Corrimiento Doppler Para La Luz (Longitudinal y Transversal)

Instituto Politécnico Nacional. Escuela Superior de Ingeniería Mecánica y Eléctrica. “Unidad Culhuacán” “Corrimiento do

Views 65 Downloads 0 File size 312KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Instituto Politécnico Nacional. Escuela Superior de Ingeniería Mecánica y Eléctrica. “Unidad Culhuacán”

“Corrimiento doppler para la luz (longitudinal y transversal)”.

Nombre: Figueroa Pérez Erika. Profesor: Carlos Rodríguez Sánchez

Unidad de Aprendizaje: Mecánica Cuántica. Grupo: 4EV1 Fecha: 09/02/2017

Índice.

1.- El efecto Doppler relativista…………………………….…………………………….3 1.1.- Efecto Doppler desde su perspectiva clásica………………………….…4 1.2.- Efecto Doppler desde su perspectiva relativista…………………………5 2.-Conclusion………………………………………………………………………………8 3.-Bibliografia………………………………………………………………………………8

El efecto Doppler relativista. De acuerdo con el segundo postulado de la Teoría Espacial de la Relatividad, dos observadores que están en movimiento relativo el uno con respecto al otro miden para un rayo de luz la misma velocidad, independientemente de quien haya disparado el rayo de luz hacia el otro, e independientemente de que se estén acercando o alejando. La Teoría Especial de la Relatividad nos dice que dos personas medirán para un rayo de luz exactamente la misma velocidad. Pero no nos dice que la frecuencia relativa de las ondas electromagnéticas que forman a dicho rayo de luz se mantendrá igual independientemente de que el rayo de luz sea enviado por alguien que se esté alejando o acercando de nosotros. Gracias a un fenómeno conocido como el efecto Doppler, podemos saber si la persona que nos envió un rayo de luz se está acercando o alejando de nosotros siempre y cuando conozcamos el color de la luz (que depende directamente de la frecuencia de la onda electromagnética del haz que nos está llegando). Si esperamos que alguien situado en una parte remota de la galaxia nos envíe un rayo de luz de cierto color, y el rayo de luz que recibimos es exactamente del mismo color que esperábamos, entonces aquella persona está estacionaria con respecto a nosotros (o por lo menos se encontraba estacionaria con respecto a nosotros cuando nos envió el rayo de luz). Pero si el color que nos llega es diferente, si el color aparece corrido hacia un extremo de la gama de colores como la que obtendríamos de un prisma de vidrio, entonces podemos concluir que tal persona se está moviendo o alejando de nosotros dependiendo de la magnitud del desplazamiento del color.

Efecto Doppler desde su perspectiva clásica. Casi todos nosotros estamos familiarizados de alguna manera con el efecto Doppler por las experiencias de nuestra vida cotidiana. Cuando una ambulancia o un tren o un avión se acerca a nosotros a gran velocidad produciendo un ruido con una frecuencia audible ya sea con su sirena o con el ruido de sus motores, escuchamos el sonido con cierto tono distintivo. Pero en cuanto la ambulancia o el tren o el avión se empieza a alejar de nosotros, el tono del sonido se vuelve distintiblemente más grave. Esta situación la podemos imaginar en el siguiente diagrama en el cual viaja un conductor que tiene puesto su radio en una estación que está produciendo cierto sonido distintivo:

El sonido que escucha el conductor del vehículo en realidad no son más que una serie de compresiones y rarefacciones del aire. El aire es el medio que sirve para “ondular” transportando esas compresiones y rarefacciones de un lado a otro; sin el aire no es posible el sonido. La distancia entre entre una compresión y la siguiente es la que determina la frecuencia (el tono) del sonido que escucha el conductor

del

vehículo.

En el diagrama el carro está desplazándose hacia la derecha. Al ocurrir tal cosa, la velocidad del carro se suma (clásicamente) a la velocidad con la cual se trasladan las ondas sonoras en el aire, dando como resultado que para la persona que está caminando en la banqueta y a la cual se le está acercando el carro a gran velocidad llegará una cantidad mayor de ondas sonoras que las que escucha el conductor del vehículo en un mismo intervalo de tiempo. Esa persona en la banqueta escuchará el sonido algo más “chillante”, con una frecuencia mayor en tanto mayor sea la velocidad con la cual se le acerca el vehículo. Este es precisamente el efecto Doppler. En cambio, para la persona que está en la banqueta del lado del cual se está alejando el carro, llegará una cantidad mayor de ondas sonoras que las que escucha el conductor del vehículo en un mismo intervalo de tiempo. Esa otra persona en la banqueta escuchará el sonido algo más grave, más bajo, con una frecuencia menor en tanto menor sea la velocidad a la cual se le está alejando el vehículo. Efecto doppler desde su perspectiva relativista. Se introducirá un grado adicional de complejidad al asunto debido al fenómeno relativista de contracción de longitud. Si generamos una onda sonora de frecuencia fija (constante) y suponemos que estamos estacionarios frente a ella, entonces la distancia de cresta-a-cresta (máximo a máximo) definida como la longitud de onda λ (medida en metros):

Experimentará una contracción de longitud como la que ocurre de (a) a (b) en el diagrama de arriba sin importar el sentido en el que nos estemos moviendo, ya sea hacia la fuente o alejándonos de ella. La longitud de onda máxima será la que mida un observador estacionario que se encuentre situado justo en el centro de la fuente que genera la onda o bien otro observador que también se encuentre en reposo con respecto al observador situado en el punto en donde se está generando la señal. Cualquier otro observador que se ponga en movimiento con respecto a la fuente detectará una contracción de longitud relativista, y esa contracción de longitud es la misma que la que hemos obtenido previamente desde un principio, dada por la relación:

Se repite, y esto es importante, que esta variación en la longitud de onda λ de la señal (y por lo tanto en la frecuencia f de la misma, ya que la frecuencia es la recíproca de la longitud de onda, o sea f = 1/λ) con respecto a la longitud de onda λ0 medida por un observador que está en reposo con respecto a la fuente es adicional al efecto Doppler que en sí es causada por el abultamiento o el adelgazamiento de las ondas ya sea que nos estemos moviendo rápidamente hacia la fuente o alejándonos de ella. El efecto final es el resultado compuesto de ambos efectos. También podemos llevar a cabo un análisis relativista del efecto Doppler usando la dilatación del tiempo en lugar de la contracción de longitud. Para ello, consideramos el período T de la onda luminosa, que es el intervalo de tiempo propio (medido en segundos) entre cresta y cresta de la onda luminosa:

Es importante tener presente siempre que la velocidad de una onda senoidal (que en este caso suponemos que se trata de una onda electromagnética, o sea una señal luminosa moviéndose a la velocidad de la luz) está relacionada a la longitud de onda y al período de la onda senoidal de la siguiente manera: c = λ/T De un modo o de otro, tomando en cuenta los efectos relativistas, la fórmula para el efecto Doppler relativista en el caso de un haz luminoso que resulta ser la siguiente:

no establece diferencia alguna entre una fuente en movimiento y un observador estático y una fuente estática y un observador en movimiento, como era de esperarse. En esta fórmula, utilizamos el signo “-” cuando la fuente y el observador están acercándose el uno con respecto al otro, y utilizamos el signo “+” cuando la fuente y el observador están alejándose el uno con respecto al otro. La fórmula anterior es válida cuando la fuente se está acercando hacia el observador o cuando la fuente se está alejando del observador directamente a lo largo de la línea imaginaria que conecta a ambos. Cuando el acercamiento (o el alejamiento) no ocurre a lo largo de esta línea:

entonces la fórmula Doppler relativista debe ser modificada para acomodar la siguiente situación que corresponde a un efecto Doppler transversal:

Esta es la fórmula general para el efecto Doppler relativista. Conclusión

En conclusión, el efecto Doppler establece el cambio de frecuencia de un sonido de acuerdo al movimiento relativo entre la fuente del sonido y el observador. Este movimiento puede ser de la fuente, del observador o de los dos. Diríamos que el efecto Doppler asume la frecuencia de la fuente como una constante, pero lo escuchado depende de las velocidades de la fuente y del observador. 

El efecto Doppler es un fenómeno físico donde un aparente cambio de frecuencia de onda es presentado por una fuente de sonido con respecto a su observador cuando esta misma fuente se encuentra en movimiento.



El efecto Doppler también se ve en algunas ondas sonoras.



El efecto Doppler relativista es el cambio observado en la frecuencia de la luz procedente de una fuente en movimiento relativo con respecto al observador

Bibliografía.

El efecto Doppler relativista. ARMANDO MARTÍNEZ TÉLLEZ