          0.0     Ltransfer    1  ,x - x Lfactor := linterp  L , + Lcc    ten span L i span transfer i jspan 1   jspan    1   0.0    Lspan   + Loh    jspan    

(



fci



ksi

ften_i := -min 0.2 ksi , 0.0948

ftop_i

j ,i

ftop_i =

:=



 ksi

)

ften_i = -0.2 ksi



M girder

j ,i

St

 0 0.25 0.47 0.84 1.1 1.26 1.31 1.26 1.1 0.84 0.47 0.25 0     ksi  0 0.25 0.47 0.84 1.1 1.26 1.31 1.26 1.1 0.84 0.47 0.25 0 

Nstrand_max_i



j ,i

Nstrand_max_i =

32/73

ften_i - ftop_i

    1 eteni     Astrand Lfactori fptj   + St    A

:= floor

j ,i

 267 100 149 231 290 325 336 325 290 231 149 100 267     267 100 149 231 290 325 336 325 290 231 149 100 267 

p. 32/73

 0.17    1    1   1     1   1  Lfactor =  1     1   1    1    1   1     0.17 

CE6340

ftop

j ,i

ftop =

:=

Prestressed Beam Example

M DC1

j ,i

+

St

γDC

s,k

 M DC2

j ,i

+ γDW

 M DW

s, k

j ,i

+ γLL

 M LL_min

s, k

33/73

j ,i

St_c

j

 0 0.47 0.9 1.59 2.07 2.36 2.44 2.31 1.98 1.45 0.69 0.21 -0.32     ksi  0 0.49 0.92 1.63 2.13 2.42 2.5 2.37 2.03 1.48 0.69 0.19 -0.37 

Nstrand_max

ften - ftop



j ,i

Nstrand_max =

    1 eteni     Astrand Lfactori fpej   + St    A

:= floor

j ,i

 724 243 352 531 657 731 751 719 634 497 300 176 227     724 246 358 542 672 747 767 734 646 503 298 169 146 

Total Prestressed Force Required at full service loads:

(



Preq := j

 1 + ecc  A S  b  

Pe := Astrand fpe

Nreq := j

T

ften - min fbottom

Pe

j

 1336.19    kip  1372.72 

Preq = 

Pe =

( )

max Preq



) j 

j

Nreq =

Required Prestress

 24.93     kip  24.93 

Effective prestressing force in one strand

 53.6     55.06 

Nstrand = 56

p. 33/73

OK!

CE6340

Prestressed Beam Example

34/73

Design required debonding for Service III loading: (maximum of two different debonding lengths) Ndebond_req

j ,i

(

:= max 0 , Nstrand - Nstrand_max

j ,i

, Nstrand - Nstrand_max_i

Ndebond_req =

0 0 0 0 0 0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 0 0 0 0 0

Ndebond :=

dummy  0

i

 tentotal    2 

j ,i

for k  i .. floor

(

dummy  max dummy, Ndebond_req

1, k

, Ndebond_req

)

2, k

 tentotal  +1  2 

(

 tentotal    2 

if i < floor

for k  i .. floor

dummy  max dummy, Ndebond_req

)

 tentotal  +1  2 

if i > floor 1, k

, Ndebond_req

)

2, k

dummy

T

Ndebond = ( 0 0 0 0 0 0 0 0 0 0 0 0 0 )

Use symetric debonding & only debond up to three differents sequences, debond only 40% of strands in one layer and 25% of total # of strands A 5.11.4.3 floor( 0.25 Nstrand) = 14

Nstrand - floor( 0.25 Nstrand) = 42

floor( 0.125 Nstrand) = 7

 Nstrand - floor( 0.25 Nstrand)    floor( 0.0 Nstrand) Nstrand :=     floor( 0.25 Nstrand)  

 42  Nstrand =  0     14 

 xspanjspan + Lcc1 - Loh xspanjspan + 1 - Lcc2 + Loh     x x  ten ten xstrand := 2 tentotal- 1    xten xten  3 tentotal- 2  

 0 119  xstrand =  6.4 112.6   ft    12.3 106.7 

p. 34/73

full length debonded debonded

CE6340

Prestressed Beam Example

35/73

Total Prestress Force: Pt_tot :=

N

Pe_tot :=

N

strand Astrand  fpt

strand Astrand fpe

Pt_tot =

 1624.58     kip  1624.58 

Prestress force at transfer

Pe_tot =

 1396.05     kip  1396.05 

Effective Prestress force after all losses

Prestress Force at ten points:

  xspanjspan + Lcc1 - Loh - 0.001 in    0.0 kip       xstrand        0.0 kip k, 1       xstrand + Ltransfer 3      Nstrandk Astrand fptj   k, 1 Pt := linterp  , , xten     j ,i i xstrand - Ltransfer      Nstrandk Astrand fptj   k, 2 k =1        xstrand 0.0 kip   k, 2     0.0 kip     x    - L + Loh + 0.001 in   spanjspan + 1 cc2  



Pt =

 243.69 1218.44 1218.44 1624.58 1624.58 1624.58 1624.58 1624.58 1624.58 1624.58 1218.44 1218.44 243.69     kip  243.69 1218.44 1218.44 1624.58 1624.58 1624.58 1624.58 1624.58 1624.58 1624.58 1218.44 1218.44 243.69 

  xspanjspan + Lcc1 - Loh - 0.001 in    0.0 kip       xstrand        0.0 kip k, 1       xstrand + Ltransfer Nstrand  Astrand fpe  3       k, 1 k j Pe := linterp  , , xten     j ,i i xstrand - Ltransfer      Nstrandk Astrand fpej   k, 2 k =1        xstrand 0.0 kip   k, 2     0.0 kip     x    - L + Loh + 0.001 in   spanjspan +1 cc2  



Pe =

 209.41 1047.04 1047.04 1396.05 1396.05 1396.05 1396.05 1396.05 1396.05 1396.05 1047.04 1047.04 209.41     kip  209.41 1047.04 1047.04 1396.05 1396.05 1396.05 1396.05 1396.05 1396.05 1396.05 1047.04 1047.04 209.41 

p. 35/73

CE6340

Prestressed Beam Example

36/73

Stress Limits: Temporary before losses

A 5.9.4.1



fci



ksi

ften_i := -min 0.2 ksi , 0.0948



 ksi

fcomp_i := 0.60 fci

fc ksi

ften_slab := -0.19

ϕw := 1.0

0.0948

fci ksi

 ksi = 0.21 ksi

fcomp_i = 3  ksi

At service limit state after losses ften := -0.19



ften_i = -0.2 ksi

 ksi

fc_s ksi

A 5.9.4.2 ften = -0.47 ksi

 ksi

ften_slab = -0.42 ksi

AASHTO GIRDER

NOT REQUIRED

A 5.7.4.7.2c-2

A5.9

 0.45  fcomp :=  0.40  fc    0.60 ϕw 

 2.7  fcomp =  2.4   ksi    3.6 

fcomp_slab := 0.6 fc_s

fcomp_slab = 3  ksi

for permanent loads for LL & 1/2 permanent loads ( ELIMINADO 2010, Fatiga SEC 5.5) for service loads

p. 36/73

CE6340

Prestressed Beam Example

37/73

Compute Stresses, Control Points &/or Lenght of Debonding for Service I Limit State: s := 2

k := 1

a) At release: (Initial prestress & girder dead load) stresses fbot_i

ftop_i

P.t es P de jacking menos perdida elastica

1

j ,i

:= Pt   j ,i

A 1

j ,i

:= Pt   j ,i

A

+

+

 Mgirderj , i + Sb  Sb

eten

i

.6 fc = 3.6 ksi

 Mgirderj , i + St  St

eten

i

fbot_i =

 0.53 2.38 2.15 2.65 2.38 2.22 2.16 2.22 2.38 2.65 2.15 2.38 0.53     ksi  0.53 2.38 2.15 2.65 2.38 2.22 2.16 2.22 2.38 2.65 2.15 2.38 0.53 

ftop_i =

 -0.04 0.06 0.28 0.59 0.85 1.01 1.06 1.01 0.85 0.59 0.28 0.06 -0.04     ksi  -0.04 0.06 0.28 0.59 0.85 1.01 1.06 1.01 0.85 0.59 0.28 0.06 -0.04 

control points: emax

j ,i

:=

dummy1 

Sb Pt

j ,i



  fcomp_i -



Pt

j ,i

A

-

M girder

j ,i

Sb

  

emin

j ,i

:=

dummy1 

Sb Pt

j ,i



  ften_i -



Pt

j ,i

A

-

M girder

j ,i

Sb

  

Pt M girder   j ,i j ,i dummy2    ften_i  Pt  A St  j ,i

Pt M girder   j ,i j ,i dummy2    fcomp_i  Pt  A St  j ,i

dummy  max( dummy1 , dummy2)

dummy  min( dummy1 , dummy2)

dummy  -yb if dummy  -yb

dummy  yt if dummy  yt

dummy

dummy

St

St

emin =

 29.48 15.34 12.26 5.75 3.04 1.41 0.86 1.41 3.04 5.75 12.26 15.34 29.48     in  29.48 15.34 12.26 5.75 3.04 1.41 0.86 1.41 3.04 5.75 12.26 15.34 29.48 

emax =

 -30.36 -22.77 -25.84 -22.7 -25.41 -27.04 -27.58 -27.04 -25.41 -22.7 -25.84 -22.77 -30.36     in  -30.36 -22.77 -25.84 -22.7 -25.41 -27.04 -27.58 -27.04 -25.41 -22.7 -25.84 -22.77 -30.36 

p. 37/73

CE6340

Prestressed Beam Example

38/73

b) Effective presstress & dead loads:

fbot_permanent

ftop_permanent

1

j ,i

:= Pe   j ,i

A

1

j ,i

fbot_permanent =

:= Pe   j ,i

A

+

+

 γDCs , k MDC1j , i γDCs , k MDC2j , i + γDW s , k MDWj , i + + Sb  Sb Sb_c j

eten

i

 γDCs , k MDC1j , i γDCs , k MDC2j , i + γDW s , k MDWj , i + + St  St St_c j

eten

i

 0.45 1.75 1.28 1.28 0.74 0.44 0.35 0.49 0.85 1.44 1.49 1.98 0.72     ksi  0.45 1.73 1.25 1.22 0.67 0.35 0.27 0.41 0.78 1.39 1.47 1.98 0.72 

 2.7  fcomp =  2.4   ksi    3.6 

fcomp = 2.7 ksi 1

 -0.03 0.32 0.75 1.4 1.9 2.19 2.29 2.18 1.86 1.34 0.67 0.24 -0.12  ftop_permanent =    ksi  -0.03 0.33 0.77 1.45 1.96 2.27 2.36 2.25 1.93 1.39 0.7 0.25 -0.12  control points: emax

j ,i

:=

 Pej , i γDCs , k MDC1j , i γDCs , k MDC2j , i + γDW s , k MDWj , i    + + 1 Pe   A Sb Sb_c  j ,i  j   P γ  M γ  M + γ  M  ej , i DC DC1 DC DC2 DW DW  St  s, k j ,i s,k j ,i s, k j , i  dummy2   ften -  + + Pe   A St St_c  j ,i  j   dummy1 

Sb



 fcomp -

(

dummy  max dummy1 , dummy2 , emax

j ,i

)

dummy  -yb if dummy  -yb dummy

emin

j ,i

:=

 Pej , i γDCs , k MDC1j , i γDCs , k MDC2j , i + γDW s , k MDWj , i    + + Pe   A Sb Sb_c  j ,i  j   P γ  M γ  M + γ  M  ej , i DC DC1 DC DC2 DW DW  St  s, k j ,i s, k j ,i s,k j , i  dummy2   fcomp -  + + 1 Pe   A St St_c  j ,i  j   dummy1 

Sb



 ften -

(

dummy  min dummy1 , dummy2 , emin

j ,i

)

dummy  yt if dummy  yt dummy

p. 38/73

CE6340

Prestressed Beam Example

c) Effective presstress, dead & Live loads

1

 MDC1j , i γDCs , k MDC2j , i + γDWs , k MDWj , i + γLLs , k MLL_min j , i + + Sb  Sb Sb_c j

eten

i

fbot_service_I

:= Pe  

ftop_service_I

:= Pe  

fbot_service_I =

 0.45 1.77 1.33 1.38 0.89 0.63 0.6 0.79 1.2 1.83 2.03 2.67 1.57     ksi  0.45 1.76 1.32 1.35 0.87 0.61 0.59 0.79 1.23 1.9 2.17 2.86 1.83 

j ,i

j ,i

A

1

j ,i

j ,i

A

+

+

 MDC1j , i γDCs , k MDC2j , i + γDWs , k MDWj , i + γLLs , k MLL_maxj , i + + St  St St_c j

eten

i

fcomp = 3.6 ksi 3

ftop_service_I =

 -0.03 0.39 0.88 1.61 2.17 2.49 2.58 2.43 2.06 1.47 0.72 0.26 -0.12     ksi  -0.03 0.4 0.9 1.65 2.22 2.54 2.64 2.49 2.12 1.51 0.75 0.27 -0.12 

control points: emax

j ,i

:=

dummy1 

Sb Pe

j ,i

(



 fcomp -

 

3

 Pej , i γDCs , k MDC1j , i γDCs , k MDC2j , i + γDW s , k MDWj , i + γLLs , k MLL_minj , i    + +  A Sb Sb_c  j  

dummy  max dummy1 , e max

j ,i

)

dummy  -yb if dummy  -yb dummy

emin

j ,i

:=

dummy2 

St Pe

j ,i

(



 fcomp -

 

3

 Pej , i γDCs , k MDC1j , i γDCs , k MDC2j , i + γDWs , k MDWj , i + γLLs , k MLL_maxj , i    + +  A St St_c  j  

dummy  min dummy2 , emin

j ,i

)

dummy  yt if dummy  yt dummy

p. 39/73

39/73

CE6340

Prestressed Beam Example

d) Live Load & half the sum of effective presstress & dead loads:

fbot_half_I

j ,i

ftop_half_I

j ,i

:=

COTEJO ELIMINADO en 2010 !!!! Añadir Cotejo Fatiga SEC 5.5

 1 eteni  MDC1j , i γDCs , k MDC2j , i + γDWs , k MDW j , i γLLs , k MLL_min j , i 1  + Pe   + + + 2  j ,i  A Sb  Sb Sb_c  Sb_c 

:=

40/73

j



j

 1 eteni  MDC1j , i γDCs , k MDC2j , i + γDWs , k MDW j , i γLLs , k MLL_maxj , i 1  + Pe   + + + 2  j ,i  A St  St St_c  St_c 

j



fbot_half_I =

 0.23 0.9 0.69 0.74 0.52 0.42 0.42 0.54 0.77 1.11 1.28 1.68 1.21     ksi  0.23 0.9 0.69 0.74 0.53 0.43 0.45 0.59 0.84 1.21 1.43 1.88 1.47 

ftop_half_I =

 -0.01 0.23 0.5 0.92 1.22 1.39 1.43 1.35 1.13 0.8 0.38 0.14 -0.06     ksi  -0.01 0.23 0.51 0.93 1.24 1.41 1.45 1.37 1.15 0.81 0.39 0.15 -0.06 

j

control points: emax

j ,i

:=

dum1 

Sb Pe

j ,i

 Pej , i γDCs , k MDC1j , i γDCs , k MDC2j , i + γDWs , k MDW j , i + 2 γLLs , k MLL_min j , i    + +  A Sb Sb_c  j  



 2 fcomp -

 

2

(

dummy  max dum1 , e max

j ,i

)

dummy  -yb if dummy  -yb dummy

emin

j ,i

:=

dum2 

St Pe

j ,i



 2 fcomp -

 

(

2

 Pej , i γDCs , k MDC1j , i γDCs , k MDC2j , i + γDW s , k MDWj , i + 2 γLLs , k MLL_maxj , i    + +  A St St_c  j  

dummy  min dum2 , emin

j ,i

)

dummy  yt if dummy  yt dummy

p. 40/73

CE6340

Prestressed Beam Example

41/73

d) (Revised) Fatigue I & half the sum of effective presstress & dead loads:

Cotejo Fatiga SEC 5.5

γ de fatiga = 0.75 para fatiga I 2x0.75 = 1.5

fbot_half_I

j ,i

ftop_half_I

j ,i

fbot_half_I =

ftop_half_I =

:=

 1 eteni  MDC1j , i γDCs , k MDC2j , i + γDWs , k MDW j , i 1.5 M f_minj , i 1  + Pe   + + + 2  j ,i  A Sb  Sb Sb_c  Sb_c 

:=

j



j

 1 eteni  MDC1j , i γDCs , k MDC2j , i + γDWs , k MDW j , i 1.5 M f_maxj , i 1  + Pe   + + + 2  j ,i  A St  St St_c  St_c 

j



 0.23 0.89 0.66 0.69 0.44 0.31 0.29 0.38 0.59 0.9 0.95 1.21 0.59     ksi  0.23 0.89 0.67 0.7 0.46 0.35 0.34 0.46 0.69 1.03 1.11 1.39 0.78 

j

0.4 fc = 2.4 ksi

 -0.01 0.19 0.44 0.8 1.07 1.23 1.27 1.21 1.03 0.73 0.36 0.13 -0.06     ksi  -0.01 0.2 0.45 0.82 1.1 1.26 1.31 1.24 1.05 0.75 0.37 0.14 -0.06 

control points: emax

j ,i

:=

dum1 

Sb Pe

j ,i

(

 Pej , i γDCs , k MDC1j , i γDCs , k MDC2j , i + γDWs , k MDWj , i + 2 1.5 Mf_minj , i  + +  A Sb Sb_c j 



 2 fcomp -

 

2

(

dummy  max dum1 , e max

j ,i

)

)  

dummy  -yb if dummy  -yb dummy

emin

j ,i

:=

dum2 

St Pe

j ,i



 2 fcomp -

 

(

2

 Pej , i γDCs , k MDC1j , i γDCs , k MDC2j , i + γDW s , k MDWj , i + 2  1.5 Mf_maxj , i    + +  A St St_c  j  

dummy  min dum2 , emin

j ,i

)

dummy  yt if dummy  yt dummy

p. 41/73

CE6340

Prestressed Beam Example

42/73

Compute Stresses & Control PointsI for Service III Limit State: s := 3

k := 1 γLL

e) Effective presstress, dead loads & live loads:

1

fbot_service_III

:= Pe  

ftop_service_III

:= Pe  

j ,i

j ,i

j ,i

+

A

1

j ,i

+

A

s, k

= 0.8

 MDC1j , i γDCs , k MDC2j , i + γDW s , k MDWj , i + γLLs , k MLL_maxj , i + + Sb  Sb Sb_c j

eten

i

 MDC1j , i γDCs , k MDC2j , i + γDW s , k MDWj , i + γLLs , k MLL_minj , i + + St  St St_c j

eten

i

ften = -0.47 ksi fbot_service_III =

 0.44 1.58 0.97 0.76 0.1 -0.26 -0.34 -0.12 0.37 1.14 1.39 1.93 0.71     ksi  0.44 1.57 0.94 0.71 0.03 -0.34 -0.41 -0.2 0.3 1.09 1.36 1.92 0.71 

ftop_service_III =

 -0.03 0.31 0.73 1.37 1.86 2.14 2.22 2.1 1.77 1.24 0.53 0.05 -0.35     ksi  -0.03 0.32 0.76 1.41 1.91 2.2 2.28 2.15 1.81 1.26 0.53 0.03 -0.4 

control points:

emax

j ,i

:=

dummy1 

St Pe

j ,i

(



 ften -

 

 Pej , i γDCs , k MDC1j , i γDCs , k MDC2j , i + γDWs , k MDW j , i + γLLs , k MLL_minj , i    + +  A St St_c  j  

dummy  max dummy1 , e max

j ,i

)

dummy  -yb if dummy  -yb dummy

emin

j ,i

:=

dummy2 

Sb Pe

j ,i

(



 ften -

 

 Pej , i γDCs , k MDC1j , i γDCs , k MDC2j , i + γDW s , k MDWj , i + γLLs , k MLL_maxj , i    + +  A Sb Sb_c  j  

dummy  min dummy2 , emin

j ,i

)

dummy  yt if dummy  yt dummy

p. 42/73

CE6340

Prestressed Beam Example

43/73

Plot Control Points

emin =

 29.48 12.74 3.21 -4.86 -12.56 -16.81 -17.66 -15.19 -9.43 -2.85 9.66 15.34 29.48     in  29.48 12.51 2.77 -5.45 -13.34 -17.7 -18.58 -16.07 -10.18 -3.45 9.29 15.34 29.48 

emax =

 -30.36 -22.77 -25.84 -22.7 -25.41 -27.04 -27.58 -27.04 -25.41 -22.7 -25.84 -22.77 -28.32     in  -30.36 -22.77 -25.84 -22.7 -25.41 -27.04 -27.58 -27.04 -25.41 -22.7 -25.84 -22.77 -24.15 

T

eten = ( -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 -19.17 )  in xvec

iten

:= xten

iten

- xspan

jspan

- Lcc

1

20 T emin

in T

emax

0

in eten in - 20

0

50

100 xvec ft

ecc = -19.17 in

p. 43/73

CE6340

Prestressed Beam Example

44/73

5. Stresses in bot fibers due to service Loads at top of slab (Service I & III) s := 3

k := 1

fslab_service_III

γDC

:=

j ,i

s, k

 M DC2

+ γDW

j ,i

 M DW

s, k

S s_c

j ,i

+ γLL

s,k

 M LL_min

j ,i

j

n

s := 2

k := 1

fslab_service_I

j ,i

:=

γDC

s,k

 M DC2

j ,i

+ γDW

 M DW

s, k

Ss_c

j ,i

+ γLL

 M LL_max

s, k

j ,i

j

n

 0 0.03 0.05 0.07 0.05 -0 -0.09 -0.22 -0.38 -0.58 -0.94 -1.23 -1.56     ksi  0 0.02 0.04 0.04 0 -0.07 -0.18 -0.32 -0.5 -0.71 -1.11 -1.46 -1.84 

fslab_service_III =

fslab_service_I =

 0.03 0.4 0.76 1.27 1.57 1.7 1.64 1.43 1.07 0.55 -0.01 -0.22 -0.41     ksi  0.03 0.38 0.73 1.22 1.52 1.63 1.58 1.38 1.02 0.53 -0.02 -0.22 -0.41 

Check Stresses with maximum allowed: ften_i = -0.2 ksi

1. Stresses at Release Check_Init_Top

j,i

:=

(

"OK!" if ften_i  ftop_i

j ,i

)

 fcomp_i  top_comp_zone = 0 i

fcomp_i = 3  ksi

"BAD!" otherwise ftop_i =

 -0.04 0.06 0.28 0.59 0.85 1.01 1.06 1.01 0.85 0.59 0.28 0.06 -0.04     ksi  -0.04 0.06 0.28 0.59 0.85 1.01 1.06 1.01 0.85 0.59 0.28 0.06 -0.04 

Check_Init_Top =

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"     "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" 

Check_Init_Bot

:=

j,i

(

"OK!" if ften_i  fbot_i

j ,i

)

 fcomp_i  bot_comp_zone = 0 i

"BAD!" otherwise

Check_Init_Bot =

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"     "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" 

p. 44/73

CE6340

Prestressed Beam Example

ften = -0.47 ksi

2. Stresses due to Permanent Loads Check_Permanent_Top

j,i

:=

45/73

(

"OK!" if ften  ftop_permanent

j ,i

 fcomp

1

)

fcomp = 2.7 ksi 1

"BAD!" otherwise

Check_Permanent_Top =

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"   "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"

Check_Permanent_Bot

:=

j,i

(

"OK!" if ften  fbot_permanent

j ,i

 fcomp

)

1

"BAD!" otherwise Check_Permanent_Bot =

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"   "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"

3. Stresses due to Transient Loads & 1/2 Permanent Loads Check_Transient_Top

j,i

:=

(

"OK!" if ftop_half_I

j ,i

 fcomp

2

)

fcomp = 2.4 ksi 2

"BAD!" otherwise

Check_Transient_Top =

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"   "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"

Check_Transient_Bot

:=

j,i

(

"OK!" if fbot_half_I

j ,i

 fcomp

)

2

"BAD!" otherwise Check_Transient_Bot =

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"   "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"

p. 45/73

CE6340

Prestressed Beam Example

46/73

4. Stresses due to Service Loads Check_Service_Top

j,i

:=

(

"OK!" if ften  ftop_service_III

j ,i

 ftop_service_I

j ,i

 fcomp

3

)

ften = -0.47 ksi fcomp = 3.6 ksi 3

"BAD!" otherwise

Check_Service_Top =

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"     "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" 

Check_Service_Bot

:=

j,i

(

"OK!" if ften  fbot_service_III

j ,i

 fbot_service_I

j ,i

 fcomp

3

)

"BAD!" otherwise

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"    "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" 

Check_Service_Bot = 

5. Stresses due to service loads at Top of slab Check_Service_slab

j,i

:=

"OK!" if ften_slab  fslab_service_III

j ,i

 fslab_service_I

"BAD!" otherwise

Check_Service_slab =

j ,i

 fcomp_slab

ften_slab = -0.42 ksi fcomp_slab = 3  ksi

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "BAD!" "BAD!" "BAD!" "BAD!"   "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "BAD!" "BAD!" "BAD!" "BAD!" "BAD!"

p. 46/73

CE6340

Prestressed Beam Example

47/73

Compute Factored Moments & Shears (Stregnth I) at Ten points: s := 1

M u_max

j ,i

:= maxη γDC

 

(

 M DC1

s, 1

j ,i

+ M DC2

j ,i

γDW

)+γ

s, 1

DW

 M DW

s, 1

= 1.5

j ,i

γDC

+ γLL

s, 1

s,2

= 1.25

 M LL_max

(

γLL

s, 2

)

 , η γDCs , 2 MDC1j , i + MDC2j , i + γDW s , 2

j ,i

= 1.75

 61 1597 3036 5249 6709 7471 7548 6970 5749 3901 1629 518 -343    kip ft  61 1627 3094 5350 6840 7619 7700 7112 5869 3984 1662 527 -356 

M u_max = 

(

M u_min =

 -3 555 1051 1824 2319 2534 2469 2125 1502 600 -894 -2017 -3569     kip ft  -4 549 1037 1790 2255 2431 2319 1919 1231 255 -1419 -2720 -4479 

Vu_max

:= maxη γDC

j ,i

 

 

s, 1

s, 1

(

 VDC1

j ,i

j ,i

+ M DC2

+ VDC2

j ,i

j ,i

)+γ

DW

DW

 M DW

s, 1

s,2

 VDW

j ,i

j ,i

+ γLL

+ γLL

s,2

s,2

 M LL_min

(

:= minη γDC

j ,i

 M DC1

)+γ

M u_min

 VLL_max

 315 287 260 204 150 98 49 10 -27 -62 -93 -32 52     kip  321 293 264 208 153 100 49 9 -29 -64 -96 -35 49 

Vu_min

:= minη γDC

Vu_min =

 97 85 73 44 4 -39 -83 -135 -188 -240 -291 -309 -325     kip  100 88 76 46 5 -39 -83 -137 -190 -244 -297 -315 -330 

 

s, 1

(

 VDC1

j ,i

+ VDC2

j ,i

)+γ

DW

s,2

 VDW

j ,i

+ γLL

p. 47/73

s,2

 VLL_min

(

)

 , η γDCs , 2 VDC1j , i + VDC2j , i + γDWs , 2 VDW

j ,i

Vu_max =

j ,i

)

 , η γDCs , 2 MDC1j , i + MDC2j , i + γDWs , 2

j ,i

(

)

 , η γDCs , 2 VDC1j , i + VDC2j , i + γDWs , 2 VDW

j ,i

CE6340

Prestressed Beam Example

48/73

3

7.7 10

3

T M u_max

4.655 10

kip ft

3

T M u_min

1.611 10

kip ft

3

- 1.434 10

3

- 4.479 10

0

50

100 xvec ft

3

1.05310

T

518.88

Vu_max kip ft

T

- 15.344

Vu_min kip ft

- 549.567

3

- 1.08410

0

50

100 xvec ft

p. 48/73

CE6340

Prestressed Beam Example

49/73

Nominal Flexural Resistance resitance factor for flexure of prestressed concrete

ϕf := 1.0

Positive Moment capacity Mn_pos 3

Aps := Astrand i



 Nstrandk if xstrandk , 1  xteni  xstrandk , 2   k =1   0 otherwise 

2

As := 0.0 in

2

T

Aps = ( 6.43 6.43 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 6.43 6.43 )  in



fpy 



fpu 

k := 2   1.04 -

β1( fc) :=

k = 0.28



A 5.7.3.1.1-2

 0.85 if fc  4.0 ksi      fc   max 0.85 0.05    - 4.0 , 0.65 otherwise      ksi   

for bonded tendons

fucntion to compute beta factor β1( fc_s ) = 0.8 fc_s = 5  ksi

 60.21 

ecc = -19.17 in

(

d p := h c - yb + eten i

i

)

  60.21    60.21   60.21     60.21   60.21  d p =  60.21   in    60.21   60.21    60.21    60.21   60.21     60.21 

Distance from extreme compresion fiber to centroid of bonded tendons

p. 49/73

beta factor for slab

CE6340

Prestressed Beam Example

50/73

A 5.7.3.1.1-3 & 4 c_pos

j,i

Aps  fpu + As fy

Aps  fpu + As fy

i

:=

0.85 fc_s  β1( fc_s )  b eff + k Aps  j

i

i

if

fpu

0.85 fc_s  β1( fc_s )  b eff + k Aps 

dp

i

j

(

)

i

Aps  fpu + As fy - 0.85 fc_s  β1( fc_s )  b eff - b f_top  t s i

j

0.85 fc_s  β1( fc_s )  b eff + k Aps  j

c_pos =

dp

 ts

i

otherwise

fpu

Rectangular Behavior

T section behavior

dp

i

 5.91 5.91 7.81 7.81 7.81 7.81 7.81 7.81 7.81 7.81 7.81 5.91 5.91     in  5.52 5.52 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 5.52 5.52 

a := β1( fc_s )  c_pos

a=

i

fpu

t s = 9  in

 4.73 4.73 6.24 6.24 6.24 6.24 6.24 6.24 6.24 6.24 6.24 4.73 4.73     in  4.42 4.42 5.84 5.84 5.84 5.84 5.84 5.84 5.84 5.84 5.84 4.42 4.42 

fps

j ,i

fps =



:= fpu  1 - k

c_pos

 

j, i 

dp

i

fpy = 243  ksi

 

A 5.7.3.1.1-1

 263 263 260 260 260 260 260 260 260 260 260 263 263     ksi  263 263 261 261 261 261 261 261 261 261 261 263 263 

Average stress in the presstresing steel

Compute development length:



 fpsj , 1



 ksi

l d_strand := max1.6  j

l d_strand =

-

(

)

6.4 fps - fpe  d strand   4  fpj d strand j ,1 j   d strand , + + 10 in 3 ksi  fc fc  2



fpe

j

 130.64     in  130.9 

p. 50/73

A 5.11.4.2

CE6340

Prestressed Beam Example

51/73

Compute actual Pps including effect of development length:

  xspanjspan + Lcc1 - Loh - 0.01 in         0.0 kip  xstrand       0.0 kip k, 1       xstrand + Ltransfer Nstrand  Astrand fpe        k, 1 k j       xstrand + l d_strand Nstrand  Astrand fps  3       k, 1 j k j ,i Pps := linterp  , , xten     j ,i i xstrand - l d_strand      Nstrandk Astrand fpsj , i   k, 2 j k =1        xstrand - Ltransfer N A f   k, 2    strandk strand pe j          xstrand 0.0 kip k, 2       0.0 kip     xspan    - Lcc + Loh + 0.01 in jspan + 1 2    



 209.41 1344.79 1672.04 2229.39 2229.39 2229.39 2229.39 2229.39 2229.39 2229.39 1672.04 1344.79 209.41    kip  209.41 1345.47 1676.1 2234.8 2234.8 2234.8 2234.8 2234.8 2234.8 2234.8 1676.1 1345.47 209.41 

Pps = 

M n_pos

j ,i



:= Pps   d p j ,i



i

a

j,i

a  ts  j,i  + 0.85 fc_s β1( fc_s )  b eff - b f_top  ts max 0  in , -  j 2  2 2 

(

)

Nominal Moment Capacity

 1010 6483 7955 10607 10607 10607 10607 10607 10607 10607 7955 6483 1010  A 5.7.3.2.2-1   kip  ft  1012 6504 8002 10670 10670 10670 10670 10670 10670 10670 8002 6504 1012 

M n_pos = 

M r_pos

j ,i

M r_pos =

:= ϕf  M n_pos

j ,i

 1010 6483 7955 10607 10607 10607 10607 10607 10607 10607 7955 6483 1010     kip ft  1012 6504 8002 10670 10670 10670 10670 10670 10670 10670 8002 6504 1012   61 1597 3036 5249 6709 7471 7548 6970 5749 3901 1629 518 -343    kip ft  61 1627 3094 5350 6840 7619 7700 7112 5869 3984 1662 527 -356 

M u_max = 

PR_Mn_Pos

j,i

:=

M u_max M r_pos

j ,i

if M u_max

j ,i

j ,i

 0  kip ft

0.0 otherwise

p. 51/73

CE6340

Prestressed Beam Example

Negative Moment Capacity resitance factor for flexure of non prestressed concrete

ϕf := 0.9

For negative moment the compression face is the bottom flange of the beam. This section is designed as a non-prestressed R/C section, thus the resistance factor (phi) equals 0.90. The bottom flange of the beam is in compression so f'c of the precast girder at final is used. assume that the deck reinforcement is at mid height of the deck.

ts

d s := h c -

Ru

j ,i

Ru =

:=

d s = 68.5 in

2

(

min M u_min

j ,i

, 0  kip ft

ϕf  b f_bot d s

distance from centroid of reinforcement to extreme compresion fiber, assumed at center of slab.

)

2

 0 0 0 0 0 0 0 0 0 0 0.09 0.2 0.36     ksi  0 0 0 0 0 0 0 0 0 0 0.14 0.28 0.45 

ρ_req

j,i

:=

1 fy

fy     2  Ru  j , i 0.85 fc   1 - 1  fy  

0.85 fc

ρ_req =

 0 0 0 0 0 0 0 0 0 0 0.002 0.003 0.006     0 0 0 0 0 0 0 0 0 0 0.002 0.005 0.008 

As_req := ρ_req b f_bot d s

As_req =

 0.01 0 0 0 0 0 0 0 0 0 2.93 6.68 12.02  2    in  0.01 0 0 0 0 0 0 0 0 0 4.67 9.08 15.24 

p. 52/73

52/73

CE6340

Prestressed Beam Example

Use # 9 bars As bar = 1 si

2

As_bar := 1  in

9

d bar :=

8

53/73

 in

As_bar fy    1.25 2  ksi  fy  in  l d_bar := max  in , 0.4 d bar  1.0  ksi  fc   ksi  

A 5.11.2.1.1 & 5.11.2.1.2 top reinforcement factor = 1.4 N/A

l d_bar = 30.62 in

Compute provided negative steel reinforcement Number of Bars Required per Girder

 max( As_req)    As_bar  As_bar 

2

As := ceil

As = 16 in

As

Nbar_slab_neg := sbar_slab_neg :=

= 16

As_bar S

Nbar_slab_neg

= 5.25 in

Compute minimum cutoff point (tenth point) (colunm 1 Mneg start of span column 2 Mneg end of span) Xcutt

j ,1

:=

dummy  0  in for i  1 .. tentotal



dummy  max dummy, xten +



As_req

j ,i

As

i



 l d_bar if xten < xspan



i

L jspan

+

jspan

2

2

 As_req

> 0  in

 As_req

> 0  in

j ,i

dummy Xcutt

j ,2

:=

dummy  xspan

jspan + 1

for i  1 .. tentotal



dummy  min dummy, xten -



As_req

i

j ,i

As



 l d_bar if xten  xspan



i

L jspan

+

jspan

2

dummy

 0.5 106.23    ft  0.5 105.96 

Xcutt = 

xspan

jspan

= 0  ft

xspan

p. 53/73

jspan + 1

= 120  ft

j ,i

2

CE6340

Prestressed Beam Example

54/73

Xcutt Revised for Crack Control (See Below)

 0 xten9   Xcutt :=   0 xten  9 

T

xten = ( 0.5 6.4 12.3 24.1 35.9 47.7 59.5 71.3 83.1 94.9 106.7 112.6 118.5 )  ft tentotal = 13

 0 83.1    ft  0 83.1 

Xcutt = 

p. 54/73

CE6340

Prestressed Beam Example

55/73

Now compute provided development length: ld

j ,i

:=

(

max 0  in , Xcutt

j ,1

(

- xten

i

max 0  in , xten - Xcutt

ld =

) )

if xten  xspan

j ,2

i

L if xten < xspan i

jspan

+

2 L

i

jspan

jspan

+

jspan

2

 0 0 0 0 0 0 0 0 0 141.6 283.2 354 424.8     in  0 0 0 0 0 0 0 0 0 141.6 283.2 354 424.8 

As_eff



j ,i

:= min As ,



As l d_bar

 ld

j ,i

  

l d_bar = 30.62 in

As_eff =

 0 0 0 0 0 0 0 0 0 16 16 16 16  2    in  0 0 0 0 0 0 0 0 0 16 16 16 16 

c_neg

:=

j,i

As_eff

j ,i

 fy

0.85 fc β1( fc)  b f_bot

As_eff  fy if

j ,i

0.85 fc β1( fc)  b f_bot

 t f_bot

eq A5.7.3.1.1-4

As_eff  fy - 0.85 fc β1( fc)  ( b f_bot - t w)  t s j ,i

c_neg =

0.85 fc_s  β1( fc)  b f_bot

otherwise

 0 0 0 0 0 0 0 0 0 3.04 3.04 3.04 3.04     in  0 0 0 0 0 0 0 0 0 3.04 3.04 3.04 3.04 

a := β1( fc)  c_neg

a=

 0 0 0 0 0 0 0 0 0 2.28 2.28 2.28 2.28     in  0 0 0 0 0 0 0 0 0 2.28 2.28 2.28 2.28 

p. 55/73

eq A5.7.3.1.1-3

CE6340

M n_neg

Prestressed Beam Example



j ,i

M n_neg =

:= As_eff  fy  d s j ,i

a



j,i

  a tf_bot   + 0.85 fc β1( fc)  ( b f_top - tw)  ts max0  in ,   2  2   2

56/73

eq A5.7.3.2.2-1

 0 0 0 0 0 0 0 0 0 5388.74 5388.74 5388.74 5388.74     kip ft  0 0 0 0 0 0 0 0 0 5388.74 5388.74 5388.74 5388.74 

M r_neg := ϕf  M n_neg

M r_neg =

 0 0 0 0 0 0 0 0 0 4849.9 4849.9 4849.9 4849.9     kip ft  0 0 0 0 0 0 0 0 0 4849.9 4849.9 4849.9 4849.9 

M u_min =

 -2.5 555.4 1050.6 1824.5 2318.8 2533.6 2469.2 2125.4 1502.4 600.1 -894.2 -2017.4 -3569.2     kip ft  -4.5 548.5 1036.9 1790 2254.8 2431.1 2319.2 1919.1 1230.9 254.5 -1418.8 -2720.1 -4478.9 

PR_Mn_Neg

j,i

:=

M u_min M r_neg

j ,i

(

if M u_min

j ,i

j ,i

)

 0  kip ft  M r_neg

j ,i

0.0 otherwise

p. 56/73

> 0.001 kip  ft

CE6340

Prestressed Beam Example

57/73

Check Limits of Reinforcement Positive Moment Section: Maximum Reinforcement de

j ,i

de =

:=

Pps  d p j ,i

A 5.7.3.3.1 SECTION DELETED 2005

i

Pps

j ,i

 60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.21     in  60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.21 60.21 

c_pos Check_Maximum_Reinforcement

j,i

:=

"OK!" if

j,i

de

 0.42

j ,i

"BAD!" otherwise Check_Maximum_Reinforcement =

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"   "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"

Minimum Reinforcement

A 5.7.3.3.2

At any section, the amount of prestresses and not prestressed tensile reinforcement should be adecuate to develop a factored flexural resistance, Mr, equal to the lesser of 1.2 Cracking Strenght or 1.33 times the factored moment required by the applicable load combination. Cracking Moment:

fce

1

j ,i

:= Pe   j ,i

A

+

  Sb 

eten

i

 0.45 2.26 2.26 3.02 3.02 3.02 3.02 3.02 3.02 3.02 2.26 2.26 0.45  fce =    ksi  0.45 2.26 2.26 3.02 3.02 3.02 3.02 3.02 3.02 3.02 2.26 2.26 0.45  M cr



j ,i

(

:= maxfr ( -Sb_c) , fr + fce



j

j ,i

)

 Sb_cj

 ( -Sb_c)  - M DC1   j

j ,i

 Sb



- 1 



fr = 0.91 ksi

fr ( -Sb_c ) = 1737.58  kip  ft 1

 2606 5811.3 5571.4 6623.5 6341.2 6171.9 6115.4 6171.9 6341.2 6623.5 5571.4 5811.3 2606    kip ft  2626.6 5843.4 5589.1 6629.1 6330 6150.5 6090.7 6150.5 6330 6629.1 5589.1 5843.4 2626.6 

M cr = 

p. 57/73

CE6340

Prestressed Beam Example

Check_Minimum_Reinforcement

:=

j,i

"OK!" if M r_pos

(

 min 1.2 M cr

j ,i

j ,i

58/73

, 1.33 M u_max

j ,i

)

M r_pos

"BAD!" otherwise 1.2 M cr

1, 7

= 7338.48  kip  ft

1.33 M u_max

1, 7

1, 5

= 10606.67 kip ft

= 10039.08 kip ft

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"  "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"

Check_Minimum_Reinforcement = 

Check Limits of Reinforcement, Negative Moment Section: c_neg Check_Maximum_Reinforcement

j,i

:=

"OK!" if

j,i

ds

A 5.7.3.3.1

 0.42

"BAD!" otherwise

Check_Maximum_Reinforcement =

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"   "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"

For components conaining non-prestressing steel, the minimum reinforcement provisions, may be considered if: M cr

j ,i

:= ( -fr)  Ss_c

Ss_c = j

A 5.7.3.3.2

 41925.32  3    in  43779.67 

 -3166.4 -3166.4 -3166.4 -3166.4 -3166.4 -3166.4 -3166.4 -3166.4 -3166.4 -3166.4 -3166.4 -3166.4 -3166.4  -3306.5 -3306.5 -3306.5 -3306.5 -3306.5 -3306.5 -3306.5 -3306.5 -3306.5 -3306.5 -3306.5 -3306.5 -3306.5

M cr = 

Check_Minimum_Reinforcement

j,i

:=

"OK!" if M r_neg

j ,i

(

 min 1.2 M cr

j ,i

, 1.33 M u_min

j ,i

)

"BAD!" otherwise

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"  "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"

Check_Minimum_Reinforcement = 

p. 58/73

CE6340

Prestressed Beam Example

Check Crack Control:

d c := d top_cover +

βs := 1 +

d bar

Cotejo de Servicio de Tension en la Losa

d c = 2.56 in

2

dc

0.7 (ts - d c)

βs = 1.57

Class 1 Exposure

γe := 1.0

n ratio :=

AASHTO 5.7.3.4

59/73

Es n ratio = 6.76

Ec_s

Calcular esfuerzo del acero bajo cargas de servicio: As_eff

ρ :=

k

j,i

ρ=

b f_bot d s

(ρj , i n ) + (2 ρj , i n ) - ρj , i n

:=

ratio

2

ratio

 0 0 0 0 0 0 0 0 0 0.008342 0.008342 0.008342 0.008342     0 0 0 0 0 0 0 0 0 0.008342 0.008342 0.008342 0.008342 

ratio

k=

 0 0 0 0 0 0 0 0 0 0.28 0.28 0.28 0.28     0 0 0 0 0 0 0 0 0 0.28 0.28 0.28 0.28 

It =

 0 0 0 0 0 0 0 0 0 329085.77 329085.77 329085.77 329085.77   0 0 0 0 0 0 0 0 0 329085.77 329085.77 329085.77 329085.77

Tr ansformed moment of iner tia of cracked section

It

j ,i

:=

1 3

( j,i )

 b f_bot k  d s

3

(

+ n ratio  As_eff  d s - k  d s j ,i

j,i

)

2

d s = 68.5 in

Momento negativo de servicio en la losa s := 2

kk := 1

γLL

(

j ,i

 M LL_min

=1

)

 1.83 23.45 43.98 44.61 3.35 -79.8 -204.47 -370.67 -578.4 -827.66 -1297.18 -1698.82 -2144.47   0.84 10.7 19.44 -5.11 -73.18 -184.78 -339.52 -537.42 -778.47 -1062.68 -1623.63 -2117.26 -2667.15

s , kk

+ γLL

s , kk

M neg_slab_service_I =

j ,i

 M DW

γDC

:= γDC

s , kk

+ γDW

=1

M neg_slab_service_I

j ,i

 M DC2

s , kk

s , kk

p. 59/73

j ,i

CE6340

Prestressed Beam Example

Service Stress on Steel Rebar:

fs

j ,i

:=

(

)

-n ratio  min0  kip  ft , M neg_slab_service_I  d s - k  d s 



j ,i

It

j,i

j ,i

if It

4

j ,i

> 0  in

( 0  ksi) otherwise

 0 0 0 0 0 0 0 0 0 10.01 15.69 20.55 25.94    ksi  0 0 0 0 0 0 0 0 0 12.85 19.64 25.61 32.26 

fs = 

scr_min_neg

j ,i

:=

 700 γe    in - 2  d c if fs > 0  ksi j ,i  fsj , i   βs   ksi  ( 1000 in) otherwise

scr_min_neg =

 1000 1000 1000 1000 1000 1000 1000 1000 1000 39.45 23.32 16.59 12.08     in  1000 1000 1000 1000 1000 1000 1000 1000 1000 29.59 17.6 12.3 8.71 

check_crack_neg

j,i

:=

"Ok!" if sbar_slab_neg  scr_min_neg

j ,i

"No Good!" otherwise sbar_slab_neg = 5.25 in check_crack_neg =

 "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!"     "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" "Ok!" 

Cambiar espaceado de varilla #11 a 6" y extender cut off point hasta punto 106. Verificar de nuevo.

p. 60/73

60/73

CE6340

Prestressed Beam Example

Design for Shear

61/73

Método Simplificado según seccion 5.8.3.4.2 (General Procedure)

ϕv := 0.9

resistance factor for shear in normal weight concrete

b v := t w

minimum thickness of web

b v = 8  in

Assume angle of inclination of principal stressess (theta) Assume angle of crack inclination

θ := 45 deg

1. Compute Effective Shear Depth dv: Mu

j ,i

:=

M u_max M u_min

dv

j ,i

:=

j ,i

j ,i

if

M u_max

> M u_min

j ,i

A5.8.2.9

j ,i

C5.8.3.4.2

otherwise

β1( fc)  c_pos



max 0.72 h c , 0.9 d p , d p -

Is conservative to use the maximum moment that occurs at the section

j,i

 if Mu > 0  kip ft i i j ,i 2   β1( fc)  c_neg   max 0.72 h c , 0.9 d s , d s  otherwise 2  

h c = 73 in

58 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 68.5 68.5   58   in  58.14 58.14 57.48 57.48 57.48 57.48 57.48 57.48 57.48 57.48 57.48 68.5 68.5 

dv = 

Critical section is the larger of 0.5*dv*cot(q) or dv from face of support. assume dv Xcritical

:= xspan

Xcritical

:= xspan

j ,1

j ,2

jspan

+ Lcc + d v

jspan + 1

1

 max( 1.0 , 1.0)

- Lcc - d v 2

Lspan =

j ,1

j , tentotal

 max( 1.0 , 1.0)

 118     ft  118  Xcritical =

p. 61/73

 5.33 112.79     ft  5.35 112.79 

CE6340

Mu

j ,i

Prestressed Beam Example

:=

62/73

j   T , Xcritical  if xten  Xcritical j , 1 i j ,1   j   T linterpxten , M u , Xcritical  if xten  Xcritical j , 2 i j ,2 

( )

linterpxten , M u

( )

Mu

j ,i

Mu =

dv

j ,i

otherwise

 1319.4 1597.1 3036.4 5248.8 6708.7 7470.8 7548.2 6970.3 5749.4 3901 1628.6 -2017.4 -2067.8     kip  ft  1347.3 1627.3 3093.7 5349.7 6839.9 7619 7700 7112.5 5868.6 3983.9 1661.9 -2720.1 -2777.2  j   T , Xcritical  if xten  Xcritical j , 1 i j ,1    j   T linterpxten , d v , Xcritical  if xten  Xcritical j , 2 i j ,2 

( )

linterpxten , d v

:=

( )

dv

otherwise

j ,i

Vu

j ,i

j j      T T , Xcritical  , linterpxten , Vu_max , Xcritical  j , 1 j , 1        j j      T T max linterpxten , Vu_min , Xcritical  , linterpxten , Vu_max , Xcritical  j , 2 j , 2   

(

max Vu_max

Vu =

(

)

(

)

(

)

(

)

max linterpxten , Vu_min

:=

j ,i

, Vu_min

j ,i

)

otherwise

 292.4 287.4 259.6 204.1 150.2 98.2 82.8 135.1 187.5 239.7 291.5 309.2 309.7     kip  297.7 292.7 264.3 207.6 152.6 99.5 83.4 136.8 190.3 243.7 296.5 314.6 315.1 

Vp =0 kip for straight strands v

j,i

:=

Vu

j ,i

ϕv b v d v

j ,i

v=

ratio :=

v fc

fpo

j ,i

:= 0.7 fpu

ϕv = 0.9

 0.7 0.69 0.63 0.49 0.36 0.24 0.2 0.33 0.45 0.58 0.71 0.63 0.63     ksi  0.71 0.7 0.64 0.5 0.37 0.24 0.2 0.33 0.46 0.59 0.72 0.64 0.64   0.12 0.11 0.1 0.08 0.06 0.04 0.03 0.05 0.08 0.1 0.12 0.1 0.1    0.12 0.12 0.11 0.08 0.06 0.04 0.03 0.06 0.08 0.1 0.12 0.11 0.11 

ratio = 

fpo =

  if xten  Xcritical i j ,1    if xten  Xcritical i j ,2 

 189 189 189 189 189 189 189 189 189 189 189 189 189     ksi  189 189 189 189 189 189 189 189 189 189 189 189 189  p. 62/73

CE6340

Prestressed Beam Example

63/73

Compute angle of inclination of crack: Compute longitudinal strain at tendon or bar reinforcement depth:

(

max d v  Vu εs

j ,i

dv

:=

j ,i

, Mu

j ,i

j ,i

Ep Aps

(

j ,i

, Mu

j ,i

dv

j ,i

j ,i

(

Es As_req

:=

j ,i

εs  j ,i

εs  j ,i

i

Es As_req

j ,i

j ,i

j ,i

j ,i

i

 0  kip ft

εs

Vu

j ,i

1, 2

= -0.003258021

otherwise

)

( ) ) + E  (A

j ,i

c j

)

 0  kip  ft  ε s

j ,i

c

j ,i

i

j ,i

(

Es As_req

- Aps  fpo

if M u

if M u

Ep Aps + Ec Abot

( -0.0004) if ε s

εs

j ,i

i

( 0.001) if ε s

j ,i

)+

Ep Aps

(

Vu

j ,i

max d v  Vu

εs

)+

- Abot

)

(

if M u

j ,i

j ,i

< 0.0

)

 0  kip ft  ε s

j ,i

< 0.0

< -0.0004

> 0.006

otherwise

εs =

0 -0.0004 -0.0004 -0.0004 0.00342 0.00193   -0.0004 -0.0004 -0.0004 -0.0004 0 0.00018 0.00018    -0.0004 -0.0004 -0.0004 -0.0004 0 0.00029 0.00029 0.00001 -0.0004 -0.0004 -0.0004 0.00301 0.00181 

β

:=

j,i

4.8

(1 + 750ε ) s

j ,i

 6.86 6.86 6.86 6.86 4.8 4.23 4.22 4.8 6.86 6.86 6.86 1.35 1.96    6.86 6.86 6.86 6.86 4.8 3.94 3.93 4.76 6.86 6.86 6.86 1.48 2.03 

β= θnew

j ,i

:= 29 deg + 3500 ε s  deg j ,i

 27.6 27.6 27.6 27.6 29 29.63 29.64 29 27.6 27.6 27.6 40.97 35.75    deg  27.6 27.6 27.6 27.6 29 30.02 30.03 29.03 27.6 27.6 27.6 39.52 35.35 

θnew = 

p. 63/73

CE6340

Prestressed Beam Example

 fc b v d vj , i   kip ksi 2  in 



64/73

Vc

:= min 0.25 fc b v d v , 0.0316 β 

Vc =

 246.27 246.27 243.25 243.25 170.27 150.08 149.76 170.27 243.25 243.25 243.25 57.11 83.25     kip  246.88 246.88 244.05 244.05 170.84 140.28 140.02 169.57 244.05 244.05 244.05 62.57 86.27 

j ,i

 

j,i

j ,i

AASHTO 5.8.3.3

0.25 fc b v d v

1, 2

Vs

j ,i

Vs =

:=

Vu

j ,i

ϕv

= 695.98 kip

- Vc

j ,i

 78.6 73.1 45.2 -16.5 -3.4 -40.9 -57.7 -20.1 -34.9 23.1 80.6 286.5 260.9     kip  83.9 78.3 49.7 -13.3 -1.2 -29.7 -47.4 -17.6 -32.6 26.7 85.4 287 263.9 

Required Straigth Stirrup Spacing:

(

 Av fy d vj , i cot θnewj , i

smax

j ,i

:= min

)

Vs  j ,i   ( 1000 in) otherwise

if Vs

j ,i

( min( 0.4 d

> 0  kip , min 0.8 d v

smax =

 24 24 24 24 24 24 24 24 24 24 24 6.49 8.6     in  24 24 24 24 24 24 24 24 24 24 24 6.82 8.62 

smax

:=

j ,i

j ,i

j ,i

< 0.125 fc b v d v

otherwise

otherwise

j ,i

Vr

j ,i

if Vu

  smaxj , i    smaxj , i   floor   in + 0.0 in if 0.001 in < smax - floor   in  0.5 in j ,i   in    in    smaxj , i    smaxj , i   floor   in + 0.5 in if smax - floor   in > 0.5 in j ,i   in    in  smax

smax =

v

j ,i

) , 12 in) , 24 in

 24 24 24 24 24 24 24 24 24 24 24 6 8.5     in  24 24 24 24 24 24 24 24 24 24 24 6.5 8.5  

:= ϕv  Vc

 

j ,i

+

(

Av fy d v  cot θnew j ,i

smax

j ,i

j ,i

)   

 319.7 319.7 315.7 315.7 244.6 224.1 223.7 244.6 315.7 315.7 315.7 330.2 312.4    kip  320.5 320.5 316.8 316.8 245.4 214.2 213.9 244.1 316.8 316.8 316.8 327.2 318.6 

Vr = 

p. 64/73

j ,i

    

CE6340

Prestressed Beam Example

65/73

Longitudinal Reinforcement:

T_req

j,i

:=

Mu

j ,i

d v  1.0 if M u j ,i

j ,i

> 0  kip ft

+

 Vuj , i   - 0.5 Vs   cot θnew j ,i j ,i  ϕv 

(

)

0.9 otherwise

T_req =

 819.3 871.4 1144.6 1549 1709.4 1792.8 1793.6 1749.1 1636.3 1304.6 883.5 623.4 699.4     kip  830.6 883 1160.2 1571 1735.1 1807.8 1808.9 1774.6 1660.9 1324.1 895.5 779.3 848.2 

T_prov

j,i

:=

(A ) f ps i

ps

j ,i

if M u

j ,i

> 0  kip  ft

As_eff  fy otherwise j ,i

T_prov =

 1687.4 1687.4 2229.4 2229.4 2229.4 2229.4 2229.4 2229.4 2229.4 2229.4 2229.4 960 960     kip  1690.4 1690.4 2234.8 2234.8 2234.8 2234.8 2234.8 2234.8 2234.8 2234.8 2234.8 960 960 

Check_long_Reinforcement

j,i

:=

"OK!" if T_req

j,i

< T_prov

j,i

"BAD!" otherwise

Check_long_Reinforcement =

 "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"   "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!" "OK!"

p. 65/73

CE6340

Prestressed Beam Example

66/73

Check Horizontal Shear at Slab-Beam Interface: β1( fc_s )  c_pos   j,i  dp  if Mu > 0  kip ft i j ,i 2   β1( fc)  c_neg   j,i  ds  otherwise 2  

de

:=

de =

 57.85 57.85 57.09 57.09 57.09 57.09 57.09 57.09 57.09 57.09 57.09 67.36 67.36     in 58 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 67.36 67.36   58

j ,i

Vn_req

j ,i

 Vuj , i    ϕv   := de

j ,i

 67.4 66.24 60.64 47.66 35.08 22.94 19.34 31.56 43.8 55.99 68.07 61.21 61.31  kip   68.44 67.27 61.52 48.32 35.52 23.17 19.4 31.84 44.29 56.7 69.01 62.27 62.38  ft

Vn_req = 

ccohesion := 0.75 ksi

λ := 1.0

μfriction := 0.6 λ

Concrete placed against hardened concrete clean and not free of laitance, but not intentionally roughened.

b v := b f_top Acv

:= smax  b v

Acv =

 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 252 357  2    in  1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 1008 273 357 

j ,i

j ,i

Vn_prov

j ,i

Vn_prov =

:=

(

min 0.8 ksi Acv , 0.20 fc Acv , ccohesion Acv j ,i

j ,i

j ,i

)

+ μfriction  Av fy

smax

A 5.8.4.1

j ,i

 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 403.2 397.96  kip    385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 403.2 397.96  ft

ccohesion ( Acv) + μfriction Av fy smax

1, 1

=

 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 101.57   385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 385.07 109.44 p. 66/73

CE6340

Prestressed Beam Example

A 5.10.10.1 & C 3.4.3

Compute Anch orage Z one Reinforcement

Pr := 0.04Astrand

Abursting_req :=

N

strand fpj

Pr

2

 Abursting_req   Av  

h    4  = 1.75 in

Nstirrups

Required Bursting Resistance

Pr = 69.4 kip

Abursting_req = 3.47 in

20 ksi

Nstirrups := ceil

67/73

Nstirrups = 9

Stirrup Spacing

number of required closed stirrups whitin h/5 of the end of the beam.

Anchorage Zone changed from h/5 to h/4 in AASHTO fourth Ed

p. 67/73

CE6340

Prestressed Beam Example

Performance Ratios: At Service Limit State: PR_top = 0.88

Top Fiber of Girder

PR_bot = 0.89

Bottom Fiber of Girder

PR_slab = 3.96

Top of Slab

At Ultimate Limit State: PR_MPOS = 0.72

Positive Moment Capacity

PR_MNEG = 0.92 Negative Moment Capacity PR_SHE = 0.99

Shear Capacity

p. 68/73

68/73

CE6340

Prestressed Beam Example

69/73

Compute Deflections Due to Initial Prestress: First Compute Conjugate Moments Applied due to initial prestressing: MCONt

j ,i

:=

Pt

j ,i

(-e ) ten i

Eci I

Prestress Acts on Simple Span Beam, Compute Reaction at Left Support of the Conjugated Beam by taking Moments About the Right End:

(x

ten i+ 1

wtrib :=

- xten

i

2

i

(x

ten i

) )

- xten

i- 1

2

(x

ten i+ 1

i- 1

2

RA :=



ii = 1

xten -

i

(x

ten i

) +x

ten i

- xten

)

i- 1

2

i

if i = 1

if i = tentotal

xten otherwise i

(

)

MCONtj , ii wtribii xtenten - xarmii  total  

(x

j

- xten

2

i

otherwise

tentotal

-

ten i+ 1

if i = tentotal

)

- xten

(x

xarm :=

if i = 1

ten tentotal

- xten

1

 -0.0088    rad  -0.0088 

RA = 

)

Compute Deflection at Ten Points; Equal to the Conjugated Moment at the Section:

δi

j ,i

δi =

(

ten total

:= RA  xten - xten j

i

1

) +  (MCON ii = 1

t

j , ii

(

 wtrib  max xten - xarm , 0.0 in ii

i

ii

))

 0 -0.62 -1.19 -2.17 -2.87 -3.29 -3.43 -3.29 -2.87 -2.17 -1.19 -0.62 0     in  0 -0.62 -1.19 -2.17 -2.87 -3.29 -3.43 -3.29 -2.87 -2.17 -1.19 -0.62 0 

Deflection Due to Losses After Transfer: δloss

j ,i

δloss =

 Pej , i - Ptj , i   j ,i  Pt  j ,i  

:= δi  

 0 0.09 0.17 0.31 0.4 0.46 0.48 0.46 0.4 0.31 0.17 0.09 0     in  0 0.09 0.17 0.31 0.4 0.46 0.48 0.46 0.4 0.31 0.17 0.09 0  p. 69/73

CE6340

Prestressed Beam Example

70/73

Deflection due to Dead Weight of the Beam: Using a similar procedure as for Prestress: tentotal -M  girder

RA :=



  ii = 1

j , ii

Eci I

ii

(x

j

(

 wtrib  xten

ten tentotal

tentotal

- xten

1

- xarm

  ii 

)

 0.0046    rad  0.0046 

RA = 

)

Compute Deflection at Ten Points; Equal to the Conjugated Moment at the Section:

(

ten total

 -Mgirderj , ii    wtrib  max xten - xarm , 0.0 in  ii i ii  Eci I  ii = 1

) 

)

:= RA  xten - xten

δgirder =

 0 0.33 0.64 1.23 1.68 1.97 2.07 1.97 1.68 1.23 0.64 0.33 0     in  0 0.33 0.64 1.23 1.68 1.97 2.07 1.97 1.68 1.23 0.64 0.33 0 

j ,i

j

i

1

Check at midspan:

+

(

δgirder

d :=

(

5  wgirder Lspan

jspan

)

4

d=

384  Eci I

(

RA :=



  ii = 1

Eci I

j , ii

ii

(x

j

(

 wtrib  xten

ten tentotal

- xten

1

tentotal

- xarm

OK!

M nc xten , wslab + whaunch

Deflection due to Slab dead Load (on simple span): tentotal -M  slab_haunch

 2.06     in  2.06 

  ii 

)

1

1

) = 0kip ft

1

 0.004    rad  0.0043 

RA = 

)

Compute Deflection at Ten Points; Equal to the Conjugated Moment at the Section:

(

ten total

 -Mslab_haunchj , ii    wtrib  max xten - xarm , 0.0 in  ii i ii Eci I   ii = 1

) 

:= RA  xten - xten

δslab =

 0 0.28 0.56 1.07 1.46 1.71 1.8 1.71 1.46 1.07 0.56 0.28 0     in  0 0.3 0.6 1.14 1.56 1.83 1.92 1.83 1.56 1.14 0.6 0.3 0 

j ,i

j

i

1

+

(

δslab

p. 70/73

)

CE6340

Prestressed Beam Example

71/73

Superimposed Dead Weight Deflection (Curb, Rail and FWS); On the Continuous Beam: (use virtual work method) Define Moment Diagram for Unit Point Load at Tenth Point (use previously defined IL): k := 1 .. n poi

im := 1 .. n unit

(

mten := linterp xunit , unit , xten i

i

unit

im

set counters

:= im

n unit = 81

)

Unit Moment "m" at x due to point load at "i" tenth point:





M m( x , i ) := linterpxpoi , ( ILM)

ceil( mteni)





, x - linterpxpoi , ( ILM)  floor( mteni)   T + linterpxpoi , ( ILM)  , x

xpoi

T

(

T



floor( mteni)



, x  mten - floor mten

(

i

(

)) ...

i

)

npoi M ( x , i )  M x , w  m c DC2 + wDW 1 j j  δsd := dx  j ,i Ec Ic 1  kip j  xpoi 1

δsd =

 0.0018 0.0225 0.043 0.078 0.102 0.1125 0.109 0.0929 0.0678 0.039 0.0137 0.0068 0.0014     in  0.0018 0.0229 0.0438 0.0794 0.1039 0.1145 0.1109 0.0946 0.0691 0.0397 0.014 0.0069 0.0014 

δtot

:= δi

j ,i

δtot =

j ,i

+ δloss

j ,i

+ δgirder

j ,i

+ δslab

j ,i

+ δsd

j ,i

 0 0.1 0.23 0.51 0.78 0.97 1.03 0.95 0.75 0.47 0.2 0.08 0     in  0 0.12 0.26 0.58 0.88 1.09 1.16 1.07 0.85 0.54 0.23 0.1 0 

p. 71/73

CE6340

Prestressed Beam Example

72/73

Compute Long Term Deflection usign PCI's Bridge Design Manual Multipliers: PCIi := 2.88

δi_long := PCIi δi

PCIgirder := 2.88

δgirder_long := PCIgirder δgirder

PCIloss := 2.32

δloss_long := PCIloss  δloss

PCIslab := 2.50

δslab_long := PCIslab δslab

PCIsd := 2.50

δsd_long := PCIsd δsd

 0 -1.79 -3.43 -6.25 -8.26 -9.47 -9.87 -9.47 -8.26 -6.25 -3.43 -1.79 0    in  0 -1.79 -3.43 -6.25 -8.26 -9.47 -9.87 -9.47 -8.26 -6.25 -3.43 -1.79 0 

δi_long = 

δgirder_long =

 0 0.94 1.86 3.53 4.84 5.67 5.96 5.67 4.84 3.53 1.86 0.94 0     in  0 0.94 1.86 3.53 4.84 5.67 5.96 5.67 4.84 3.53 1.86 0.94 0 

δloss_long =

 0 0.2 0.39 0.71 0.94 1.07 1.12 1.07 0.94 0.71 0.39 0.2 0     in  0 0.2 0.39 0.71 0.94 1.07 1.12 1.07 0.94 0.71 0.39 0.2 0 

δslab_long =

 0 0.71 1.4 2.67 3.66 4.29 4.5 4.29 3.66 2.67 1.4 0.71 0     in  0 0.76 1.5 2.85 3.91 4.58 4.81 4.58 3.91 2.85 1.5 0.76 0 

δsd_long =

 0 0.06 0.11 0.2 0.26 0.28 0.27 0.23 0.17 0.1 0.03 0.02 0     in  0 0.06 0.11 0.2 0.26 0.29 0.28 0.24 0.17 0.1 0.03 0.02 0 

δtot_long

:= δi_long

j ,i

j ,i

+ δloss_long

j ,i

+ δgirder_long

j ,i

+ δslab_long

j ,i

+ δsd_long

j ,i

 0.0044 0.1183 0.3249 0.8542 1.4299 1.8454 1.9798 1.7966 1.3444 0.7566 0.2516 0.0791 0.0035    in  0.0045 0.1678 0.4223 1.0393 1.6834 2.1422 2.291 2.0924 1.5963 0.9399 0.3477 0.1278 0.0035 

δtot_long = 

ZETAL := j

δtot_long

j ,2

j ,1

δtot_long ZETAR := j

xten - xten 2

ZETAL =

- δtot_long 1

 1.609572752  10- 3     rad  - 3  2.306503603  10 

p. 72/73

j , tentotal

xten

tentotal

ZETAR =

- δtot_long

j , tentotal- 1

- xten

tentotal- 1

 -1.068756965  10- 3     rad  - 3  -1.755819829  10 

CE6340

Prestressed Beam Example

RL_DL := VDC1 j

j ,1

+ VDC2

j ,1

RL_LL := VLL_max j

RL_DL =

j ,1

 122.48     kip  126.17 

 89.86    kip  90.36 

RL_LL = 

VDW

j ,1

 7.28    kip  7.8 

=

p. 73/73

73/73