Efecto Hall

Efecto Hall El efecto Hall consiste en la aparición de un campo eléctrico en un conductor cuando es atravesado por un ca

Views 179 Downloads 0 File size 262KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Efecto Hall El efecto Hall consiste en la aparición de un campo eléctrico en un conductor cuando es atravesado por un campo magnético. A este campo eléctrico se le llama campo Hall. Llamado efecto Hall en honor a su descubridor Edwin Duntey Hall. En épocas contemporáneas (1985) el físico alemán Klaus von Klitzing y colaboradores descubrieron el hoy conocido como efecto Hall cuántico le valió el premio Nóbel de física en 1985. En 1998, se otorgo un nuevo premio Nóbel de Física a los profesores Laughlin, Strömer y Tsui por el descubrimiento de un nuevo fluido cuántico con excitaciones de carga fraccionarias. Este nuevo efecto ha traído grandes problemas a los físicos teóricos y hoy en día, constituye uno de los campos de investigación de mayor interés y actualidad en toda la física del estado sólido. Explicación cualitativa del efecto Hall clásico Cuando por un material conductor o semiconductor, circula una corriente eléctrica, y estando este mismo material en el seno de un campo magnético, se comprueba que aparece una fuerza magnética en los portadores de carga que los reagrupa dentro del material, esto es, los portadores de carga se desvían y agrupan a un lado del material conductor o semiconductor, apareciendo así un campo eléctrico perpendicular al campo magnético y al propio campo eléctrico generado por la batería (FM). Este campo eléctrico es el denominado campo Hall (EH), y ligado a él aparece la tensión Hall, que se puede medir mediante el voltímetro de la figura. En el caso de la figura, tenemos una barra de un material desconocido y queremos saber cuales son sus portadores de carga. Para ello, mediante una batería hacemos circular por la barra una corriente eléctrica. Una vez hecho esto, introducimos la barra en el seno de un campo magnético uniforme y perpendicular a la tableta. Aparecerá entonces una fuerza magnética sobre los portadores de carga, que tenderá a agruparlos a un lado de la barra, apareciendo de este modo una tensión Hall y un campo eléctrico Hall entre ambos lados de la barra. Dependiendo de si la lectura del voltímetro es positiva o negativa, y conociendo el sentido del campo magnético y del campo eléctrico originado por la batería, podemos deducir si los portadores de carga de la barra de material desconocido son las cargas positivas o las negativas. En la figura de al lado vemos como el material tiene dos zonas: la de la izquierda y la de la derecha. En una zona, los portadores son huecos y en la otra electrones.. Explicación cuantitativa del efecto Hall clásico [editar] Sea el material por el que circula la corriente con una velocidad v al que se le aplica un campo magnético B. Al aparecer una fuerza magnética Fm, las portadores de carga se agrupan en una región del material, ocasionando la aparición de una tensión VH y por lo tanto de un campo eléctrico E en la misma dirección. Este campo ocasiona a su vez la aparición de una fuerza eléctrica Fe con la misma dirección pero sentido opuesto a Fm. Cuando estas dos fuerzas llegan a un estado de equilibrio se tiene la siguiente situación:

La física clásica del efecto Hall [

Sabemos que un campo magnético actua sobre las cargas en movimiento (Fuerza de Lorentz). Una corriente I que atraviesa un material consiste en cargas (eléctrones) que se desplazan (en sentido contrario a la corriente) con una velocidad que denominaremos v. Si sumergimos esa corriente de electrones en un campo magnético B, cada uno de los electrones que forman la corriente estará sometidos a la fuerza de Lorenz Fm = -e.v^B. Donde -e corresponde a la carga de un electrón, v el vector velocidad del electrón y B el vector campo magnético aplicado.

La dirección de la fuerza será perpendicular al plano formado por v y B (ya que es resultado del producto vectorial de ambos) y provocará un desplazamiento de electrones en esa dirección. Como consecuencia tendremos una concentración de cargas negativas sobre uno de los lados del material y un déficit de cargas negativas en el lado opuesto. Esta distribución de cargas genera una diferencia de potencial entre ambos lados, la tensión de Hall VH, y un campo eléctrico EH. Este campo eléctrico que genera a su vez una fuerza eléctrica sobre los electrones dada por la Ley de Coulomb, Fe = -e . EH, que actúa en la misma dirección que la fuerza de Lorenz pero en sentido contrario a esta. El equilibrio se alcanzará cuando la suma de las dos fuerzas sea nula, de lo cual deducimos que en el equilibrio el valor del campo Hall es: EH = -v^B. Técnicas de medición [editar] Sin duda, la técnica de medición mas utilizada para la determinación de los portadores de carga y resistividad en un semiconductor es la técnica de Van Der Paw. Es conocida también como técnica de cuatro puntas. Introducción Teórica al efecto Hall El efecto Hall consiste en que en un metal o semiconductor con corriente, situado en un campo magnético perpendicular al vector densidad de corriente, surge un campo eléctrico transversal y un diferencia de potencial. La causa del efecto Hall es la desviación que experimentan los electrones que se mueven en el campo magnético bajo la acción de la fuerza de Lorentz.

F,

Las siguientes figuras muestran las direcciones del campo magnético B, de la densidad de corriente J, la fuerza de Lorentz la velocidad de las cargas V (según sean estas positivas o negativas), así como los signos de las cargas concentradas en las caras opuestas superior e inferior para cada tipo de carga (negativa y positiva). La figura 1a es válida para metales y semiconductores tipo n; para semiconductores tipo p, los signos de las cargas que se concentran en las superficies son opuestos (figura 1b).

Las cargas siguen siendo desviadas por el campo magnético hasta que la acción de la fuerza en el campo eléctrico transversal equilibre la fuerza de Lorentz. La diferencia de potencial debida al efecto Hall es pues, en el equilibrio:

(1) Efecto Joule Si en un conductor circula corriente eléctrica, parte de la energía cinética de los electrones se transforma en calor debido a los choques que sufren con los átomos del material conductor por el que circulan, elevando la temperatura del mismo. Este efecto es conocido como "Efecto Joule" en honor a su descubridor el físico británico James Prescott Joule, que lo estudió en la década de 1860. Causas del fenómeno

Los sólidos tienen generalmente una estructura cristalina, ocupando los átomos o moléculas los vértices de las celdas unitarias, y a veces también el centro de la celda o de sus caras. Cuando el cristal es sometido a una diferencia de potencial, los electrones son impulsados por el campo eléctrico a través del sólido debiendo en su recorrido atravesar la intrincada red de átomos que lo forma. En su camino, los electrones chocan con estos átomos perdiendo parte de su energía cinética, que es cedida en forma de calor. Este efecto fue definido de la siguiente manera: "La cantidad de energía calorífica producida por una corriente eléctrica, depende directamente del cuadrado de la intensidad de la corriente, del tiempo que ésta circula por el conductor y de la resistencia que opone el mismo al paso de la corriente". Matemáticamente se expresa como

donde: Q = energía calorífica producida por la corriente I = intensidad de la corriente que circula y se mide en amperios R = resistencia eléctrica del conductor y se mide en ohms t = tiempo el cual se mide en segundos Así, la potencia disipada por efecto Joule será:

donde V es la diferencia de potencial entre los extremos del conductor.

Microscópicamente el efecto Joule se calcula a través de la integral de volumen del campo eléctrico

de corriente

por la densidad

:

La resistencia es el componente que transforma la energía electrica en energía calorífica, (por ejemplo un hornillo eléctrico, una estufa eléctrica, una plancha etc.). Mediante la ley de Joule podemos determinar la cantidad de calor que es capaz de entregar una resistencia, esta cantidad de calor dependerá de la intensidad de corriente que por ella circule y de la cantidad de tiempo que esté conectada, luego podemos enunciar la ley de Joule diciendo que la cantidad de calor desprendido por una resistencia es directamente proporcional a la intensidad de corriente a la diferencia de potencial y al tiempo. Ejemplo de cálculo Para determinar el valor de la resistencia eléctrica que debe tener un calentador eléctrico que, conectado a un enchufe de 220 V, es capaz de elevar la temperatura de un litro de agua de 15 °C a 80 °C en cinco minutos, se debe considerar que para elevar la temperatura del agua en 1 °C se necesitan 4,2 J por cada gramo. La energía calorífica necesaria para elevar la temperatura del agua de 15 °C a 80 °C será: Q = 1000g.(80 °C - 15 °c).4,2 J/g °C = 273000.J Un litro de agua corresponde a un kilogramo y 4,2 representa el calor en joules por gramo y grado Celsius (calor específico). Dado que se dispone del valor de la tensión, pero no de la intensidad, será necesario transformar la ley de Joule de modo que en la fórmula correspondiente aparezca aquélla y no ésta. Recurriendo a la ley de Ohm (V = i.R) se tiene: Q = (V/R) ².R.t = V ².t/R Despejando R y sustituyendo los valores conocidos resulta: R = V ².t/Q = (220 V) ².300 s/273000 J = 53,2.Ω Por lo tanto, el valor de la resistencia eléctrica debe ser 53,2 Ω para que el calentador eléctrico conectado a un enchufe de 220 V, sea capaz de elevar la temperatura de un litro de agua de 15 °C a 80 °C en cinco minutos. Aplicaciones En este efecto se basa el funcionamiento de diferentes electrodomésticos como los hornos, las tostadoras y las calefacciones eléctricas, y algunos aparatos empleados industrialmente como soldadoras, etc., en los que el efecto útil buscado es, precisamente, el calor que desprende el conductor por el paso de la corriente. Sin embargo, en la mayoría de las aplicaciones es un efecto indeseado y la razón por la que los aparatos eléctricos y electrónicos necesitan un ventilador que disipe el calor generado y evite el calentamiento excesivo de los diferentes dispositivos. En Física, el efecto de Joule-Thomson o efecto Joule-Kelvin, es el proceso en el cual la temperatura de un gas ideal disminuye o aumenta al permitir que el gas se expanda libremente manteniendo una entalpía constante (lo que significa que el gas no recibe ni transfiere calor y no realiza ningún trabajo).

Fue descrito por James Prescott Joule y William Thomson, el primer Baron Kelvin, quienes establecieron el efecto en 1852 modificando un experimento previo de Joule en el que un gas se expandía manteniendo constante su energía interna. Descripción La relación entre temperatura, presión y volumen de un gas se puede describir de una forma sencilla gracias a las leyes de los gases. Cuando el volumen aumenta durante un proceso irreversible, las leyes de los gases no pueden determinar por si solas qué ocurre con la temperatura y presión del gas. En general, cuando un gas se expande adiabáticamente, la temperatura puede aumentar o disminuir, dependiendo de la presión y temperatura inicial. Para una presión constante (fijada previamente), un gas tendrá una temperatura de inversión de Joule-Thompson (Kelvin), sobre la cual al expandirse el gas causa un aumento de temperatura, y por debajo, la expansión del gas causa un enfriamiento. En la mayoría de los gases, a presión atmosférica esta temperatura es bastante alta, mucho mayor que la temperatura ambiental, y por ello la mayoría de los gases se enfrían al expandirse. El incremento de temperatura (ΔT) con respecto al incremento de presión (Δp) en un proceso de Joule-Thomson es el coeficiente de Joule-Thomson.

esta expresión se puede encontrar también escrita de la siguiente forma:

el valor de μJT depende del gas especifico, tanto como la temperatura y la presion del gas antes de la expansión o compresión. Para gases reales esto será igual a cero en un mismo punto llamado punto de inversion y la temperatura de inversion Joule-Thomson es aquella donde el signo del coeficiente cambia.

Velocidad de deriva de los electrones en un cable metálico

  Habitualmente se piensa que en un circuito eléctrico los electrones se desplazan a gran velocidad, comparable con la  velocidad de la luz. Aparentemente esto viene sustentado por el nulo retardo entre la conexión de un circuito y sus  efectos. Es decir, entre darle al enchufe y ver la luz encendida no hay retraso apreciable, así que si las cargas se  mueven lo han de hacer a gran velocidad, ¿no?  Pues no, son los campos los que se propagan a la velocidad de la luz por el cable, los electrones se mueven a paso de tortuga, veámoslo. Sea un cable de cobre, de 1mm de sección y 1 metro de largo, sometido a una diferencia de potencial de 5 Voltios (una pila doméstica), ¿cuál será la velocidad a la que se desplazarán los electrones en su interior?