Crecimiento Bacteriano

1 INTRODUCCIÓN AL CRECIMIENTO BACTERIANO Se suele definir el crecimiento de cualquier sistema biológico como el incremen

Views 93 Downloads 0 File size 2MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

1 INTRODUCCIÓN AL CRECIMIENTO BACTERIANO Se suele definir el crecimiento de cualquier sistema biológico como el incremento ordenado de todos los elementos componentes de ese sistema, lo cual implica un aumento de la masa celular que eventualmente conduce a la multiplicación celular. En organismos pluricelulares dicha multiplicación se traduce en un aumento del tamaño del individuo, mientras que en unicelulares que se dividen por fisión o por gemación, lo que ocurre es un aumento de la población. En los microorganismos cenocíticos (en los que la duplicación del genoma no se acompaña de divisón celular) el crecimiento se traduce en aumento de tamaño de la “colonia” cenocítica. El crecimiento bacteriano podemos estudiarlo desde dos puntos de vista: A escala individual A escala poblacional Los eventos de crecimiento en el ámbito individual hacen referencia al ciclo celular, y dentro de éste podemos abordar los siguientes temas: inicio y transcurso de la replicación cromosómica y de plásmidos (véase tema 7); segregación de cromosoma y plásmidos a las células hijas; síntesis de nuevos materiales de las envueltas, sobre todo de pared celular (tema 5); señales que coordinan la replicación genómica con la división celular. El estudio del crecimiento a nivel de poblaciones incluye los siguientes tópicos: cinética del crecimiento; factores que afectan al tiempo de generación (g); factores ambientales que limitan el crecimiento. En el presente capítulo nos dedicaremos al estudio de algunos aspectos del ciclo celular procariótico, pero sobre todo nos centraremos en el crecimiento de poblaciones (que es el más frecuentemente empleado al trabajar con microorganismos), con una visión de algunos métodos para obtener crecimientos balanceados. La influencia de los factores ambientales sobre el crecimiento son el objeto de los temas 13 (agentes físicos) y 14 (agentes químicos).

2

CICLO CELULAR PROCARIÓTICO

Un ciclo celular es una secuencia de acontecimientos interconectados que comienza con la formación de una nueva célula y termina cuando dicha célula se divide en otras dos hijas. Los ciclos celulares se describen generalmente atendiendo a una serie de eventos identificables que se van produciendo en una secuencia fija, de modo que para que se produzca cada uno de ellos hace falta que se complete el anterior. Los periodos del ciclo celular procariótico son: fase C (equivalente a la S eucariótica): replicación del ADN cromosómico; fase D (equivalente a G2 + M): se distingue porque su terminación coincide con el final de división celular; fase innominada, equivalente a la G1 eucariótica. Lo característico del ciclo es que las fases C y D son relativamente constantes, y por lo tanto, cuando disminuye el tiempo de generación (g), lo hace a expensas de la fase “G1”. Por ejemplo, en Escherichia coli, C = unos 40 min, y D = unos 20 min.

2.1 CICLO CELULAR EN FUNCIÓN DEL TIEMPO DE GENERACIÓN Vamos a estudiar con el ejemplo de E. coli qué ocurre con el ciclo celular a distintos tiempos de generación. Cuando g>C+D Existe fase "G1" (intervalo que precede a la replicación). En estas condiciones podemos observar nítidamente periodos diferenciados entre sí (de síntesis de ADN y de división celular). Cuando g=C+D Ya no existe G1, y cada ronda de replicación comienza inmediatamente tras la precedente división celular (es decir, cada célula hija recién nacida se embarca inmediatamente en replicar el cromosoma, y una vez que ha terminado de replicarlo, la célula inicia la división celular). Cuando g10x10 6 céls./ml). Por debajo de este valor el número de células vistas en el campo del microscopio es muy pequeño y poco significativo estadísticamente. En bacterias móviles, hay que inmovilizarlas previamente, con una mezcla de alcohol y agua.

2) Contadores electrónicos de partículas (tipo Coulter): Se hace pasar una suspensión microbiana por un tubo capilar, entre los dos polos de una corriente eléctrica. Cada vez que por un orificio (30 m diámetro) pasa una partícula (p. ej., bacteria) se interrumpe la corriente, lo cual es recogido por un dispositivo de registro electrónico, que detecta el número y el tamaño de las partículas que van pasando. (El tamaño detectado es función de la intensidad del pulso de voltaje al paso de la partícula). Comentarios: hay que usar suspensiones absolutamente libres de partículas extrañas (las pequeñas serían contabilizadas erróneamente como bacterias, y las mayores pueden obturar el orificio del aparato).

3.2.2

MÉTODOS INDIRECTOS

1) Recuento de viables en placa: Los métodos de recuento de número de células que hemos visto hasta ahora (los directos) no distinguen entre células vivas y muertas. En muchos casos conviene contar las células vivas, y esto en laboratorio se suele hacer mediante el recuento de viables. (Una célula se define como viable cuando, colacada en un medio adecuado, es capaz de dividirse y dar descendencia). El método habitual de lograr esto es sembrar pequeñas alícuotas de diluciones adecuadas de un cultivo original sobre placas de Petri con medio sólido (con agar). Cada célula viable dará origen a una colonia visible después del tiempo adecuado de incubación. Contando las colonias visibles, teniendo en cuenta la dilución de la que proceden y el volumen de alícuota utilizado, es fácil deducir el número de células viables en la suspensión original. (Para esto, mira el ejemplo de la diapositiva, y sobre todo, estate atento a la práctica correspondiente, que se suele realizar en la 3ª tanda). Mientras tanto, y para luego repasar esa práctica, puedes realizar un experimento on-line sobre crecimiento bacteriano Precauciones: para minimizar los errores estadísticos de muestreo, se recomienda sembrar 5 placas de cada dilución; hay que usar pipetas nuevas en cada dilución; contar las placas donde existan entre 50 y 300 colonias. Como no podemos garantizar que cada colonia no proceda de más de un indiviudo (y esto es especialmente cierto para bacterias que forman agrupaciones de 2 o más células), el recuento se refiere no a “células viables reales” sino a “unidades formadoras de colonia” (UFC). Por lo tanto, una UFC corresponde, como mínimo, a una bacteria, pero sobre todo en bacterias con agrupaciones, la medida por siembr en placa infravalora el número real de individuos, porque cada UFC puede corresponder a dos o más individuos que estaban juntos al ser sembrados en la placa.

2) Recuento sobre filtros: Se usa para suspensiones diluidas de bacterias. Se hace pasar un gran volumen de suspensión a través de una membrana de nitrocelulosa o de nylon estériles (con un diámetro de poro que retiene las bacterias pero permite el tránsito de sustancias). Posteriormente, el filtro se deposita sobre la superficie de un medio de cultivo sólido. Las colonias se forman sobre el filtro a partir de las células retenidas. Dichas colonias se cuentan, deduciéndose la concentración original de viables en función del volumen de suspensión que se hizo pasar por el filtro.

4 CRECIMIENTO BALANCEADO (= EQUILIBRADO) Una población de bacterias que se encuentre en un medio adecuado en el que se mantienen constantes todos sus parámetros nutricionales y ambientales, crece de forma tal que el incremento por unidad de tiempo de masa celular, no de células, ADN, ARN, proteínas, etc., es un valor constante y similar en cada caso:

M/M = N/N = [ADN]/[ADN] = [proteínas]/[proteínas] = ... = K Así pues, durante este crecimiento, de tipo exponencial o logarítmico, el cultivo se comporta como una reacción autocatalítica de primer orden: velocidad de aumento del componente = K·{cantidad del componente} También se puede decir que el no de células, la masa celular u otros componentes se duplican en un mismo lapso de tiempo determinado. Este tipo de crecimiento se denomina balanceado o equilibrado. Se caracteriza, pues, por ser el crecimiento en el que todos los constituyentes celulares se duplican en un mismo tiempo, o dicho de otra manera: aquel en el que estos constituyentes aumentan proporcionalmente por un mismo factor en la unidad de tiempo. Este factor es el coeficiente exponencial de crecimiento (), que es característico para cada cepa bacteriana en cada medio determinado.

4.1 EXPRESIÓN MATEMÁTICA DEL CRECIMIENTO BALANCEADO Para deducirla vamos a aprovechar la definición empírica anterior, atendiendo por un lado al aumento de la masa celular, y por otro al incremento del número de individuos. a) En función del aumento de masa celular:

, y por lo tanto, dM = M··dt Si integramos, resulta: M/M0 = e(t-t0) Aplicando logaritmos neperianos:

{12.1} De aquí se puede deducir que el coeficiente  es

{12.2} b) En función del aumento del número de células. Supongamos que partimos de una célula. Tras una división (generación celular), tendremos 2, tras dos divisiones tendremos 4, luego 8, etc: tenemos una serie geométrica. 1, 2, 22, 23, 24, ... 2n (donde n es el número de generaciones transcurridas). Si en vez de partir de una célula partimos de N0 células iniciales, tenemos: N = N0·2n ; por lo tanto: N/N0 = 2n

{12.3}

Por otro lado, el número de generaciones se puede calcular fácilmente teniendo en cuenta el tiempo transcurrido y conociendo el tiempo medio de generación (g):

Sustituyendo esta expresión en la fórmula {12.3} tenemos: N/N0 = 2(t-t0)/g Apliquemos logaritmos neperianos:

{12.4} Ahora bien, como estamos ante un crecimiento balanceado, las dos expresiones matemáticas {12.1} y {12.4} que hemos deducido (la de la sección A, basada en masa, y la de la sección B, basada en número de individuos) son equivalentes:

, y por lo tanto:  (t-t0) = (t-t0)/g·ln2, de donde se deduce el valor del coeficiente de crecimiento exponencial:

, expresado en h-1

{12.5}

Esta es la expresión matemática del coeficiente del crecimiento balanceado, en función del tiempo medio de generación (g). En un medio ideal, sin limitación de nutrientes, este coeficiente es  = máx, o sea, el máximo valor posible del coeficiente para esa cepa en ese medio. Es decir, es un crecimiento balanceado no restringido. En un medio donde exista algún nutriente limitante (o sea, cuya concentración está por debajo del límite de eficiencia de las permeasas), el crecimiento balanceado es de tipo restringido, de modo que el coeficiente real de crecimiento es inferior al máximo, según la fórmula empírica siguiente (ecuación de Monod):

donde [S] es la concentración del nutriente limitante; KS es la constante de saturación, equivalente a la concentración de nutriente para la que el coeficiente es semimáximo. Como se puede ver, la tasa de crecimiento (medida por ) es una función hiperbólica de la concentración del sustratro (nutriente) limitante (ver gráfico). Este sustrato puede ser una fuente de C y/o de energía, fuente de N, de P, un factor de crecimiento, etc. Ejemplos de KS: la KS para la glucosa en E. coli es 1·10-6M la KS para el triptófano en esta bacteria es 2·10--7 M Estos bajos valores se deben a la alta afinidad de las permeasas de membrana hacia los sustratos, lo cual es una adaptación evolutivamente adquirida de las bacterias a los medios muy diluidos en nutrientes en los que normalmente viven. (Por el contrario, los medios de laboratorio donde se suelen cultivar las bacterias suelen ser más concentrados).

Como veremos en el apartado 6, en la naturaleza, y en los sistemas de cultivo cerrados que habitualmente se emplean en laboratorio, tarde o temprano el crecimiento balanceado suele terminar, debido a que se agotan los nutrientes o se acumulan sustancias de desecho.

5 CULTIVO CONTINUO (SISTEMAS ABIERTOS). QUIMIOSTATO El cultivo continuo es un cultivo balanceado mantenido por tiempo indefinido por un sistema abierto de flujo que se compone de: una cámara de cultivo de volumen constante, a la que llega un suministro de nutrientes,

y de la que se eliminan o separan los productos tóxicos de desecho (por un dispositivo de rebosadero). Una vez que el sistema alcanza el equilibrio, el número de células y la concentración de nutrientes en la cámara permanecen constantes, y entonces se dice que el sistema está en estado estacionario, con las células creciendo exponencialmente. Los parámetros a tener en cuenta son: flujo (f), medido en ml/h volumen de la cámara de cultivo (v, en ml) densidad celular en la cámara (x) factor de dilución D = f/v (en h-1). Existe una pérdida de células por el rebosadero: -dx/dt = x·D El crecimiento bruto es dx/dt = x· Por lo tanto, el crecimiento neto es dx/dt = x· - x·D = x·( - D) Si logramos que el coeficiente de crecimiento () se haga igual al factor de dilución (D), entonces dx/dt = 0, y por lo tanto la concentración de células se hace constante (x= x). El cultivo se encuentra entonces en estado dinámico de equilibrio. Las pérdidas de células por drenaje se compensan con las ganancias por crecimiento.

Una de las maneras de lograr un cultivo continuo es mediante el llamado quimiostato: en el quimiostato podemos controlar de modo independiente la densidad de la población celular y la velocidad de crecimiento del cultivo. La densidad celular en el equilibrio se controla ajustando el factor de dilución (D), mientras que la velocidad de crecimiento se controla variando la concentración del nutriente limitante en la cámara reservorio (SR). En un quimiostato, los microorganismos pueden cultivarse a una amplia variedad de tasas de crecimiento exponencial El quimiostato permite crecimientos balanceados restringidos debido a que existe un nutriente o sustrato presente en una concentración suficientemente baja como para limitar la densidad de población. Así pues, el quimiostato también permite elegir la densidad de células a la que se quiere trabajar.

Algunos comentarios sobre el gráfico: La densidad del cultivo es muy similar en un amplio margen de tasas de dilución (D). Este margen es el más adecuado para hacer estudios en el quimiostato. En cambio, el valor de tiempo de generación (g) varía ampliamente. O sea, el quimiostato puede obtener tasas de crecimiento muy diferentes, sin que se afecte la densidad celular.Sin embargo, a valores extremos de dilución, se puede ver que el equilibrio se rompe: A altas tasas de dilución la concentración microbiana cambia rápidamente, y en un margen estrecho el cultivo puede drenarse totalmente (DC: dilución crítica).

Es decir, el cultivo se “lava” porque su velocidad de crecimiento es inferior a la tasa de dilución. A muy bajas diluciones (DM) el quimiostato no funciona si el nutriente limitante es la fuente de energía. Ello se debe a que en esas condiciones, la fuente de energía sólo se usa para reacciones de mantenimiento de la integridad celular, pero no queda para el crecimiento. A este valor lo llamamos energía de mantenimiento. Los procesos relacionados con esta energía de mantenimiento son el potencial de membrana, el transporte de solutos y la renovación de proteínas. Aplicaciones del cultivo continuo en quimiostato: Aportan una fuente continua de células en fase exponencial, lo que se aplica a procesos industriales de fermentación (producción de bebidas alcohólicas, de antibióticos, de aminoácidos, etc). En el quimiostato, el crecimiento a bajas concentraciones de sustrato permite estudiar: aspectos fisiológicos (por ejemplo, catabolismo del sustrato limitante); selección de mutantes estudios ecológicos.

6 CULTIVO EN SISTEMAS CERRADOS En los sistemas cerrados (que pueden ser líquidos o sólidos), no existe aporte continuo de nutrientes, ni drenaje de células ni de sustancias de desecho. En estos sistemas la fase exponencial de crecimiento balanceado no restringido dura sólo unas cuantas generaciones, debido al agotamiento de nutrientes y/o a la acumulación de desechos.

6.1 CURVA DE CRECIMIENTO EN UN SISTEMA CERRADO EN MEDIO LÍQUIDO

Como se puede constatar en el anterior gráfico, el crecimiento en un sistema cerrado consta de varias fases, que pasamos a comentar: 1) Fase de retardo (fase “lag”): Es el período de tiempo durante el que el inóculo se adapta a las condiciones del medio fresco sobre el que se ha sembrado. Se trata de un período de ajuste metabólico. Su duración depende de varios factores: tamaño del inóculo; bondad del inóculo (estado metabólico previo del inóculo): si el inóculo procede de células en fase estacionaria de un cultivo anterior, la fase lag es larga. Ello se debe a que los contenidos en coenzimas y otros constituyentes de las células son bajos, y las células deben reponerlos en el medio fresco. si las células están dañadas por algún agente, el lag también es largo, ya que necesitan un tiempo para la reparación de los daños. si las células del inóculo se tomaron de un cultivo previo en fase logarítmica, el lag es más corto. medio del que procede el inóculo: si el medio es similar al medio fresco, el lag es más corto; si el medio del inóculo era un medio rico y el medio fresco es más pobre, la fase de retardo se hace más larga, porque las bacterias necesitan un tiempo adicional para activar la síntesis de las enzimas biosintéticas que estaban reprimidas en el medio rico. Pero aun cuando la inoculación se hace desde un cultivo previo en fase logarítmica, cuyo medio sea idéntico al medio fresco, se observa siempre una fase lag. ¿Por qué?: necesidad de neutralizar sustancias tóxicas en el medio fresco;

porque se produce dilución de ciertos metabolitos intracelulares al inocular las bacterias en el medio nuevo; por lo tanto, hasta que no se vuelva a alcanzar una concentración de esos metabolitos adecuada para el crecimiento, éste no “arranca”. Ejemplo: Supongamos que inoculamos una bacteria heterotrófica en un medio ligeramente ácido, sometido a aireación: en un principio, se produce dilución de CO2, por lo que se retardan reacciones de carboxilación que requieren este CO2, y se produce un retardo.

2) Fase de transición, de crecimiento acelerado, que conduce a … 3) Fase de crecimiento exponencial (= fase logarítmica). La fase 2 se debe a que cada célula entra en la fase exponencial con desfase respecto de sus compañeras. Ello demuestra que las células del inóculo no están todas en las mismas condiciones fisiológicas. Durante la fase logarítmica se da un crecimiento balanceado no restringido durante unas pocas generaciones (normalmente menos de 10). El tiempo de generación (g) es característico para cada especie o cepa, en cada medio concreto: El valor del tiempo de generación (g) depende de: composición del medio temperatura pH osmolaridad (tonicidad), etc. Los microorganismos heterotrofos suelen crecer más rápidamente en los medios complejos, ricos, que en los medios sintéticos, y dentro de estos últimos, mejor con glucosa que con otras fuentes de carbono. Algunos microoorganismos tienen, a su temperatura óptima tiempos de generación muy cortos (15, 20 min), mientras que otros tienen crecen más lentamente, con tiempos de generación que pueden ser de varias horas o incluso días. 4) Fase de aceleración negativa, de crecimiento desequilibrado, que conduce a… 5) Fase estacionaria: Esta fase se caracteriza porque el coeficiente neto de crecimiento se hace nulo ( = 0), pero aún existe crecimiento. Lo que ocurre es que el crecimiento bruto se equilibra con las muertes celulares. En este período se agotan nutrientes especiales y se acumulan sustancias de desecho. Incluso el pH del medio empieza a hacerse inadecuado para el crecimiento celular. Si la bacteria crece en un medio complejo, la fase 4 de transición (de aceleración negativa) puede ser relativamente larga, debido a que va recurriendo a fuentes alternativas (p. ej., puede recurrir a aminoácidos como fuente de C una vez agotados los hidratos de carbono).

En la fase estacionaria aún existen reacciones metabólicas, pero el metabolismo general es diferente al de la fase logarítmica: las células son más pequeñas, debido a que existe división celular después de que se haya detenido el incremento de masa; suelen ser más resistentes a agentes físicos y químicos; existe reciclado de ciertos materiales intracelulares; baja el contenido en ARN. 6) Fase de transición hacia … 7) Fase de muerte exponencial: Se da muerte y lisis masiva, exponencial, del cultivo. Se debe a agotamiento de reservas de energía. Algunas veces las células aparecen grandes, hinchadas, distorsionadas (formas “fantasmas”, “ghost”). La pendiente de esta parte de la curva depende de las especies (por ejemplo, en bacterias entéricas es suave, mientras que en Bacillus es más acentuada). Te recuerdo que puedes hacer un experimento "virtual" con la curva de crecimiento de una bacteria. Que disfrutes.

6.2 CRECIMIENTO EN SISTEMAS CERRADOS EN MEDIOS SÓLIDOS Un medio sólido es una solución nutritiva (como el líquido), pero incorporado a un gel, que le da consistencia. Los tipos de gelificantes usados para los medios sólidos (más explicaciones en la 2ª tanda de prácticas): agar-agar (o simplemente, agar): es el más comúnmente empleado; gelatina (inconveniente de que se licúa a temperaturas relativamente bajas, y además, algunos microorganismos lo degradan por gelatinasas); silicagel (o gel de sílice): tedioso de preparar. Uso casi exclusivo para quimioautotrofos. Los medios sólidos se suelen inocular mediante asa de siembra o espátula, diseminando las bacterias sobre su superficie libre, en recipientes adecuados, como las placas de Petri (ver prácticas). Tras la incubación a la temperatura y condiciones pertinentes, cada bacteria o agrupación bacteriana que ha quedado en un punto determinado del medio da origen, por crecimiento, a una acumulación de células, visible a simple vista, denominada colonia. La densidad de cada colonia es muy alta (del orden de 107 células para una colonia de unos 5 mm). Esto se debe a que en el medio sólido, a diferencia del líquido, las bacterias no pueden dispersarse, y durante mucho tiempo este medio sólido permite un aporte

continuo de nutrientes (por difusión desde el entorno de la colonia, hacia ella), y eliminación continua de productos de desecho (por difusión desde la colonia hacia fuera). Por lo tanto, se parece a un cultivo continuo, excepto que no hay drenaje de células. Como el alumno comprobará en prácticas (2ª tanda), cada especie bacteriana suele originar colonias de un tipo determinado, en cada medio concreto. Con vistas a la determinación taxonómica, se suele tomar nota de una serie de características de las colonias (caracteres culturales): tamaño (relativo) forma general forma de los bordes de la colonia aspecto de la superficie y elevación sobre el sustrato color consistencia, etc.

1 INTRODUCCION: EFECTO DE LOS FACTORES AMBIENTALES SOBRE LOS PROCARIOTAS Debido a su pequeño tamaño y a su estilo de vida individual, las células procarióticas sufren los cambios ambientales de un modo mucho más directo e inmediato que las células de los organismos pluricelulares. A lo largo de miles de millones de años, los procariotas han venido estando sometidas a diversas presiones ambientales, y han respondido evolutivamente creando numerosos mecanismos de adaptación. Actualmente, las únicas formas de vida existentes en determinados ambientes extremos son exclusivamente procarióticas. Desafiando a nuestras ideas preconcebidas de lo que es la vida “normal”, encontramos extraordinarios seres vivos unicelulares viviendo “cómodamente” a pHs muy ácidos o muy alcalinos, medrando en salmueras y salinas, o reproduciéndose a temperaturas de más de 100ºC y a grandes presiones. Este tipo de microorganismos que habitan medios que los humanos consideramos como “extremos” reciben el calificativo de extremófilos. En este capítulo veremos algunas de estas notables adaptaciones. Hasta ahora hemos venido considerando el crecimiento de las bacterias en función de su fondo genético, en relación con los nutrientes, y en unas hipotéticas condiciones

ideales (óptimas). Sin embargo, el trabajo experimental con microorganismos ha de tener en cuenta los factores ambientales, es decir, una serie de agentes físicos y químicos que 1) modifican la velocidad de crecimiento, provocando cambios que, a determinados valores de dichos factores pueden llegar a ocasionar la muerte de microorganismos; 2) condicionan la distribuición de los microorganismos en sus ecosistemas y hábitats naturales; 3) permiten a los humanos controlar el crecimiento microbiano, por medio de la fijación de parámetros para: a) la mutagénesis, b) la esterilización y desinfección, c) la quimioterapia. No todos los microorganismos toleran del mismo modo un determinado factor ambiental. Así, unas determinadas condiciones pueden ser nocivas para una especie bacteriana, y en cambio ser neutras o beneficiosas para otra. Antes de abordar el estudio de distintos agentes ambientales, conviene distinguir entre los efectos que un determinado agente puede tener sobre la viabilidad y los efectos que pueden simplemente afectar al crecimiento, a la capacidad de diferenciación (si la hubiera) o de reproducción. Los principales tipos de factores a considerar se pueden desglosar de la siguiente manera: Agentes físicos (tema 13) Agentes químicos (tema 14) Temperatura Desinfectantes y antisépticos Desecación

Quimioterápicos de síntesis

Radiaciones

Antibióticos

Ondas sonoras Presión hidrostática Presión osmótica pH

2 EFECTO DE LA TEMPERATURA

2.1 EFECTO DE LA TEMPERATURA SOBRE EL CRECIMIENTO La temperatura es uno de los parámetros ambientales más importantes que condicionan el crecimiento y la supervivencia de los microorganismos. La temperatura afecta a la velocidad de crecimiento (y, por lo tanto al tiempo de generación, g). Cada bacteria (y suponiendo que el resto de condiciones ambientales se mantienten constantes) muestra una curva característica de tasa de crecimiento en función de la temperatura, donde podemos distinguir tres puntos característicos llamados temperaturas cardinales:

Temperatura mínima: por debajo de ella no hay crecimiento; Temperatura máxima: por encima de ella tampoco existe crecimiento; Temperatura óptima: permite la máxima tasa de crecimiento (o sea, g mínimo). El margen entre la temperatura mínima y la máxima se suele llamar margen de crecimiento, y en muchas bacterias suele comprender unos 40 grados. La temperatura mínima se puede explicar en función de un descenso de la fluidez de la membrana, de modo que se detienen los procesos de transporte de nutrientes y el gradiente de protones.

Por encima de la temperatura mínima la tasa de crecimiento va aumentando proporcionalmente hasta alcanzar la temperatura óptima, debido a que las reacciones metabólicas catalizadas por enzimas se van aproximando a su óptimo. En dicha temperatura óptima las enzimas y reacciones se dan a su máxima tasa posible. A partir de la temperatura óptima, si seguimos subiendo la temperatura se produce un descenso acusado de la tasa de crecimiento hasta alcanzar la temperatura máxima. Dicha temperatura refleja desnaturalización e inactivación de proteínas enzimáticas esenciales, colapsamiento de la membrana citoplásmica y a veces lisis térmica de la bacteria. Obsérvese en el gráfico que la temperatura óptima está más cerca de la máxima que de la mínima.

2.2 CLASES DE MICROORGANISMOS SEGÚN LA TEMPERATURA: ADAPTACIONES EVOLUTIVAS Cada especie o cepa bacteriana tiene temperaturas cardinales distintas, de modo que una bacteria puede presentar una temperatura óptima superior a la temperatura máxima de otra, o inferior a la temperatura mínima de una tercera. Según el rango de temperaturas al que pueden crecer las distintas bacterias, se pueden establecer tres tipos principales:

2.2.1

MICROORGANISMOS PSICRÓFILOS

Las psicrófilas o criófilas: crecen a partir de entre -5 a 5ºC. a) Las llamadas psicrófilas obligadas tienen temperatura óptima a 15-18ºC, como por ejemplo Flavobacterium. La bacteria Polaromonas vacuolata, recientemente aislada en aguas heladas de la Antártida es lo que pudiéramos llamar un psicrófilo extremo: tiene su óptimo de crecimiento en 4ºC, y es incapaz de crecer a 14ºC (¡se muere de calor!). b) Las psicrófilas facultativas o psicrotolerantes (también llamadas psicrotrofas) presentan temperatura óptima en torno a los 20-30ºC y máximas a los 35ºC. Las bacterias y hongos psicrotrofos son los responsables de que los alimentos guardados en nevera se estropeen al cabo del tiempo. Ejemplos de medios permanentemente fríos son la mayor parte de las aguas oceánicas (cuya temperatura media es de unos 5oC, pero que en las profundidades alcanzan sólo 12ºC por encima de cero) y las áreas permanentemente heladas del Ártico y de la Antártida. En los medios helados existen pequeñas bolsas o microcavidades de agua líquida, donde pueden medrar algunos microorganismos. Un ejemplo no bacteriano muy característico es el alga de las nieves (Chlamydomonas nivalis), que llega a conferir color rojo a la nieve en algunas zonas de montaña a mitad de la estación estival.

Las principales adaptaciones bioquímicas a medios fríos exhibidas por estos microorganismos psicrófilos son: enzimas más resistentes al frío; sistemas de transporte adaptados a bajas temperaturas; los fosfolípidos de la membrana celular aumentan la proporción de ácidos grasos insaturados (y en algunas bacterias, poliinsaturados, con entre 4 y 9 dobles enlaces); ello supone que la membrana sigue en su estado semifluido, evitándose su congelación. Los psicrotrofos (psicrófilos facultativos) son más abundantes, ya que están adaptados a soportar grandes oscilaciones térmicas, y en verano pueden crecer a unos 30ºC40ºC. Algunas bacterias y hongos pueden crecer en alimentos (carne, leche, frutas y hortalizas) que se guardan en frigoríficos, alterando las cualidades organolépticas e incluso, echándolos a perder (una experiencia que casi todos hemos tenido).

2.2.2

MICROORGANISMOS MESÓFILOS

Los mesófilos presentan temperaturas óptimas a los 25-40ºC y máximas entre 35 y 47ºC. La mayor parte de las eubacterias (incluyendo las patógenas) pertenecen a esta categoría. La mayor parte de los microorganismos que viven en ambientes templados y tropicales, incluyendo los simbiontes y parásitos, pertenecen a esta categoría.

2.2.3

MICROORGANISMOS TERMÓFILOS

Las únicas formas de vida capaces de vivir por encima de 65ºC son todas procariotas. Los termófilos presentan óptimos a 50-75ºC y máximos entre 80 y 113ºC. Dentro de esta categoría se suele distinguir las termófilas extremas (=hipertermófilas), que pueden llegar a presentar óptimos cercanos a los 100ºC, y que taxonómicamente pertenecen al dominio de las Archaea. Los hábitats naturales con temperaturas permanentemente altas (por encima de 45-50ºC) están restringidos a unas pocas zonas de la biosfera, normalmente relacionadas con fenómenos volcánicos: fuentes termales volcánicas terrestres (en zonas de EE. UU., Japón, Nueva Zelanda e Islandia); fuentes termales submarinas: los llamados “humeros” (fumarolas hidrotermales) asociados a las grandes dorsales oceánicas); fumarolas Los materiales en fermentación como acúmulos de abono (compost) y ensilados pueden alcanzar 65ºC. Como ejemplo “clásico”, muy conocido por documentales de divulgación, recordemos que en el famoso Parque Nacional de Yellowstone, en EE UU, existe la mayor concentración mundial de fuentes volcánicas, con géiseres que emiten a más de 100oC, siendo esta temperatura bastante constante, con oscilaciones de +/- 1 ó 2oC. Cuando esta agua sale, lo hace a punto de ebullición. El riachuelo que genera

va bajando su temperatura en su recorrido, de modo que se genera un gradiente de temperatura en el que se pueden estudiar fascinantes comunidades microbianas adaptadas a esas diversas temperaturas. Allí fue donde T.D. Brock descubrió la eubacteria termófila Thermus aquaticus, de la que se extrae la ADN polimerasa termorresistente (Taq) empleada en la reacción en cadena de la polimerasa (PCR) automatizada. Recientemente se está recurriendo a usar la polimerasa de una arquea hipertermófila, Pyrococcus furiosus, que funciona muy bien a 100ºC.

Los hipertermófilos, con óptimos por encima de los 80ºC son de hecho incapaces de crecer a menos de 37oC, como las citadas arqueas (ej., Thermoproteus, Pyrococcus, Pyrodictium). La arquea Pyrolobus fumarii, habitante de los humeros termales submarinos tiene su óptimo nada menos que a 105ºC y puede llegar a aguantar 113ºC, y parece que detiene su metabolismo (por “frío”) a la “agradable” temperatura de 90ºC (!). Las termófilas facultativas pueden crecer a menos de 37ºC, como p. ej. la eubacteria Thermus aquaticus. Se han aislado bacterias termófilas en medios artificiales, como calentadores de agua domésticos e industriales. Las principales adaptaciones bioquímicas a altas temperaturas en células vegetativas bacterianas son: enzimas termorresistentes. Algunas de ellas tienen un interior molecular muy hidrófobo; ribosomas termorresistentes; membranas ricas en ácidos grasos saturados, que permiten enlaces hidrofóbicos más fuertes. En Arqueas hipertermófilas los lípidos son muy especiales: en vez de basarse en ésteres de ácidos grasos con el glicerol, se trata de éteres de hidrocarburos unidos al glicerol (el enlace éter es más resistente). Algunas, además, en vez de la típica bicapa lípídica, exhiben una monocapa bioquímica de C40-bifitaniltetraéteres (resultado de unirse “cola con cola” dos C20-fitanil-diéteres), que condicionan una extrema resistencia a agentes ambientales. (repasar tema 6).

2.3 EFECTO LETAL DEL CALOR Al subir la temperatura por encima de la temperatura máxima de crecimiento, se dejan sentir los efectos sobre la viabilidad: la pérdida de viabilidad significa que las bacterias dejan de ser capaces de crecer y dividirse, aun cuando las transfiramos a un medio idóneo. La muerte por calor es una función exponencial de primer orden: dN/dt = -KT·N O sea, y como se puede constatar en el gráfico adjunto, la acción del calor supone la muerte de una fracción constante (KT) de la población sobreviviente en cada momento.

La cinética de primer orden sugiere que no existen efectos acumulativos, sino que la muerte se debe a la destrucción o inactivación irreversible de una molécula o estructura esencial (como p. ej. el ADN cromosómico o por creación de un daño irreparable en la membrana). ¿Cómo podemos caracterizar o medir en la práctica la inactivación por calor de una suspensión bacteriana? He aquí algunos parámetros utilizados: tiempo térmico mortal: es el tiempo mínimo requerido para que mueran todas las bacterias de una determinada suspensión a una determinada temperatura; tiempo de reducción decimal: es el tiempo requerido para reducir al 10% la densidad de la suspensión, a una determinada temperatura (también llamado valor D); punto térmico mortal: es la temperatura mínima que mata a todas las bacterias en un tiempo determinado (normalmente el tiempo de referencia empleado es de 10 min).

Ejemplos punto térmico mortal 55oC 60oC 120oC

Especies Escherichia coli Mycobacterium tuberculosis endosporas de especies muy resistentes de Bacillus.

Estos tres parámetros se emplean frecuentemente en industrias alimentarias, como en las de fabricación de conservas, centrales lecheras, etc. Antes de seguir adelante, es importante tener claro que, dependiendo de la temperatura y el tiempo a que sometamos un material a tratamiento térmico, lograremos inactivación parcial de la población microbiana (es decir, queda una fracción de células viables) o bien esterilización (=inactivación total). En general, entendemos por esterilización todo tratamiento de un material con un agente físico (como el calor, que nos ocupa en este momento) o químico (como veremos en el capítulo 14) que acarrea la eliminación de toda forma de vida en él. Una vez estéril, el material sigue estéril indefinidamente con tal de que esté encerrado en un compartimento estanco, sellado y libre del contacto con microorganismos del ambiente exterior. Centrándonos de nuevo en el calor, la inactivación parcial o la esterilización se pueden lograr por calor húmedo o por calor seco. La inactivación (total o parcial) por calor se debe a la desnaturalización de proteínas y a la fusión de lípidos de membrana, debido a que se rompen muchos enlaces débiles, sobre todo los puentes de hidrógeno entre grupos -C=O y H2-N-. Estos enlaces se rompen más fácilmente por calor húmedo (en atmósfera saturada de vapor de agua), debido a que las moléculas de agua pueden desplazar a los puentes de hidrógeno.

2.3.1

CALOR HÚMEDO

Por lo tanto, la inactivación por calor húmedo requiere menores temperaturas que la que se realiza en ausencia de agua. Veamos algunos ejemplos de condiciones de inactivación total por calor húmedo: Microorganismo La mayoría de células vegetativas, de bacterias, levaduras y hongos Bacilo tuberculoso Bacilo tuberculoso Bacilo tuberculoso Staphylococcus aureus, Enterococcus faecalis La mayoría de esporas de bacterias patógenas esporas del patógeno Clostridium botulinum esporas de Clostridium y Bacillus saprofitos esporas de Clostridium y Bacillus saprofitos

condiciones 80oC , 5-10 min 58oC , 30 min 59oC , 20 min 65oC , 2 min 60oC , 60 min 100oC , pocos min 100oC , 5,5 horas 100oC , muchas horas 120oC , 15 minutos

Veamos los métodos principales de lograr esterilización de materiales por calor húmedo: Autoclave (introducido por Chamberland en 1884): Es un aparato que permite calentar muestras por calor húmedo a temperaturas superiores a las de ebullición del agua (sin que

ésta hierva), debido a que el tratamiento se efectúa en un compartimento estanco saturado con vapor de agua y a presiones superiores a la atmosférica. (El funcionamiento del autoclave será oportunamente explicado en clases prácticas). Los parámetros de esterilización suelen ser: temperatura 121ºC y 10-15 min. Como se puede deducir, estos parámetros vienen fijados por la resistencia de las esporas de especies saprofitas (ver última línea de la tabla anterior), que son las formas de vida que más aguantan el calor sin perder viabilidad. (Hay que tener en cuenta que, en la práctica, a veces hay que emplear condiciones diferentes; por ejemplo: si queremos esterilizar grandes volúmenes de líquido, habrá que prolongar el tratamiento, 30 o 40 min, ya que el centro del recipiente donde va el líquido tarda más en alcanzar la temperatura de esterilización. Los medios de cultivo que incluyen glucosa deben esterilizarse a 115oC, ya que a temperaturas superiores la glucosa "carameliza"; por lo tanto, en estas ocasiones, el tiempo también es mayor: 30 min). La acción rápida del calor húmedo depende en buena parte del alto valor de calor latente del agua (540 cal·g-1); ello hace que los objetos más fríos (como las muestras a esterilizar) se calienten rápidamente por condensación de agua en su superficie. Tindalización (nombre en honor de John Tyndall): Es un método de esterilización fraccionada para materiales que se inactivan o estropean a más de 100ºC. Consiste en someter el material a varios ciclos (normalmente 3 ó 4) de dos fases sucesivas cada uno: a) en la primera fase el material se calienta a una temperatura entre 50 y 100ºC, durante 1 ó 2 horas; b) en la segunda fase el material se incuba en una estufa, a 30-37ºC durante 24 horas. Durante las fases de tipo a) mueren todas las células vegetativas de la muestra, pero permanecen viables las esporas, que quedan activadas para germinar. Durante las fases de tipo b) se produce la germinación de las esporas activadas en la respectiva fase anterior. En la siguiente fase de tipo a) morirán las células vegetativas procedentes de la germinación en la fase anterior; y así sucesivamente, hasta que al cabo de unos cuantos ciclos no queda ningun microrganismo en la muestra. Como se puede ver, este método es bastante engorroso y consumidor de tiempo, por lo que en los últimos años ha sido reemplazado por otro método de esterilización, aunque ya no dependiente del calor: se trata de la esterilización por filtración. Consiste de hacer pasar una solución a través de una membrana o filtro de un tipo de material (normalmente nitrato de celulosa) que presenta poros de un tamaño inferior al de cualquier célula bacteriana (diámetro de poro =0,22 m). Aplicaciones principales del calor húmedo:

1. En la práctica cotidiana del laboratorio de microbiología, en la esterilización de medios de cultivo y soluciones. 2. En la esterilización de material quirúrgico. 3. En la esterilización o inactivación parcial, en las industrias alimentarias (conservas, leche y derivados). a) En la industria láctea se emplean como métodos de esterilización la llamada uperización. La uperización o tratamiento UHT consiste en un tratamiento de calor húmedo donde se emplean temperaturas muy altas durante unos pocos segundos (p. ej.: 135-150ºC durante 1-2 seg). b) Pero no siempre es imprescindible esterilizar la leche, sino que puede bastar eliminar los posibles microorganismos patógenos que pueden contaminarla, y que son más sensibles al calor que los saprófitos inofensivos. Con esta inactivación parcial de la población microbiana de la leche logramos que ésta se conserve durante unos días, sin alterar apenas sus cualidades organolépticas y nutricionales. He aquí los procedimientos más habituales para conseguir esto: i.

La pasteurización (en honor a Pasteur, que la introdujo en los años 1860) consiste en tratar la leche a 63oC durante 30 min, tras los cuales se enfría y envasa rápidamente.

ii.

La pasteurización instantánea (también conocida por sus siglas en inglés HTST, de high temperature-short time) se logra calentando a 72ºC durante sólo 15 segundos, tras de lo cual la muestra se enfría rápidamente. Esta técnica es la más usada actualmente, ya que: mata más rápidamente; mata mejor organismos más resistentes; altera menos el sabor; actúa en flujos continuos (y permite procesar grandes volúmenes de leche).

Tras la pasteurización, el número de bacterias viables desciende un 97-99%. Los potenciales patógenos que pueda llevar la leche (Brucella, Salmonella, bacilo tuberculoso, Streptococcus, etc) son eliminados fácilmente. La pasteurización también se emplea para la preparación de vacunas a base de microorganismos inactivados por el calor.

2.3.2

CALOR SECO

Como ya dijimos, la esterilización por calor seco necesita recurrir a mayores temperaturas que la efectuada por el calor húmedo, ya que al no existir agua, la rotura de puentes de hidrógeno y la desnaturalización de proteínas, así como la fusión de membranas,

se efectúan a mayores energías. Otros efectos del calor seco son los daños por oxidación y el provocar un aumento de la concentración de electrolitos. Aplicaciones del calor seco: 1. El llamado horno de Pasteur, mediante calentamiento a 160-170ºC durante 2-3 horas permite esterilizar materiales inertes de laboratorio resistentes al calor: material de vidrio y metálico, aceites y jaleas, etc. 2. Flameado a la llama (hasta el rojo) de asas metálicas de siembra, con las que se inoculan las bacterias. 3. Incineración de materiales de desecho.

2.4 EFECTO DE LAS BAJAS TEMPERATURAS SOBRE LAS BACTERIAS Las bajas temperaturas (por debajo de la temperatura mínima) no son útiles para la esterilización, ya que, aunque existen algunas bacterias que mueren por congelación (p. ej., especies patógenas de Neisseria), el efecto de este tratamiento sobre otras muchas es, sobre todo, bacteriostático, sin contar aquellos organismos psicrófilos o psicrotrofos. Los efectos de someter una suspensión bacteriana a temperaturas menores de 0ºC dependen de: el medio donde están suspendidas las bacterias; el modo en que se realice la congelación y una ulterior descongelación. Cuando la temperatura es ligeramente inferior al punto de congelación del medio, el citoplasma queda en sobrefusión (sin congelar) entre -1 y -10ºC. Pero como la tensión de vapor de agua en el interior es mayor que en el exterior, existe una tendencia a restablecer el equilibrio, que puede ser: por pérdida de agua de la célula (cuando la congelación se efectúa lentamente), o bien por cristalización de agua en el interior (cuando la congelación se realiza rápidamente). En ambos casos la consecuencia es que las sales intracelulares se concentran, lo que supone que la solución del citoplasma puede llegar a saturarse, con precipitación de sales. Ello conlleva varias consecuencias: los cristales de sales y la alta concentración de electrolitos provocan la desnaturalización de proteínas y daños a la membrana; otro efecto de menor importancia es el daño mecánico a la pared celular y a la membrana provocado por los cristales de hielo.

En general, el enfriamiento rápido es más lesivo que el lento, existiendo una velocidad óptima. Cuando una bacteria se enfría rápidamente a -35ºC se producen cristales de hielo que provocan daños cuando la muestra se descongela. Por lo tanto, otro factor a tener en cuenta es la manera de realizarse la descongelación, y el número de ciclos de congelación-descongelación. La descongelación lenta es más letal que la rápida, ya que aumenta el volumen de cristales de hielo. Aplicaciones de la congelación: La congelación se aplica, en laboratorio, para preservar muestras bacterianas durante largos periodos de tiempo. Como acabamos de ver, y con objeto de maximizar la viabilidad bacteriana el mayor tiempo posible, es importante cómo se efectúa tanto la congelación como la descongelación. Una vez congeladas, las bacterias supervivientes conservan su viabilidad durante mucho tiempo, siempre que la temperatura se mantenga por debajo del punto eutéctico: en nieve carbónica (CO2 sólido), a -78ºC; en nitrógeno líquido, a -180ºC. Por ello, este método es usado en el laboratorio para guardar cultivos durante largas temporadas. El inconveniente de emplear nieve carbónica o nitrógeno líquido es que hay que reponerlos con relativa frecuencia. Como veremos enseguida, hay métodos menos engorrosos y caros de mantener viables muestras microbianas durante largos periodos de tiempo. Para preservar aún mejor las bacterias a bajas temperaturas, se recurre a añadir a la suspensión ciertas sustancias, como por ejemplo: Sustancias no ionizables de bajo peso molecular que provocan la solidificación amorfa y vítrea, en lugar de la cristalización, evitando así la formación de zonas intracelulares con alta concentración de sales: glicerina, sacarosa, lactosa, dimetilsulfóxido (DMSO). Materiales ricos en proteína: leche, suero, extracto de carne. Proteínas purificadas (p. ej., la albúmina). Determinadas macromoléculas: polivinilpirrolidona (PVP), dextranos. La suspensión bacteriana puede aguantar varios meses congelada con estas sustancia entre -25 a -30ºC, en congelador. Si se hace con nitrógeno líquido, la conservación puede ser de varios años.

3 LIOFILIZACION

La liofilización es la desecación al vacío de una muestra previamente congelada. Aplicada a bacterias, es uno de los métodos que mantiene por más tiempo la viabilidad bacteriana (varios años). Para obtenerla, el cultivo bacteriano se adiciona de leche o suero (véase epígrafe anterior), se congela sobre nieve carbónica (-78ºC), y se conecta a una bomba de vacío, que provoca la desecación. La eliminación de toda el agua sobre la muestra congelada aumenta la viabilidad de ésta, que se guarda en ampollas cerradas de vidrio a temperatura ambiente, hasta su uso, que como vemos, puede ser incluso muchos años después.

4 EFECTO DE LA DESECACION SOBRE LAS BACTERIAS La desecación al aire (sin vacío) mata a las células vegetativas bacterianas, pero no a las endosporas. La sensibilidad a la desecación varía de una especie a otra. Ejemplos: Mycobacterium tuberculosis (el bacilo tuberculoso) es muy resistente al aire (en ausencia de luz), de ahí que pueda aguantar varios meses a partir de los esputos de enfermos. En cambio, el vibrión colérico (Vibrio cholerae) muere expuesto al aire al cabo de sólo dos horas. Las causas de la muerte son, principalmente: el aumento de concentración intracelular de sales, lo que conlleva efectos tóxicos y desnaturalizantes de proteínas; daños por oxidación. La mayor eficacia de la desecación al aire se logra con 50% de humedad relativa.

5 EFECTO DE LAS RADIACIONES SOBRE LAS BACTERIAS 5.1 CONCEPTOS GENERALES SOBRE RADIACIONES Y BIOMOLÉCULAS Se puede definir la radiación como la propagación de energía por el espacio. Los principales tipos de radiaciones que pueden tener efectos sobre los seres vivos son: radiación electromagnética radiación infrarroja (IR) radiación visible

 (longitudes de onda, en nm) 800-106 380-800

ultravioleta (UV) rayos X rayos  rayos cósmicos

13,6-380 0.14-13.6 0.001-0.14 < 0.001

Los efectos derivados de la absorción de radiación dependen de: la energía de la radiación absorbida; la naturaleza del material. 1) Si la energía es E>10 eV, hablamos de radiaciones ionizantes: son los rayos X y los rayos  (estos últimos se emiten como resultado de la desintegración de radioisótopos). Un fotón de gran energía incide sobre un átomo, provocando la expulsión de un electrón de gran energía (fotoelectrón), y quedando el átomo en forma ionizada (cargado positivamente). El electrón expulsado suele tener energía suficiente para originar una nueva ionización, de la cual surge otro electrón de alta energía, etc... produciéndose una cadena de ionizaciones, con transferencia linear de energía, hasta que ésta se disipa en el material: el último electrón de la cadena es captado por otro átomo o molécula, que queda cargado negativamente. El resultado final es que se forman pares de iones (uno positivo y otro negativo). A su vez, esos iones originados tienden a experimentar reorganizaciones electrónicas ulteriores, que dan pie a cambios químicos en el sistema que se había sometido a la irradiación. 2) Si la energía es E