CONTAMINACION ATMOSFERICA

Las causas de la contaminación atmosférica y los contaminantes atmosféricos más importantes La calidad del aire que nos

Views 105 Downloads 0 File size 1MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Las causas de la contaminación atmosférica y los contaminantes atmosféricos más importantes La calidad del aire que nos rodea viene determinada principalmente por la distribución geográfica de las fuentes de emisión de contaminantes y las cantidades de contaminantes emitidas. Los procesos físico-químicos que se producen en la atmósfera, la meteorología y la orografía condicionan enormemente los procesos de dispersión y transporte de estos contaminantes. Dentro de esta dinámica atmosférica, los aportes son producidos por emisiones primarias, bien desde fuentes naturales, lo que incluye los fenómenos naturales tales como erupciones volcánicas, actividades sísmicas, actividades geotérmicas o incendios, fuertes vientos, aerosoles marinos o resuspensión atmosférica o transporte de partículas naturales procedentes de regiones áridas o bien desde fuentes antropogénicas (derivadas de las actividades humanas).

Figura 2. Fuentes, tipos de contaminantes, procesos y efectos generales en contaminación atmosférica. Fuente: Capítulo 1 del Observatorio DKV Salud y Medio Ambiente 2010: "Contaminación Atmosférica y Salud".

Contaminantes primarios son: óxidos de azufre (SOx), óxidos de nitrógeno (NOx), monóxido de carbono (CO), aerosoles, hidrocarburos, halógenos y sus derivados (Cl2, HF, HCl, haluros), arsénico y sus derivados, ciertos componentes orgánicos, metales pesados (Pb, Hg, Cu, Zn,…) y partículas minerales (asbesto y amianto). Por otra parte están los contaminantes secundarios, son los que se forman en la atmósfera mediante reacciones químicas de otros contaminantes que proceden en su mayor parte de fuentes antropogénicas: ozono (O3), sulfatos, nitratos, aldehídos, cetonas, ácidos, peróxido de hidrógeno (H2O2) y radicales libres. Además de esta clasificación de contaminantes (atendiendo a su origen) y si nos fijamos en su estructura, encontramos que los contaminantes atmosféricos se subdividen en: partículas y gases. También se pueden agrupar en función de sus posibles efectos sobre la salud humana y el medio ambiente.

PARTÍCULAS Son los contaminantes atmosféricos más complejos, ya que engloban un amplio espectro de sustancias, tanto sólidas como líquidas, procedentes de diversas fuentes, entre las que destacan las siguientes: polvo (producido por desintegración mecánica), humos (procedentes de combustiones), brumas (por condensación de vapor) y aerosoles (mezcla de partículas sólidas y/o líquidas suspendidas en un gas). Aunque los elementos que integran las partículas varían según las fuentes locales, en general: PM10 (partículas gruesas o de diámetro aerodinámico = 10 µm) suelen tener un importante componente de tipo natural, siendo contaminantes básicamente primarios que se generan por procesos mecánicos o de evaporación: minerales locales o transportados, aerosol marino, partículas biológicas (restos vegetales) y partículas primarias derivadas de procesos industriales o del tráfico (asfalto erosionado y restos de neumáticos y frenos generados por abrasión); de entre los pocos contaminantes secundarios que entran a formar parte de su estructura destacan los nitratos. PM2.5 (partículas finas o de diámetro aerodinámico = 2,5 µm) su composición es más tóxica, ya que su principal origen es antropogénico, especialmente las emisiones de los vehículos diesel, estando fundamentalmente formadas por partículas secundarias: nitratos y sulfatos (originados por oxidación de NOx y SOx), aerosoles orgánicos secundarios, como el peroxiacetil nitrato (PAN) y los hidrocarburos policíclicos aromáticos (HPA). Por el contrario, son pocas las fuentes primarias de partículas finas, por ejemplo los procesos industriales de molienda y pulverización y los procesos rápidos de condensación de gases expulsados a altas temperaturas. Por este motivo, la Organización Mundial de la Salud (OMS) aconseja utilizar como indicadores de la calidad del aire las concentraciones de PM2,5 en vez de las de PM10. Los niveles de partículas pueden verse influenciados en España por las condiciones atmosféricas, debido a la menor precipitación y acción eólica con respecto a otros países de la zona norte de Europa, y a los aportes de partículas procedentes del norte de África (polvo sahariano) en el caso de las PM10 y PM10-2,5. Dado que en las PM2,5 la proporción de material mineral es sustancialmente menor, sus niveles no suelen verse afectados por las intrusiones de polvo sahariano. Mientras que las PM10 pueden permanecer en el aire durante minutos u horas, las partículas finas, debido a su menor tamaño y menor peso, si las condiciones meteorológicas son propicias, consiguen mantenerse suspendidas en el aire durante días o incluso semanas.

GASES Un amplio abanico de sustancias, en forma gaseosa, de diversa naturaleza y con comportamientos y dinámicas químicas muy diferentes, constituyen los principales gases contaminantes atmosféricos. Algunos se emiten de forma natural, además de por las actividades humanas. Mientras que unos son emitidos directamente a la atmósfera (contaminantes primarios), como los óxidos de azufre o de carbono, otros pueden surgir del fruto de reacciones químicas en la atmósfera, como algunos óxidos de nitrógeno, o la compleja generación del ozono, uno de los principales contaminantes atmosféricos secundarios y de mayor importancia en nuestro medio mediterráneo.

COMPUESTOS DE AZUFRE Asociados con el contenido en azufre de los combustibles fósiles, están por tanto relacionados con la combustión del gasóleo en los vehículos y producción de energía y carbón en las centrales térmicas, determinados procesos industriales y con las calefacciones domésticas. En la atmósfera urbana está representada una amplia gama de compuestos de azufre, pero desde un punto de vista práctico los más importantes son el dióxido de azufre gaseoso, el ácido sulfúrico y los sulfatos. Los cambios en tipos de

combustibles en Europa Occidental han llevado a una disminución considerable de las emisiones de SO2 aunque aún se pueden dar altas concentraciones puntuales a nivel local asociadas a emisiones ocasionales.

COMPUESTOS DE NITRÓGENO Su principal fuente de emisión no natural proviene de los combustibles fósiles utilizados para el transporte, calefacción y generación de energía. La mayoría de combustiones producen monóxido de nitrógeno (NO) que, por procesos de oxidación da lugar al dióxido de nitrógeno (NO2). Algunas veces la información que se suministra se refiere en términos de NOX, indicando una mezcla de óxidos de nitrógeno.

ÓXIDOS DE CARBONO Fundamentalmente son el monóxido de carbono (CO) y el dióxido de carbono (CO2). Se liberan a la atmósfera como consecuencia de las combustiones incompletas (CO) y completas (CO2). La fuente principal del CO son los humos procedentes del escape de los vehículos a motor. Por otro lado, el CO2, es uno de los principales contaminantes responsables del efecto invernadero.

COMPUESTOS ORGÁNICOS VOLÁTILES (COV) Los COV son un grupo variado de compuestos presentes en la atmósfera que incluyen un amplio espectro de hidrocarburos como alcanos, alquenos, hidrocarburos aromáticos, cetonas, alcoholes, ésteres y algunos compuestos clorados. El benceno (C6H6) es un COV aromático que ha recibido mucha atención debido a su carcinogenicidad. El tolueno (C6H5CH3) es un COV que actúa como importante precursor del ozono. En algunas ocasiones el metano (CH4) se mide de forma independiente al resto de los COV y entonces se habla de los compuestos orgánicos volátiles no metánicos (COVNM).

OTROS COMPUESTOS Además de las sustancias anteriormente citadas, en la atmósfera se encuentran una serie de contaminantes que se presentan más raramente pero que pueden producir efectos negativos sobre determinadas zonas por ser su emisión a la atmósfera muy localizada. Entre otros, se encuentran como más significativos los siguientes: halógenos y sus derivados; arsénico y sus derivados; partículas de metales ligeros y pesados como el plomo, el mercurio, cobre y zinc; partículas de sustancias minerales como el amianto y los asbestos, así como sustancias radiactivas. A título de ejemplo que aglutina cómo aparecen en la práctica estos contaminantes, en la tabla 1 se muestran los principales contaminantes primarios presentes en una atmósfera urbana, como es el caso de la ciudad de Madrid, las cantidades anuales que se emiten de cada contaminante y cuál es el sector que más contribuye a su emisión. Como puede observarse es el tráfico rodado en principal causante de la contaminación en una atmósfera urbana, con una contribución superior al 75% en aquellos contaminantes que más preocupan en este tipo de atmósferas como son las partículas materiales (PM10 y PM2,5) y los óxidos de nitrógeno (NOx).

Tabla 1. Emisiones anuales de los contaminantes primarios más importantes en la ciudad de Madrid en 2006. Fuente: Ayuntamiento de Madrid. Tabla del Capítulo 1 del Observatorio DKV Salud y Medio Ambiente 2010: "Contaminación Atmosférica y Salud”

LOS CONTAMINANTES SECUNDARIOS Y LA CONTAMINACIÓN FOTOQUÍMICA. EL OZONO TROPOSFÉRICO. La contaminación fotoquímica se produce como consecuencia de la aparición en la atmósfera de sustancias denominadas oxidantes. Éstas se originan al reaccionar entre sí los óxidos de nitrógeno, los hidrocarburos y el oxígeno en presencia de la radiación ultravioleta de los rayos de sol. La formación de los oxidantes se ve favorecida en situaciones estacionarias de alta presión (anticiclones) asociados a una fuerte insolación y vientos débiles que dificultan la dispersión de contaminantes primarios. El ozono (O3) es, desde el punto de vista toxicológico, el más importante de estos contaminantes. Dado que los contaminantes primarios procedentes de las emisiones de los automóviles reaccionan con él, puede encontrarse a concentraciones considerables incluso en zonas alejadas de las fuentes de emisión, y son, a menudo, más altos los niveles en los alrededores de las grandes ciudades que en el interior de las mismas.

EL OZONO TROPOSFÉRICO. SU FORMACIÓN Y DIFUSIÓN. El ozono troposférico, denominado así porque se refiere al ozono existente en la baja atmósfera (0-20 km) denominada troposfera para distinguirlo del que existe en la alta atmósfera (20-40 km) o estratosfera, puede tener un origen natural o ser producto de las actividades humanas.

El tráfico rodado es el principal causante de la contaminación en una atmósfera urbana, con una contribución superior al 75% en aquellos contaminantes que más preocupan. De forma natural, procede de las intrusiones del ozono presente en la estratosfera. También puede formarse a partir de las descargas eléctricas de las tormentas que alteran el oxígeno atmosférico o aparecer a partir de emisiones procedentes de actividades naturales como la vegetación (robledales), los volcanes y las fermentaciones.

Pero quizá la principal fuente del ozono troposférico sea la del origen antropogénico como contaminante secundario, es decir, no emitido directamente por ninguna fuente, sino producido a partir de otros contaminantes denominados precursores, en presencia de radiación solar. A comienzos de la década de los 50 del siglo pasado fueron identificados los óxidos de nitrógeno (NOx) y los compuestos orgánicos volátiles (COV), especialmente los hidrocarburos, como los dos precursores químicos clave en la formación del ozono troposférico.

Los niveles de ozono son, a menudo, más altos en los alrededores de las grandes ciudades que en el interior de las mismas. Aunque el 66 % de los NOx tiene un origen natural (emisión de los suelos, fenómenos tormentosos, emisiones desde el mar, etc.) es evidente que en la atmósfera urbana los principales focos de emisión son de origen antrópico y se refieren a la combustión de materiales orgánicos tanto en fuentes estacionarias (calefacciones, procesos industriales y centrales térmicas) como en fuentes móviles (vehículos de gasolina y de gasoil). Los COV, fundamentalmente constituidos por hidrocarburos, también pueden tener un origen natural y otro antrópico. En el primero destacan como emisores los robles y los sicomoros; también pueden emitirse COV desde los pantanos o desde el océano. Entre los emisores antropogénicos destacan las emisiones procedentes por la de descomposición térmica de compuestos orgánicos, fundamentalmente por la combustión incompleta de éstos. Estas reacciones químicas del ozono tienen varias implicaciones que explican su comportamiento espacial y temporal:

 



en primer lugar la necesidad de luz solar hace que a escala temporal de un día el proceso se inicie a primera hora de la mañana, alcanzándose las máximas concentraciones de ozono en las primeras horas de la tarde comenzando a decaer a medida que disminuye la insolación. Por otro lado en entornos urbanos contaminados el monóxido de nitrógeno (NO) recién emitido puede combinarse inmediatamente con el ozono según la reacción (3) reduciendo sus concentraciones en el ambiente. Esto hace que, normalmente, los máximos de ozono no se den en el centro de la ciudad sino en los parques y en la periferia de las grandes urbes, donde son menores las emisiones a la atmósfera de NOx. Debido a este proceso, una reducción de las emisiones de NOx en las ciudades puede dar lugar a un aumento en las concentraciones de ozono. En estos casos son los COV los que deberían controlarse. En cuanto al ciclo anual los factores meteorológicos implicados como son la fuerte insolación, la estabilidad atmosférica, la ausencia de vientos y las altas temperaturas hacen que los niveles de inmisión máximos de este contaminante secundario se den, fundamentalmente, en los meses de verano, al contrario que ocurría con otros contaminantes primarios en los que las máximas concentraciones se producen en los meses de invierno coincidiendo con el encendido de las calefacciones y la peor dispersión de los contaminantes en la atmósfera por las situaciones de bloqueo o estancamiento atmosférico.

Vídeo sobre el OZONO. Pulsa sobre la imagen para descargar la animación sobre la variación en los niveles diarios de ozono sobre una gran ciudad.

LA CONTAMINACIÓN FOTOQUÍMICA Además de las reacciones de formación y destrucción del ozono a través del ciclo fotolítico del NO2, pueden formarse también radicales libres. La presencia en el aire de hidrocarburos hace que el ciclo fotolítico se desequilibre al reaccionar éstos con oxígeno atómico y el ozono generado, produciendo radicales libres muy activos, del siguiente modo:

O3 + 3HC>3HCOEstos radicales libres reaccionan con otros radicales dando lugar a la formación de otras sustancias como aldehídos, cetonas y nitratos de peroxiacilo (PAN). La mezcla de todas estas sustancias da lugar a la denominada contaminación fotoquímica o smog fotoquímico. Este tipo de contaminación se presenta cada vez con más frecuencia en las grandes ciudades de los países industrializados y al necesitar de la luz solar y por la naturaleza de las complejas reacciones químicas implicadas, suele ser máxima al mediodía.

Como hemos visto la contaminación atmosférica representa un riesgo ambiental con consecuencias perjudiciales para la salud. Según el informe “Cambio Global España 2020/50. Cambio climático y salud” , las emisiones a la atmósfera relacionadas con el cambio climático pueden agravar los efectos de la contaminación del aire sobre la salud de los ciudadanos, no solo directamente por el impacto en los fenómenos meteorológicos, sino, de manera inmediata, por los efectos directos de los contaminantes sobre la salud. Los contaminantes atmosféricos de los que se dispone de pruebas más claras respecto a su impacto en salud y que podrían tener mayor significación en un escenario de cambio climático son las partículas en suspensión y el ozono. La predicción del posible impacto de la contaminación atmosférica asociada al cambio climático sobre la salud está sometida a muchas incertidumbres. Entre ellas se encuentran los distintos escenarios de emisiones para el futuro, la sensibilidad y vulnerabilidad de las poblaciones y la posible interacción entre distintos fenómenos, como la temperatura y los niveles de ozono. - See more at: http://www.ecodes.org/salud-calidad-aire/201302176118/Las-causas-de-la-contaminacionatmosferica-y-los-contaminantes-atmosfericos-mas-importantes#sthash.WSImp5cW.dpuf CONTAMINACION ATMOSFERICA INTRODUCCIÓN Se llama contaminación a la transmisión y difusión de humos o gases tóxicos a medios como la atmósfera y el agua, como también a la presencia de polvos y gérmenes microbianos provenientes de los desechos de la actividad del ser humano. En la actualidad, el resultado del desarrollo y progreso tecnológico ha originado diversas formas de contaminación, las cuales alteran el equilibrio físico y mental del ser humano. Debido a esto, la actual contaminación se convierte en un problema más crítico que en épocas pasadas. Contaminación Atmosférica En las grandes ciudades, la contaminación del aire se debe a consecuencia de los escapes de gases de los motores de explosión, a los aparatos domésticos de la calefacción, a las industrias -que es liberado en la atmósfera, ya sea como gases, vapores o partículas sólidas capaces de mantenerse en suspensión, con valores superiores a los normales, perjudican la vida y la salud, tanto del ser humano como de animales y plantas. Esta capa (la atmósfera) absorbe la mayor cantidad de radiación solar y debido a esto se produce la filtración de todos los rayos ultravioletas. El aumento de anhídrido carbónico en la atmósfera se debe a la combustión del carbón y del petróleo, lo que lleva a un recalentamiento del aire y de los mares, con lo cual se produce un desequilibrio químico en la biosfera, produciendo una alta cantidad de monóxido de carbono, sumamente tóxica para los seres vivos. La contaminación atmosférica proviene fundamental-mente de la contaminación industrial por combustión, y las principales causas son la generación de electricidad y el automóvil. También hay otras sustancias tóxicas que contaminan la atmósfera como el plomo y el mercurio. Es importante que los habitantes de las grandes ciudades tomen conciencia de que el ambiente ecológico es una necesidad primaria. Se debería legislar sobre las sustancias que pueden ir a la atmósfera y la concentración que no debe superarse. Contaminación atmosférica,

Contaminación de la atmósfera por residuos o productos secundarios gaseosos, sólidos o líquidos, que pueden poner en peligro la salud del hombre y la salud y bienestar de las plantas y animales, atacar a distintos materiales, reducir la visibilidad o producir olores desagradables. Entre los contaminantes atmosféricos emitidos por fuentes naturales, sólo el radón, un gas radiactivo, es considerado un riesgo importante para la salud. Subproducto de la desintegración radiactiva de minerales de uranio contenidos en ciertos tipos de roca, el radón se filtra en los sótanos de las casas construidas sobre ella. Se da el caso, y según recientes estimaciones del gobierno de Estados Unidos, de que un 20% de los hogares del país contienen concentraciones de radón suficientemente elevadas como para representar un riesgo de cáncer de pulmón. Cada año, los países industriales generan miles de millones de toneladas de contaminantes. Los contaminantes atmosféricos más frecuentes y más ampliamente dispersos se describen en la tabla adjunta. El nivel suele expresarse en términos de concentración atmosférica (microgramos de contaminantes por metro cúbico de aire) o, en el caso de los gases, en partes por millón, es decir, el número de moléculas de contaminantes por millón de moléculas de aire. Muchos contaminantes proceden de fuentes fácilmente identificables; el dióxido de azufre, por ejemplo, procede de las centrales energéticas que queman carbón o petróleo. Otros se forman por la acción de la luz solar sobre materiales reactivos previamente emitidos a la atmósfera (los llamados precursores). Por ejemplo, el ozono, un peligroso contaminante que forma parte del smog, se produce por la interacción dehidrocarburos y óxidos de nitrógeno bajo la influencia de la luz solar. El ozono ha producido también graves daños en las cosechas. Por otra parte, el descubrimiento en la década de 1980 de que algunos contaminantes atmosféricos, como los clorofluorocarbonos (CFC), están produciendo una disminución de la capa de ozono protectora del planeta ha conducido a una supresión paulatina de estos productos. Meteorología y efectos sobre la salud La concentración de los contaminantes se reduce al dispersarse éstos en la atmósfera, proceso que depende de factores climatológicos como latemperatura, la velocidad del viento, el movimiento de sistemas de altas y bajas presiones y la interacción de éstos con la topografía local, por ejemplo las montañas y valles. La temperatura suele decrecer con la altitud, pero cuando una capa de aire frío se asienta bajo una capa de aire caliente produciendo una inversión térmica, la mezcla atmosférica se retarda y los contaminantes se acumulan cerca del suelo. Las inversiones pueden ser duraderas bajo un sistema estacionario de altas presiones unido a una baja velocidad del viento. Un periodo de tan sólo tres días de escasa mezcla atmosférica puede llevar a concentraciones elevadas de productos peligrosos en áreas de alta contaminación y, en casos extremos, producir enfermedades e incluso la muerte. En 1948 una inversión térmica sobre Donora, Pennsylvania, produjo enfermedades respiratorias en más de 6.000 personas ocasionando la muerte de veinte de ellas. En Londres, la contaminación segó entre 3.500 y 4.000 vidas en 1952, y otras 700 en 1962. La liberación de isocianato de metilo a la atmósfera durante una inversión térmica fue la causa del desastre de Bhopâl, India, en diciembre de 1984, que produjo al menos 3.300 muertes y más de 20.000 afectados. Los efectos de la exposición a largo plazo a bajas concentraciones de contaminantes no están bien definidos; no obstante, los grupos de riesgo son los niños, los ancianos, los fumadores, los trabajadores expuestos al contacto con materiales tóxicos y quienes padecen enfermedades pulmonares o cardiacas. Otros efectos adversos de lacontaminación atmosférica son los daños que pueden sufrir el ganado y las cosechas. A menudo los primeros efectos perceptibles de la contaminación son de naturaleza estética y no son necesariamente peligrosos. Estos efectos incluyen la disminución de la visibilidad debido a la presencia de diminutas partículas suspendidas en el aire, y los malos olores, como la pestilencia a huevos podridos producida por el sulfuro de hidrógeno que emana de las fábricas de papel y celulosa. Fuentes y control La combustión de carbón, petróleo y gasolina es el origen de buena parte de los contaminantes atmosféricos. Más de un 80% del dióxido de azufre, un 50% de los óxidos de nitrógeno, y de un 30 a un 40% de las partículas en suspensión emitidos a la atmósfera en Estados Unidos proceden de las centrales eléctricas que queman combustibles fósiles, las calderas industriales y las calefacciones. Un 80% del monóxido de carbono y un 40% de los óxidos de nitrógeno e hidrocarburos emitidos proceden de la combustión de la gasolina y el gasóleo en los motores de los coches y camiones. Otras importantes fuentes de contaminación son la siderurgia y las acerías, las fundiciones de cinc, plomo y cobre, las incineradoras municipales, las refinerías de petróleo, las fábricas de cemento y las fábricas de ácido nítrico y sulfúrico.

Entre los materiales que participan en un proceso químico o de combustión puede haber ya contaminantes (como el plomo de la gasolina), o éstos pueden aparecer como resultado del propio proceso. El monóxido de carbono, por ejemplo, es un producto típico de los motores de explosión. Losmétodos de control de la contaminación atmosférica incluyen la eliminación del producto peligroso antes de su uso, la eliminación del contaminante una vez formado, o la alteración del proceso para que no produzca el contaminante o lo haga en cantidades inapreciables. Los contaminantes producidos por los automóviles pueden controlarse consiguiendo una combustión lo más completa posible de la gasolina, haciendo circular de nuevo los gases del depósito, el carburador y el cárter, y convirtiendo los gases de escape en productos inocuos por medio de catalizadores. Las partículas emitidas por las industrias pueden eliminarse por medio de ciclones, precipitadores electrostáticos y filtros. Los gases contaminantes pueden almacenarse en líquidos o sólidos, o incinerarse para producir sustancias inocuas. Efectos a gran escala Las altas chimeneas de las industrias no reducen la cantidad de contaminantes, simplemente los emiten a mayor altura, reduciendo así su concentraciónin situ. Estos contaminantes pueden ser transportados a gran distancia y producir sus efectos adversos en áreas muy alejadas del lugar donde tuvo lugar la emisión. El pH o acidez relativa de muchos lagos de agua dulce se ha visto alterado hasta tal punto que han quedado destruidas poblaciones enteras de peces. En Europa se han observado estos efectos, y así, por ejemplo, Suecia ha visto afectada la capacidad de sustentar peces de muchos de sus lagos. Las emisiones de dióxido de azufre y la subsiguiente formación de ácido sulfúrico pueden ser también responsables del ataque sufrido por las calizas y el mármol a grandes distancias. El creciente consumo de carbón y petróleo desde finales de la década de 1940 ha llevado a concentraciones cada vez mayores de dióxido de carbono. El efecto invernadero resultante, que permite la entrada de la energía solar, pero reduce la reemisión de rayos infrarrojos al espacio exterior, genera una tendencia al calentamiento que podría afectar al clima global y llevar al deshielo parcial de los casquetes polares. Es concebible que un aumento de la cubierta nubosa o la absorción del dióxido de carbono por los océanos pudieran poner freno al efecto invernadero antes de que se llegara a la fase del deshielo polar. No obstante, los informes publicados en la década de 1980 indican que el efecto invernadero es un hecho y que las naciones del mundo deberían tomar medidas inmediatamente para ponerle solución. Medidas gubernamentales Muchos países tienen normas sobre la calidad del aire con respecto a las sustancias peligrosas que pueda contener. Estas normativas marcan los niveles máximos de concentración que permiten garantizar la salud pública. También se han establecido normas para limitar las emisiones contaminantes del aire que producen las diferentes fuentes de contaminación. Sin embargo, la naturaleza de este problema no podrá resolverse sin un acuerdo internacional. En marzo de 1985, en una convención auspiciada por las Naciones Unidas, 49 países acordaron proteger la capa de ozono. En elProtocolo de Montreal, renegociado en 1990, se solicita la eliminación progresiva de ciertos clorocarbonos y fluorocarbonos antes del año 2000 y ofrece ayuda a los países en vías de desarrollo para realizar esta transición. Inversión térmica Aumento de la temperatura con la altitud en una capa de la atmósfera. Como la temperatura suele descender con la altitud hasta el nivel de los 8 a 16 km de la troposfera a razón de aproximadamente 6,5 ºC/km, el aumento de la temperatura con la altitud se conoce como inversión del perfil de temperatura normal. Sin embargo, se trata de una característica común de ciertas capas de la atmósfera. Las inversiones térmicas actúan como tapaderas que frenan los movimientos ascendentes de la atmósfera. En efecto, el aire no puede elevarse en una zona de inversión, puesto que es más frío y, por tanto, más denso en la zona inferior. Inversiones próximas a la superficie En las noches claras se produce una inversión en la superficie o muy cerca de ella a consecuencia del escape de radiación de longitud de onda larga desde la superficie terrestre y las capas altas de la atmósfera, seguido del consiguiente enfriamiento. Al amanecer, la masa de aire frío pegada a la superficie puede tener varias decenas de metros de espesor, aunque este valor puede ser muy superior en regiones montañosas o accidentadas, ya que el aire frío desciende por las laderas y se acumula en el fondo de los valles. Las inversiones próximas a la superficie son comunes en regiones cubiertas de hielo y nieve, como las zonas polares, debido a la radiación y el enfriamiento por conducción; además, en estas regiones el aire cálido debe atravesar la superficie marina fría. Inversiones atmosféricas

Lejos de la superficie terrestre, las inversiones de temperatura se deben al descenso y el consiguiente calentamiento del aire en los anticiclones (áreas atmosféricas de alta presión), o a la penetración de masas de aire frío en otras más cálidas. Dentro de los anticiclones, incluidos los situados sobre los amplios cinturones subtropicales, el aire de las capas secas situadas bajo la tropopausa (límite entre la troposfera y la estratosfera) desciende a razón de aproximadamente 1 km al día como parte de la circulación atmosférica a gran escala y, en el curso de este desplazamiento, se calienta por compresión. El descenso suele interrumpirse a una altitud de aproximadamente 1 km, una zona donde el aire que desciende es más cálido y se apoya sobre la parte superior de una capa atmosférica enfriada por la superficie o procedente de regiones más frías, o que se está elevando a consecuencia de movimientos de convección o de turbulencias próximos a la superficie. La base de la inversión en torno a los anticiclones subtropicales, centrados aproximadamente a 30º al norte y al sur del ecuador, se encuentra a una altitud próxima a los 500 m, y por encima la temperatura puede aumentar más de 10 ºC por km. La base está más elevada hacia el ecuador a lo largo de la dirección noreste y sureste de los alisios, y puede llegar hasta 2.000 m. En la zona de convergencia de los alisios penetran en la inversión masas de grandes cumulonimbos que inyectan enormes cantidades de humedad y calor en las capas altas de la atmósfera. Son ejemplos de penetración de masas de aire cálido por corrientes frías los flujos de los frentes cálidos y fríos; el caso más destacado es el de los monzones; los flujos que sobrevuelan lagos o mares relativamente fríos (la brisa marina, por ejemplo) y penetran durante el día en las masas continentales adyacentes, mientras que de noche se dirigen desde tierra hacia el mar. Las inversiones por encima de las brisas están a casi 1 km de la superficie, mientras que las que afectan a frentes cálidos y fríos pueden encontrarse dentro de la troposfera. La temperatura aumenta con la altitud también en la estratosfera; el aumento es más acusado en las capas medias y altas situadas entre 20 y 50 km de altitud. Efectos adversos de la inversión térmica Aunque los anticiclones suelen estar limpios de nubes cuando las capas de subinversión y la superficie están secas (sobre interiores continentales y desiertos, por ejemplo), las inversiones térmicas pueden atrapar nubes, humedad, contaminación y polen de capas próximas a la superficie, pues interrumpen la elevación del aire desde las capas bajas. Los estratocúmulos de bajo nivel pueden adquirir un carácter extenso y persistente y provocar una ‘oscuridad anticiclónica’, sobre todo si el aire viene del mar. Cuando la velocidad del aire es baja a consecuencia de la inversión, los gases de escape de los automóviles y otros contaminantes no se dispersan y alcanzan concentraciones elevadas, sobre todo en torno a centros urbanos como Atenas, Los Ángeles, Londres y la ciudad de México. La mala calidad del aire a que ello da lugar aumenta la tasa de asma y otras afecciones respiratorias e incluso eleva la mortalidad. Esta clase de inversiones que atrapan la contaminación pueden durar varios días en verano. La conciencia de la gravedad del problema, sobre todo en los veranos más calurosos, ha llevado a los organismos competentes a vigilar la calidad del aire y a advertir cuando es mala y alcanza unos niveles elevados. Contaminación producida por el tráfico Contaminación debida al exceso de circulación rodada y provocada sobre todo por la quema de combustibles fósiles, en especial gasolina y gasoil. Los contaminantes más usuales que emite el tráfico son el monóxido de carbono, los óxidos de nitrógeno, los compuestos orgánicos volátiles y las macropartículas. Por lo que se refiere a estas emisiones, los transportes en los países desarrollados representan entre el 30 y el 90% del total. También hay compuestos de plomo y una cantidad menor de dióxido de azufre y de sulfuro de hidrógeno. El amianto se libera a la atmósfera al frenar. El tráfico es también una fuente importante de dióxido de carbono. El monóxido de carbono es venenoso. A dosis reducidas produce dolores de cabeza, mareos, disminución de la concentración y del rendimiento. Los óxidos de nitrógeno y azufre tienen graves efectos sobre las personas que padecen asma bronquial, cuyos ataques empeoran cuanto mayor es la contaminación, pues además estas sustancias irritan las vías respiratorias, si bien aún no hay una explicación médica precisa. Entre los compuestos orgánicos volátiles está el benceno, que puede provocar cáncer, al igual que el amianto, aunque su efecto sólo está claramente establecido a dosis más altas que las debidas al tráfico. Las macropartículas son partículas sólidas y líquidas muy pequeñas que incluyen el humo negro producido sobre todo por los motores diesel y se asocian a una amplia gama de patologías, entre ellas las enfermedades cardíacas y pulmonares. El plomo dificulta el desarrollo intelectual de los niños. El dióxido de carbono no siempre se clasifica como contaminante, pero sí guarda relación con el calentamiento global.

La mayor preocupación por la contaminación que produce el tráfico rodado se refiere a las zonas urbanas, en donde un gran volumen de vehículos y elevadas cifras de peatones comparten las mismas calles. Ciertos países controlan ya los niveles de contaminación de estas zonas para comprobar que no se sobrepasan las cifras establecidas internacionalmente. Los peores problemas se producen cuando se presenta una combinación de tráfico intenso y de calor sin viento; en los hospitales aumenta el número de urgencias por asma bronquial, sobre todo entre los niños. Las concentraciones son más elevadas en las calzadas por donde circulan los coches, o cerca de éstas (es probable que el máximo se alcance de hecho dentro de los vehículos, donde las entradas de aire están contaminadas por los vehículos que van adelante) y se reducen con rapidez incluso a poca distancia de la calzada sobre todo si sopla el viento. Sin embargo, aparte de los efectos directos sobre la salud de las personas que respiran los humos del tráfico, los productos químicos interactúan y producen ozono de bajo nivel, que también contribuye al calentamiento global, así como lluvia ácida, la cual tiene efectos destructores sobre la vida vegetal, aun en países alejados de las fuentes de emisión. Los catalizadores limpian parte de las emisiones, pero no así el plomo, el dióxido de carbono ni las macropartículas. Hay plomo porque se añade a la gasolina para mejorar el rendimiento del motor. Es posible reducir su empleo aplicando diferenciales de precios. El dióxido de carbono es inevitable en los combustibles fósiles; su reducción depende de la utilización de otros combustibles, de mejorar la eficacia del combustible o de reducir el volumen de tráfico. En muchos países, reducir la contaminación que provoca el tráfico es una de las grandes prioridades y, en la mayoría de los casos (aunque no siempre), se reconoce que ello puede pasar por restringir en cierta medida el aumento del volumen total de tráfico, ya sea con medidas de urgencia durante algunos días, cuando la contaminación es demasiado alta, o mediante políticas más completas a largo plazo. La calidad del aire es uno de los motivos de políticas como la implantación de zonas peatonales en el centro de las ciudades, la limitación del tráfico y la creación de autopistas de peaje. Capa de ozono Zona de la atmósfera que abarca entre los 19 y 48 km por encima de la superficie de la Tierra. En ella se producen concentraciones de ozono de hasta 10 partes por millón (ppm). El ozono se forma por acción de la luz solar sobre el oxígeno. Esto lleva ocurriendo muchos millones de años, pero los compuestos naturales de nitrógeno presentes en la atmósfera parecen ser responsables de que la concentración de ozono haya permanecido a un nivel razonablemente estable. A nivel del suelo, unas concentraciones tan elevadas son peligrosas para la salud, pero dado que la capa de ozono protege a la vida del planeta de la radiación ultravioleta cancerígena, su importancia es inestimable. Por ello, los científicos se preocuparon al descubrir, en la década de 1970, que ciertos productos químicos llamados clorofluorocarbonos, o CFC (compuestos del flúor), usados durante largo tiempo como refrigerantes y como propelentes en los aerosoles, representaban una posible amenaza para la capa de ozono. Al ser liberados en la atmósfera, estos productos químicos, que contienen cloro, ascienden y se descomponen por acción de la luz solar, tras lo cual el cloro reacciona con las moléculas de ozono y las destruye. Por este motivo, el uso de CFC en los aerosoles ha sido prohibido en muchos países. Otros productos químicos, como los halocarbonos de bromo, y los óxidos de nitrógeno de los fertilizantes, son también lesivos para la capa de ozono. Durante varios años, a partir de finales de la década de 1970, los investigadores que trabajaban en la Antártida detectaron una pérdida periódica de ozono en las capas superiores de la atmósfera por encima del continente. El llamado agujero de la capa de ozono aparece durante la primaveraantártica, y dura varios meses antes de cerrarse de nuevo. Otros estudios, realizados mediante globos de gran altura y satélites meteorológicos, indican que el porcentaje global de ozono en la capa de ozono de la Antártida está descendiendo. Vuelos realizados sobre las regiones del Ártico, descubrieron que en ellas se gesta un problema similar. En 1985, una convención de las Naciones Unidas, conocida como Protocolo de Montreal, firmada por 49 países, puso de manifiesto la intención de eliminar gradualmente los CFC de aquí a finales de siglo. En 1987, 36 naciones firmaron y ratificaron un tratado para la protección de la capa de ozono. La Comunidad Europea (hoy Unión Europea) propuso en 1989 la prohibición total del uso de CFC durante la década de 1990, propuesta respaldada por el entonces presidente de Estados Unidos, George Bush. Con el fin de estudiar la pérdida de ozono a nivel global, en 1991 la NASA lanzó el Satélite de Investigación de la Atmósfera Superior, de 7 toneladas. En órbita sobre la Tierra a una altitud de 600 km, la nave mide las variaciones en las concentraciones de ozono a diferentes altitudes, y suministra los primeros datos completos sobre la químicade la atmósfera superior. El ozono lo podemos encontrar de dos maneras:

El ozono formado en la atmósfera (desde la superficie de la tierra hasta 15 kilómetros de altura), es muy nocivo para los seres vivos, pues además de ser un contaminante, participa en el efecto invernadero. En este caso es un contaminante que es llamado secundario porque no se emite directamente a la atmósfera, sino que se forma en el aire cuando los hidrocarburos y los óxidos de nitrógeno reaccionan bajo la luz del sol generalmente en los días tibios y soleados con temperaturas que oscilen entre los 24° y 32°C. En los últimos años los niveles de ozoo han aumentado considerablemente. Por otro lado, forma parte de las capas superiores de la atmósfera (lo encontramos en la estratosfera unos 25 kilómetros de altura) y funciona como un compuesto vital, ya que ayuda a filtrar los rayos ultravioleta provenientes del sol y evita que el 90% de la radiación solar ultravioleta atraviese la atmósfera y cause algún daño en las cosechas o en las células de los organismos vivos, ya que puede provocar cáncer en la piel. El ozono es muy dañino si se encuentra en la troposfera, pero también nos protege de los rayos ultravioleta encontrándose en la Estratosfera En 1984 se descubrió un agujero en la capa estratosférica de ozono localizada sobre la Antártida. Esto era inesperado, a pesar de la advertencia de algunos científicos, planteada desde hacia décadas pero rechazada especialmente por la industria química, de que los clorofluorocarbonados (CFC) podrían dañar la capa de ozono. Los CFC afectan la capa de ozono cuando, al llegar a la atmósfera, se rompen por medio de algunas reacciones químicas y producen monóxido de cloro (CIO), el cual reacciona con el ozono (O3) quitándole un átomo de oxigeno y convirtiéndolo en una molécula diatómica (O2), el cual no sirve para filtrar los rayos ultravioleta (UV) del sol. Se calcula que una molécula de monóxido de cloro (CIO) puede destruir millones de moléculas de ozono. Si a esto le agregamos que los clorofluorocarbonados (CFC) son moléculas muy estables, las cuales duran casi 20 años como tales en la atmósfera, entonces todavía en el futuro, infinidad de moléculas de la capa de ozono serán destruidas. Se piensa que de seguir la tasa actual de disminución de la capa de ozono, en corto plazo se habría de presentar graves efectos sobre los seres vivos, pues la exposición a los rayos ultravioleta puede causar cáncer de piel, cataratas y disfunciones del sistema inmunológico, así como, un rendimiento menor de los cultivos, y lo mas grave, una disminución en la productividad del fitoplancton, principal productor del medio oceánico. Atmósfera La tierra esta rodeada por una gigantesca masa de gases llamada atmósfera, sin la cual sería un planeta muerto, estéril y no podrían existir las plantas, los animales y el hombre. ¿Qué es la atmósfera? Atmósfera, mezcla de gases que rodea un objeto celeste (como la Tierra) cuando éste cuenta con un campo gravitatorio suficiente para impedir que escapen. La atmósfera terrestre está constituida principalmente por nitrógeno (78%) y oxígeno (21%). El 1% restante lo forman el argón (0,9%), el dióxido de carbono (0,03%), distintas proporciones de vapor de agua, y trazas de hidrógeno, ozono, metano, monóxido de carbono, helio, neón, kriptón y xenón. La actual mezcla de gases se ha desarrollado a lo largo de 4.500 millones de años. La atmósfera primigenia debió estar compuesta únicamente de emanaciones volcánicas. Los gases que emiten los volcanes actuales están formados por una mezcla de vapor de agua, dióxido de carbono, dióxido de azufre y nitrógeno, sin rastro apenas de oxígeno. Si ésta era la mezcla presente en la atmósfera primitiva, han tenido que desarrollarse una serie deprocesos para dar lugar a la mezcla actual. Uno de ellos fue la condensación. Al enfriarse, la mayor parte del vapor de agua de origen volcánico se condensó, dando lugar a los antiguos océanos. También se produjeron reacciones químicas. Parte del dióxido de carbono debió reaccionar con lasrocas de la corteza terrestre para formar carbonatos, algunos de los cuales se disolverían en los nuevos océanos. Más tarde, cuando evolucionó en ellos la vida primitiva capaz de realizar la fotosíntesis, los organismos marinos recién aparecidos empezaron a producir oxígeno. Se cree que casi todo el oxígeno que en la actualidad se encuentra libre en el aire procede de la combinación fotosintética de dióxido de carbono y agua. Hace unos 570 millones de años, el contenido en oxígeno de la atmósfera y los océanos aumentó lo bastante como para permitir la existencia de la vida marina y laevolución de animales terrestres capaces de respirar aire.

El contenido en vapor de agua del aire varía considerablemente, de 190 partes por millón (ppm) a -40 °C hasta 42.000 ppm a 30 °C. Otros elementos que en ocasiones constituyen parte de la atmósfera en cantidades minúsculas son el amoníaco, el sulfuro de hidrógeno y óxidos, como los de azufre y nitrógeno cerca de los volcanes, arrastrados por la lluvia o la nieve. No obstante, el principal riesgo se centra en los óxidos y otros contaminantes emitidos a la atmósfera por las industrias y los vehículos debido a los efectos dañinos que originan cuando forman la lluvia ácida. Hay además muchas posibilidades de que el progresivo incremento de dióxido de carbono, producido sobre todo por los combustibles fósiles desde el siglo pasado, pueda afectar al clima planetario a través del llamado efecto invernadero. Hay similar preocupación por el brusco aumento del contenido de metano en la atmósfera. Su concentración ha aumentado un 11% desde 1978. Más o menos el 80% del gas es producido por descomposición en arrozales, pantanos, intestinos de los animales herbívoros, y por las termitas tropicales. Añadido al efecto invernadero, el metano reduce el volumen atmosférico de iones hidroxilo, alterando así la capacidad de la atmósfera para autodepurarse de contaminantes. El estudio de muestras indica que hasta los 88 km por encima del nivel del mar la composición de la atmósfera es sustancialmente la misma que al nivel del suelo. El movimiento continuo ocasionado por las corrientes atmosféricas contrarresta la tendencia de los gases más pesados a permanecer por debajo de los más ligeros. En la parte más baja de la atmósfera está presente, en proporciones muy reducidas, el ozono, un isótopo del oxígeno con tres átomos en cada molécula. La capa atmosférica que va de los 19 a los 48 km tiene un mayor contenido en ozono, producido por la radiación ultravioleta procedente del Sol. Pero, incluso en este estrato, el porcentaje es sólo de un 0,001 por volumen. Las perturbaciones atmosféricas y las corrientes descendentes arrastran distintas proporciones de ozono hacia la superficie terrestre. En las capas bajas de la atmósfera, la actividad humana incrementa la cantidad de ozono, que se convierte en un contaminante capaz de ocasionar daños graves en las cosechas. La capa de ozono se ha convertido en motivo de preocupación desde comienzos de la década de 1970, cuando se descubrió que los clorofluorocarbonos (CFC), o clorofluorometanos, estaban siendo vertidos a la atmósfera en grandes cantidades a consecuencia de su empleo como refrigerantes y como propelentes en los aerosoles. La preocupación se centraba en la posibilidad de que estos compuestos, a través de la acción solar, pudiesen atacar fotoquímicamente y destruir el ozono estratosférico, que protege la superficie del planeta del exceso de radiación ultravioleta. El resultado ha sido que, en los países industrializados, se ha abandonado la utilización de clorofluorocarbonos para todos aquellos usos que no son esenciales. Los posteriores estudios acerca de la amenaza que en la actualidad representa la actividad humana para la capa de ozono no son concluyentes. La atmósfera se divide en varios niveles. En la capa inferior, la troposfera, la temperatura suele bajar 5,5 °C por cada 1.000 metros. Es la capa en la que se forman la mayor parte de las nubes. La troposfera se extiende hasta unos 16 km en las regiones tropicales (con una temperatura de -79 °C) y hasta unos 9,7 km en latitudes templadas (con una temperatura de unos -51 °C). A continuación está la estratosfera. En su parte inferior la temperatura es prácticamente constante, o bien aumenta ligeramente con la altitud, especialmente en las regiones tropicales. Dentro de la capa de ozono, aumenta más rápidamente, con lo que, en los límites superiores de la estratosfera, casi a 50 km sobre el nivel del mar, es casi igual a la de la superficie terrestre. El estrato llamado mesosfera, que va desde los 50 a los 80 km, se caracteriza por un marcado descenso de la temperatura al ir aumentando la altura. Gracias a las investigaciones sobre la propagación y la reflexión de las ondas de radio, sabemos que a partir de los 80 km, la radiación ultravioleta, losrayos X y la lluvia de electrones procedente del Sol ionizan varias capas de la atmósfera, con lo que se convierten en conductoras de electricidad. Estas capas reflejan de vuelta a la Tierra ciertas frecuencias de ondas de radio. Debido a la concentración relativamente elevada de iones en la atmósfera por encima de los 80 km, esta capa, que se extiende hasta los 640 km, recibe el nombre de ionosfera. También se la conoce como termosfera, a causa de las altas temperaturas (en torno a los 400 km se alcanzan unos 1.200 °C). La región que hay más allá de la ionosfera recibe el nombre de exosfera y se extiende hasta los 9.600 km, lo que constituye el límite exterior de la atmósfera. La densidad del aire seco al nivel del mar representa aproximadamente un 1/800 de la densidad del agua. A mayor altitud desciende con rapidez, siendo proporcional a la presión e inversamente proporcional a la temperatura. La presión se mide mediante un barómetro y su valor, expresado en torrs, está relacionado con la altura a la que la presión atmosférica mantiene una columna de mercurio; 1 torr equivale a 1 mm de mercurio. La presión atmosférica normal a nivel del mar es de 760 torrs, o sea, 760 mm de mercurio. En torno a los 5,6 km es de 380 torrs; la mitad de todo el aire presente en la atmósfera se encuentra por debajo de este nivel.

La presión disminuye más o menos a la mitad por cada 5,6 km de ascensión. A una altitud de 80 km la presión es de 0,007 torr. La troposfera y la mayor parte de la estratosfera pueden explorarse mediante globos sonda preparados para medir la presión y la temperatura del aire y equipados con radiotransmisores que envían la información a estaciones terrestres. Se ha explorado la atmósfera más allá de los 400 km de altitud con ayuda de satélites que transmiten a tierra las lecturas realizadas por los instrumentos meteorológicos. El estudio de la forma y el espectro de la aurora ofrece información hasta altitudes de 800 kilómetros. La atmósfera es una cubierta protectora, sin ella la temperatura terrestre alcanzaría mas de 75°C durante el día y más de 130°C bajo cero en la noche. Actúa como un regulador térmico, además de traer lluvia de los océanos, calor de los desiertos, trópicos y ecuador y frío de los polos. Gracias a ella hay cielos brillantes y puestas de sol multicolores. Con frecuencia se mueve tranquilamente, pero aveces muestra su fuerza por medio de tornados y ciclones desplazándose a más de 300 kilómetros por hora. Es la responsable de todos los estados del tiempo y los tipos de clima que influyen en la vida de las plantas, los animales y el hombre. Este gran "océano" de aire en cuyo fondo habitan los seres vivos, esta constituido por una mezcla de gases que rodean al planeta, envolviéndolo en capas concéntricas de espesor y densidad variables. La atmósfera se encuentra sujeta a la Tierra por su fuerza de gravedad. Esta compuesta principalmente por diferentes gases tales como: nitrógeno, oxígeno, vapor de agua, Argón, Dióxido de carbono, hidrógeno, helio, Criptón y Xenón. El nitrógeno y oxígeno constituyen el 99% de la composición del aire, son gases transparentes que permiten que los rayos del Sol lleguen a la superficie de la Tierra, el vapor de agua también es trasparente hasta que se convierte en nubes, que sirven como una especie de tapa durante el día y por la noche retienen el calor del sol. Calentamiento global, Amento de la temperatura de la Tierra debido al uso de combustibles fósiles y a otros procesos industriales que llevan a una acumulación de gases invernadero (dióxido de carbono, metano, óxido nitroso y clorofluorocarbonos) en la atmósfera. Desde 1896 se sabe que el dióxido de carbono ayuda a impedir que los rayos infrarrojos escapen al espacio, lo que hace que se mantenga una temperatura relativamente cálida de nuestro planeta (efecto invernadero). La cuestión es si los crecientes niveles de dióxido de carbono registrados a lo largo del último siglo llevarán a un aumento de la temperatura global, lo que podría producir inundaciones costeras (por subida del nivel del mar) e importantes cambios climáticos, con graves implicaciones para la productividad agrícola. Desde 1850 se ha producido un incremento medio de la temperatura global de más o menos 1 °C, pero éste podría ser sólo parte de una fluctuación natural. Tales fluctuaciones se han registrado durante decenas de miles de años, y se producen en ciclos a corto y a largo plazo. La dificultad de distinguir las emisiones de dióxido de carbono de origen humano de las naturales es una de las razones por las que tanto ha tardado en legislarse su control. No obstante, las consecuencias potenciales del calentamiento global son tan amenazadoras que muchos prestigiosos científicos han urgido laadopción de medidas inmediatas y han solicitado la cooperación internacional para combatir el problema. El dióxido de carbono, de azufre y otros contaminantes emitidos por las chimeneas de las industrias contribuyen a la contaminación atmosférica. El dióxido de carbono contribuye al calentamiento global, y el dióxido de azufre es la principal causa de la lluvia ácida en el norte y este de Europa y el noreste de Norteamérica. Otros problemas ambientales incluyen enfermedades respiratorias, el envenenamiento de lagos y ríos y los daños a los bosques y las cosechas. Las perspectivas de futuro, en lo que al medio ambiente se refiere son poco claras. A pesar de los cambios económicos y políticos, el interés y la preocupación por el medio ambiente aún es importante. La calidad del aire ha mejorado, pero están pendientes de solución y requieren una acción coordinada los problemas de la lluvia ácida, los clorofluorocarbonos, la pérdida de ozono y la enorme contaminación atmosférica del este de Europa. Para reducir la degradación medioambiental y salvar el hábitat de la humanidad, las sociedades deben reconocer que el medio ambiente es finito. Los especialistas creen que, al ir creciendo las poblaciones y sus demandas, la idea del crecimiento continuado debe abrir paso a un uso más racional del medio ambiente, pero

que esto sólo puede lograrse con un espectacular cambio de actitud por parte de la especie humana. El impacto de la especie humana sobre el medio ambiente ha sido comparado con las grandes catástrofes del pasado geológico de la Tierra; independientemente de la actitud de la sociedad respecto al crecimiento continuo, la humanidad debe reconocer que atacar el medio ambiente pone en peligro la supervivencia de su propia especie. Dióxido de carbono Uno de los impactos que el uso de combustibles fósiles ha producido sobre el medio ambiente terrestre ha sido el aumento de la concentración de dióxido de carbono (CO2) en la atmósfera. La cantidad de CO2 atmosférico había permanecido estable, aparentemente durante siglos, en unas 260 ppm (partes por millón), pero en los últimos 100 años ha ascendido a 350 ppm. Lo significativo de este cambio es que puede provocar un aumento de la temperatura de la Tierra a través del proceso conocido como efecto invernadero. El dióxido de carbono atmosférico tiende a impedir que la radiación de onda larga escape al espacio exterior; dado que se produce más calor y puede escapar menos, la temperatura global de la Tierra aumenta. Un calentamiento global significativo de la atmósfera tendría graves efectos sobre el medio ambiente. Aceleraría la fusión de los casquetes polares, haría subir el nivel de los mares, cambiaría el clima regional y globalmente, alteraría la vegetación natural y afectaría a las cosechas. Estos cambios, a su vez, tendrían un enorme impacto sobre la civilización humana. Desde 1850 se ha producido un aumento medio en la temperatura global de cerca de 1 °C. Algunos científicos han predicho que el aumento de la concentración en la atmósfera de CO2 y otros "gases invernadero" provocará que las temperaturas continúen subiendo. Las estimaciones van de 2 a 6 ºC para mediados del siglo XXI. No obstante, otros científicos que investigan los efectos y tendencias del clima rechazan las teorías del calentamiento global, atribuyendo la última subida de la temperatura a fluctuaciones normales. Lectura adicional Fragmento del artículo La subida de los mares, en el que su autor expone las dudas de algunos expertos sobre las distintas causas que amenazan con incrementar las aguas de los océanos. Lo que más preocupa es la fusión de la reserva helada de la Antártida; sin embargo, los expertos opinan que es difícil apreciar si los casquetes de hielo están manteniendo constante su tamaño y que habrá que esperar unos años para saber si su conjunto alimenta o retiene el agua de los mares. Fragmento de La subida de los mares. De David Schneider. A comienzos de los noventa, estuvieron de moda los modelos de circulación global: unos programas informáticos, muy complejos, para predecir el clima futuro calculando el comportamiento de la atmósfera y el océano. Y se aplicaron al estudio de la posible incidencia de un clima más cálido en el casquete de hielo antártico. De tales investigaciones se desprendía que el calentamiento de invernadero llevaría a la Antártida aire más cálido y húmedo, que depositaría allí su humedad en forma de nieve. Podría, pues, incrementarse incluso la cuantía de hielo marino que rodea el continente. Dicho de otro modo, justamente cuando los expertos del SeaRISE estaban preparando su campaña para seguir la presumible fusión de la plataforma helada de la Antártida Occidental, los modelos informáticos mostraban la posibilidad de que dicha capa creciera, con el consiguiente descenso del nivel del mar: los hielos continentales retendrían el agua robada al mar. "Fue como dejar su velero sin viento", bromea Richard G. Fairballks, del Observatorio Geológico Lamont-Doherty de la Universidad de Columbia. Otras observaciones han obligado a cuestionar también la idea de que una fusión brusca de los hielos de la Antártida conllevara la subida del nivel del mar varios metros, en un futuro previsible. Los geólogos acaban de comprobar que, de las cinco grandes corrientes de hielo que alimentan el mar de Ross (designadas, con notoria falta de imaginación, corrientes de hielo A, B, C, D y E), no todas arrojan su contenido al océano. Una de las mayores, la C, cesó de operar hace unos 130 años, quizá porque perdió lubricación en su base. La verdad es que la vinculación del calentamiento climático con el movimiento de las corrientes de hielo de la Antártida Occidental se ha hecho cada vez más tenue. Según Ellen Mosley-Thomson, del Centro de Investigación Polar Byrd de la Universidad estatal de Ohio, las corrientes de hielo "parecen arrancar y detenerse, sin que nadie sepa la razón". Es más, de acuerdo con sus propias mediciones de la velocidad de acumulación de nieve en la vecindad del polo Sur, las nevadas han aumentado bastante en los últimos decenios, intervalo a lo largo del cual la temperatura global ha ascendido poco a poco; las observaciones realizadas en otros lugares de la Antártida han producido resultados similares.

Cierto es que las zonas de la Antártida sometidas a tan estricto seguimiento son pocas y alejadas entre sí, como subraya Mosley-Thompson. Aunque muchos expertos reconocen que la actividad humana ha contribuido al calentamiento global, nadie puede decir con certeza si el casquete antártico se está contrayendo o extendiendo en respuesta. Tamaña perplejidad podría desaparecer en sólo unos pocos años si la suerte acompaña a la Administración Nacional de Aeronáutica y del Espacio (NASA) en sus planes de lanzamiento de un satélite ideado para cartografiar con finura los cambios de altura de los casquetes polares; esa exactitud alcanzaría el centímetro por año. A bordo del satélite, que se proyecta poner en órbita en el 2002, iría un dispositivo láser de medición de distancias, capaz de detectar ligeros cambios en el volumen total de nieve y hielo almacenado en los polos. (Un instrumento láser similar viaja ahora camino de Marte, para cartografiar los cambios en los frígidos casquetes de hielo de ese planeta mucho antes de que podamos realizar esa misma operación con la Tierra.) Habrá que esperar, pues, a los primeros años del siglo que viene para saber si el casquete antártico en su conjunto está alimentando el mar o está reteniendo agua de éste. Antes, sin embargo, podremos obtener nuevas pruebas de la estabilidad de la vasta plataforma helada de la Antártida Occidental. Hay previstas perforaciones profundas en la cresta de hielo situada entre dos de las corrientes de hielo. Los expertos, congregados en torno al programa WAIS (West Antarctic Ice Sheet, o capa de hielo de la Antártida Occidental), esperan recuperar hielo, si lo hubo, que date del intervalo 5e de hace 120.000 años, excepcionalmente cálido. El hallazgo de muestras de hielo antiguo de la Antártida Occidental permitiría, en palabras de Mosley-Thompson, "confiar más en su estabilidad". Pero hasta que no se ejecuten esos proyectos, sólo nos queda esbozar conjeturas ponderadas sobre si los casquetes de hielo polares se están contrayendo o extendiendo. Los expertos del Comité Intergubernamental del Cambio Climático, organismo establecido en 1988 por la OrganizaciónMeteorológica Mundial y el Programa de Desarrollo de las Naciones Unidas, parten de la hipótesis de que el casquete de hielo antártico y el de Groenlandia, de menor extensión, mantienen constante su tamaño (aunque admiten la posibilidad de importantes errores en su estima, reconociendo que, a la postre, ignoran si deben esperar un crecimiento o una reducción). CONCLUSIÓN El aire contaminado nos afecta en nuestro diario vivir, manifestándose de diferentes formas en nuestro organismo, como la irritación de los ojos y trastornos en las membranas conjuntivas, irritación en las vías respiratorias, agravación de las enfermedades bronco pulmonares, etc. Existen diversos modos de evitar la contaminación del aire, a saber: * Uso de combustibles adecuados para la calefacción doméstica e industrial. * Usar chimeneas con tirajes o filtros en condiciones de cumplir sus funciones. * Mantener los vehículos motorizados en buenas condiciones. * No quemar hojas o basuras, La óptima calidad de vida exige que el equilibrio de la naturaleza no sea modificado. El hombre debe aprender que el ambiente no es algo que pueda manejar según su voluntad, sino que él debe integrarse para tener una vida mejor. Un paso importante para mejorar el hábitat sería lograr que el hombre cambio de actitud interna hacia su ambiente respetando sus valores y derechos Mientras los seres humanos no nos demos cuanta del daño tan enorme que nos estamos haciendo al contaminar la tierra no se podrá hacer nada para tratar de salvar lo que aun nos queda de la naturaleza. Por eso tenemos que crear una cultura basada en el respeto a la tierra y a la conservación de nuestros recursos naturales pues es importante que tengamos conocimiento sobre el daño que le podemos hacer a la tierra con el uso de productos químicos, pues el sobrecalentamiento del planeta esta llevando a que el clima del planeta se salga de su equilibrio normal y así otros problemas como la inversión térmica y el daño a la capa de ozono. BIBLIOGRAFÍA Caldwell, L. K. Ecología, Ciencia y política medioambiental. Madrid: Editorial McGraw-Hill, 1993. Texto de ensayo en el que se describen las medidas que es necesario tomar para evitar una catástrofe ecológica.

Domènech, Xavier. Química Ambiental. El impacto ambiental de los residuos. Madrid: Miraguano ediciones, 1997. Libro dirigido a un público amplio, interesado en la problemática ambiental y que posea unas nociones básicas de química. http://www.sma.df.gob.mx/sma/ubea/educacion/aire/menu.htm www.monografias.com/contaminaciónambiental. Myers, N. El futuro de la Tierra. Madrid: Celeste Ediciones, 1992. En este libro se exponen en un lenguaje claro diversas soluciones a la crisismedioambiental que se plantea en nuestra época.

Contaminación atmosférica

Esta planta generadora de Nuevo México libera dióxido de azufre y otros contaminantes del aire.

Contaminación atmosférica severa en China.

Se entiende por contaminación atmosférica a la presencia en la atmósfera de sustancias en una cantidad que implique molestias o riesgo para la salud de las personas y de los demás seres vivos, vienen de cualquier naturaleza,1 así como que puedan atacar a distintos materiales, reducir la visibilidad o producir olores desagradables. El nombre de la contaminación atmosférica se aplica por lo general a las alteraciones que tienen efectos perniciosos en los seres vivos y los elementos materiales, y no a otras alteraciones inocuas. Los principales mecanismos de contaminación atmosférica son los procesos industriales que implican combustión, tanto en industrias como en automóviles y calefacciones

residenciales, que generan dióxido y monóxido de carbono, óxidos de nitrógeno y azufre, entre otros contaminantes. Igualmente, algunas industrias emiten gases nocivos en sus procesos productivos, como cloro o hidrocarburos que no han realizado combustión completa. La contaminación atmosférica puede tener carácter local, cuando los efectos ligados al foco se sufren en las inmediaciones del mismo, oplanetario, cuando por las características del contaminante, se ve afectado el equilibrio del planeta y zonas alejadas a las que contienen los focos emisores.

Índice [ocultar]



1 Contaminantes atmosféricos primarios y secundarios

o

1.1 MEXICO



2 Principales tipos de contaminantes del aire



3 Gases contaminantes de la atmósfera

o

3.1 CFC

o

3.2 Monóxido de carbono

o

3.3 Dióxido de carbono

o

3.4 Monóxido de nitrógeno

o

3.5 Dióxido de azufre

o

3.6 Metano

o

3.7 Ozono



4 Efectos de los gases de la atmósfera en el clima



5 Algunos contaminantes provienen de fuentes naturales



6 Efectos nocivos para la salud



7 Índice de Calidad del Aire



8 Dispositivos de control



9 Gestión ambiental del componente aire

o

9.1 Establecimiento de una red de monitoreo ambiental



9.1.1 Modelamiento atmosférico-climático y confección de un modelo de contaminación atmosférico



9.1.2 Europa



10 Véase también



11 Referencias



12 Enlaces externos

o

12.1 Agencias de calidad del aire

o

12.2 Iniciativas de calidad del aire

o

12.3 Calidad del aire estatal

o

12.4 Información regional de calidad del aire

o

12.5 Información de Ciencias de la calidad del aire

o

12.6 Modelado de calidad del aire

Contaminantes atmosféricos primarios y secundarios [editar]

Los contaminantes primarios son los que se emiten directamente a la atmósfera2 como el dióxido de azufre SO2, que daña directamente la vegetación y es irritante para los pulmones. Los contaminantes secundarios son aquellos que se forman mediante procesos químicos atmosféricos que actúan sobre los contaminantes primarios o sobre especies no contaminantes en la atmósfera.2 Son importantes contaminantes secundarios el ácido sulfúrico, H2SO4, que se forma por la oxidación del SO2, el dióxido de nitrógeno NO2, que se forma al oxidarse el contaminante primario NO y el ozono, O3, que se forma a partir del oxígeno O2. Ambos contaminantes, primarios y secundarios pueden depositarse en la superficie de la tierra por precipitación. El nitrometano es un compuesto orgánico de fórmula química CH3NO2. Es el nitrocompuesto o nitroderivado más simple. Similar en muchos aspectos al nitroetano, el nitrometano es un líquido ligeramente viscoso, altamente polar, utilizado comúnmente como disolvente en muchas aplicaciones industriales, como en las extracciones, como medio de reacción, y como disolvente de limpieza. Como producto intermedio en la síntesis orgánica, se utiliza ampliamente en la fabricación de productos farmacéuticos, plaguicidas, explosivos, fibras, y recubrimientos. También se utiliza como combustible de carreras de coches modificados para sufrir grandes aceleraciones (dragsters), y en motores de combustión interna usados para coches en miniatura, por ejemplo, en los modelos de radiocontrol. deposición seca o húmeda e impactar en determinados receptores, como personas, animales, ecosistemas acuáticos, bosques, cosechas y materiales. En todos los países existen unos límites impuestos a determinados contaminantes que pueden incidir sobre la salud de la población y su bienestar. En España existen funcionando en la actualidad diversas redes de vigilancia de la contaminación atmosférica, instaladas en las diferentes Comunidades Autónomas y que efectúan medidas de una variada gama de contaminantes que abarcan desde los óxidos de azufre y nitrógeno hasta hidrocarburos, con sistemas de captación de partículas, monóxido de carbono, ozono, metales pesados, etc.3

MEXICO [editar] La contaminación se ha desarrollado gracias a la mano y la poca conciencia humana que se tuvo al generar grandes máquinas en la revolución industrial. De esa época a nuestros tiempos la contaminación ha llegado a límites extremos que hacen que una cierta población se limiten en salir para respirar aire puro. Un ejemplo de ello son las ciudades más importantes de China y Estados Unidos y por supuesto la capital de la República Mexicana. Actualmente en México los laboratorios clandestinos están siendo desmantelados con el entierro de sustancias tóxicas. Para la síntesis de metanfetamina se utilizan productos como ácido yodhídrico (en forma líquida es corrosivo, su ingesta ocasiona lesiones graves y su vapor irrita) y fósforo rojo (puede causar irritación en ojos y piel, también en pulmones si se

inhala), además de los precursores químicos habituales como efedrina y pseudoefedrina. La mayor preocupación está en la contaminación del agua, pues los residuos enterrados o liberados en arroyos pueden alcanzar los mantos freáticos. Ha raíz de este nivel de contaminación muy alto se han generado peligrosas enfermedades que pueden causar la muerte si es que no llegaran a ser detectadas a tiempo. Actualmente el Gobierno del Distrito Federal esta ejecutando un programa denominado "Plan verde" que inició desde el 30 de agosto de 2007, convirtiéndose en una aportación fundamental para actuar en favor y contra el detrimento del medio ambiente en la capital del país. A partir de este programa el Gobierno del Distrito Federal registra avances importantes en materia de conservación del suelo, habitabilidad y espacio público, agua, movilidad, aire y residuos sólidos, así como cambio climático y energía. En este sentido, acciones (concluidas o con un porcentaje de avance) son en materia de Suelo de Conservación: recuperar hectáreas de alto valor ambiental, ocupadas por asentamientos humanos irregulares e implementar convenios de mitigación, reforestar y restaurar el Suelo de Conservación, integrar y conservar hectáreas para su protección a través de esquemas de pago por servicios ambientales. En el rubro de habitabilidad y espacio público están las etapas 1 y 2 del Programa para la Rehabilitación Integral del Bosque de San Juan de Aragón, iniciar la implementación del Plan de Manejo de la Segunda Sección del Bosque de Chapultepec, impulsar el desarrollo de vivienda y edificaciones sustentables, el Plan Maestro para la Basílica, entorno urbano y Calzada de los Misterios y de Guadalupe, incrementar la superficie naturada de azoteas en edificios ubicados en el Distrito Federal. En lo que se refiere al tema del agua, se encuentra construir infraestructura de contención del suelo de conservación para lograr mayor recarga y evitar la erosión y el azolve del drenaje; construcción y rehabilitación de pozos de absorción; y reducir el número de usuarios morosos del pago por el servicio de abastecimiento de agua. En esta área también está la reducción en el consumo de agua en el Distrito Federal, promoción de la campaña de cultura del líquido a través de actividades directas y publicitarias; desarrollar la normatividad para el ahorro, captación y tratamiento, rehabilitación de red de agua potable y de siete plantas de tratamiento y potabilizar el agua residual tratada para su recarga artificial para el 2012. En movilidad, está la construcción de corredores del Metrobús, incrementar la cobertura del Metro con la Línea 12 (Mixcoac-Tláhuac), trabajar en el reordenamiento de paradas exclusivas para el transporte colectivo en corredores viales, poner en funcionamiento Programa de Transporte Escolar, regular la circulación de transporte de carga en vialidades primarias, elaborar e iniciar la implementación de la estrategia de movilidad en bicicleta de la Ciudad de México, llevar a cabo adecuaciones viales para facilitar la movilidad en puntos conflictivos e implementar quince vialidades reversibles. En el rubro correspondiente a aire se plantearon acciones como incorporar autobuses con tecnologías limpias y ampliar y reforzar el Sistema de Monitoreo Atmosférico de la Ciudad de México. En lo que concierne a residuos sólidos se incluye llevar a cabo una campaña masiva permanente informativa y educativa para fortalecer el Programa de Separación y Reciclaje. En cambio climático y energía está además de elaborar el Plan de Acción Climática de la Ciudad de México y ahorrar del 25.5 por ciento de energía

eléctrica en el alumbrado público de vialidades primarias y el Centro Histórico. Está también trabajar para lograr la captura, extracción y quema de biogás de la IV etapa del relleno sanitario de Bordo Poniente para el 2012. El Plan Verde de la Ciudad de México contempla desde grandes acciones de Gobierno como las mencionadas, en algunos casos con participación de la Iniciativa Privada, hasta acciones ciudadanas en el hogar y la vía pública. Por ejemplo, caminar más, usar menos el auto, apagar aparatos eléctricos que no sean utilizados, ahorrar agua, dejar de fumar o al menos no tirar colillas en la calle, separar los residuos en orgánicos e inorgánicos, entre otros. Solo queda mencionar que el deterioro del planeta tierra va en aumento a pesar de que varios países se han unido ha combatir la contaminación, cabe destacar que también es algo imposible pese a que la economía va de la mano con las grandes industrias.

Principales tipos de contaminantes del aire [editar]

Emisión de dióxido de carbono, por país, en millones de toneladas.



Contaminantes gaseosos: en ambientes exteriores e interiores los vapores y contaminantes gaseosos aparece en diferentes concentraciones. Los contaminantes gaseosos más comunes son el dióxido de carbono, el monóxido de carbono, los hidrocarburos, los óxidos de nitrógeno, los óxidos de azufre y elozono. Diferentes fuentes producen estos compuestos químicos pero la principal fuente artificial es la quema de combustible fósil. La contaminación del aire interior es producida por el consumo de tabaco, el uso de ciertos materiales de construcción, productos de limpieza y muebles del hogar. Los contaminantes gaseosos del aire provienen de volcanes, e industrias. El tipo más comúnmente reconocido de contaminación del aire es la niebla tóxica (smog). La niebla tóxica generalmente se refiere a una condición producida por la acción de la luz solar sobre los gases de escape de automotores y fábricas, edificios, casas etc.

Gases contaminantes de la atmósfera [editar] CFC [editar] Desde los años 1960, se ha demostrado que los clorofluorocarbonos (CFC, también llamados "freones") tienen efectos potencialmente negativos: contribuyen de manera muy importante a la destrucción de la capa de ozono en la estratosfera, así como a incrementar el efecto invernadero. El protocolo de Montreal puso fin a la producción de la gran mayoría de estos productos.



Utilizados en los sistemas de refrigeración y de climatización por su fuerte poder conductor, son liberados a la atmósfera en el momento de la destrucción de los aparatos viejos.



Utilizados como propelente en los aerosoles, una parte se libera en cada utilización. Los aerosoles utilizan de ahora en adelante otros gases sustitutivos, como el CO2.

Monóxido de carbono [editar] Es uno de los productos de la combustión incompleta. Es peligroso para las personas y los animales, puesto que se fija en la hemoglobina de la sangre, impidiendo el transporte de oxígeno en el organismo. Además, es inodoro, y a la hora de sentir un ligero dolor de cabeza ya es demasiado tarde. Se diluye muy fácilmente en el aire ambiental, pero en un medio cerrado, su concentración lo hace muy tóxico, incluso mortal. Cada año, aparecen varios casos de intoxicación mortal, a causa de aparatos de combustión puestos en funcionamiento en una habitación mal ventilada. Los motores de combustión interna de los automóviles emiten monóxido de carbono a la atmósfera por lo que en las áreas muy urbanizadas tiende a haber una concentración excesiva de este gas hasta llegar a concentraciones de 50-100 ppm,2 tasas que son peligrosas para la salud de las personas.

Dióxido de carbono [editar] La concentración de CO2 en la atmósfera está aumentando de forma constante debido al uso de carburantes fósiles como fuente de energía2 y es teóricamente posible demostrar que este hecho es el causante de producir un incremento de la temperatura de la Tierra - efecto invernadero-2 La amplitud con que este efecto puede cambiar el clima mundial depende de los datos empleados en un modelo teórico, de manera que hay modelos que predicen cambios rápidos y desastrosos del clima y otros que señalan efectos climáticos limitados.2 La reducción de las emisiones de CO2 a la atmósfera permitiría que el ciclo total del carbono alcanzara el equilibrio a través de los grandes sumideros de carbono como son el océano profundo y los sedimentos.

Monóxido de nitrógeno [editar]

También llamado óxido de nitrógeno (II) es un gas incoloro y poco soluble en agua que se produce por la quema de combustibles fósiles en el transporte y la industria. Se oxida muy rápidamente convirtiéndose en dióxido de nitrógeno, NO2, y posteriormente en ácido nítrico, HNO3, produciendo así lluvia ácida.

Dióxido de azufre [editar] La principal fuente de emisión de dióxido de azufre a la atmósfera es la combustión del carbón que contiene azufre. El SO2 resultante de la combustión del azufre se oxida y forma ácido sulfúrico, H2SO4 un componente de la llamada lluvia ácida que es nocivo para las plantas, provocando manchas allí donde las gotitas del ácido han contactado con las hojas.2 SO2 + H2O = H2SO4 La lluvia ácida se forma cuando la humedad en el aire se combina con el óxido de nitrógeno o el dióxido de azufre emitido por fábricas, centrales eléctricas y automotores que queman carbón oaceite. Esta combinación química de gases con el vapor de agua forma el ácido sulfúrico y los ácidos nítricos, sustancias que caen en el suelo en forma de precipitación o lluvia ácida. Los contaminantes que pueden formar la lluvia ácida pueden recorrer grandes distancias, y los vientos los trasladan miles de kilómetros antes de precipitarse con el rocío, la llovizna, o lluvia, elgranizo, la nieve o la niebla normales del lugar, que se vuelven ácidos al combinarse con dichos gases residuales. El SO2 también ataca a los materiales de construcción que suelen estar formados por minerales carbonatados, como la piedra caliza o el mármol, formando sustancias solubles en el agua y afectando a la integridad y la vida de los edificios o esculturas.

Metano [editar] El metano, CH4, es un gas que se forma cuando la materia orgánica se descompone en condiciones en que hay escasez de oxígeno; esto es lo que ocurre en las ciénagas, en los pantanos y en los arrozales de los países húmedos tropicales. También se produce en los procesos de la digestión y defecación de los animales herbívoros. El metano es un gas de efecto invernadero que contribuye al calentamiento global del planeta Tierra ya que aumenta la capacidad de retención del calor por la atmósfera.

Ozono [editar] El ozono O3 es un constituyente natural de la atmósfera, pero cuando su concentración es superior a la normal se considera como un gas contaminante. Su concentración a nivel del mar, puede oscilar alrededor de 0,01 mg kg-1. Cuando la contaminación debida a los gases de escape de los automóviles es elevada y la radiación solar es intensa, el nivel de ozono aumenta y puede llegar hasta 0,1 kg-1.

Las plantas pueden ser afectadas en su desarrollo por concentraciones pequeñas de ozono. El hombre también resulta afectado por el ozono a concentraciones entre 0,05 y 0,1 mg kg-1, causándole irritación de las fosas nasales y garganta, así como sequedad de las mucosas de las vías respiratorias superiores4

Efectos de los gases de la atmósfera en el clima [editar]

Smog en Shanghai.



Efectos climáticos: generalmente los contaminantes se elevan o flotan lejos de sus fuentes sin acumularse hasta niveles peligrosos. Los patrones de vientos, las nubes, la lluvia y la temperatura pueden afectar la rapidez con que los contaminantes se alejan de una zona. Los patrones climáticos que atrapan la contaminación atmosférica en valles o la desplacen por la tierra pueden, dañar ambientes limpios distantes de las fuentes originales. La contaminación del aire se produce por toda sustancia no deseada que llega a la atmósfera. Es un problema principal en la sociedad moderna. A pesar de que la contaminación del aire es generalmente un problema peor en las ciudades, los contaminantes afectan el aire en todos lugares. Estas sustancias incluyen varios gases y partículas minúsculas o materia de partículas que pueden ser perjudiciales para la salud humana y el ambiente. La contaminación puede ser en forma de gases, líquidos o sólidos. Muchos contaminantes se liberan al aire como resultado del comportamiento humano. La contaminación existe a diferentes niveles: personal, nacional y mundial.



El efecto invernadero evita que una parte del calor recibido desde el sol deje la atmósfera y vuelva al espacio. Esto calienta la superficie de la tierra. Existe una cierta cantidad de gases de efecto de invernadero en la atmósfera que son absolutamente necesarios para calentar la Tierra, pero en la debida proporción. Actividades como la quema de combustibles derivados del carbono aumentan esa proporción y el efecto invernadero aumenta. Muchos científicos consideran que como

consecuencia se está produciendo el calentamiento global. Otros gases que contribuyen al problema incluyen losclorofluorocarbonos (CFCs), el metano, los óxidos nitrosos y el ozono.



Daño a la capa de ozono: el ozono es una forma de oxígeno O3 que se encuentra en la atmósfera superior de la tierra. El daño a la capa de ozono se produce principalmente por el uso declorofluorocarbonos (CFCs). La capa fina de moléculas de ozono en la atmósfera absorbe algunos de los rayos ultravioletas (UV) antes de que lleguen a la superficie de la tierra, con lo cual se hace posible la vida en la tierra. El agotamiento del ozono produce niveles más altos de radiación UV en la tierra, con lo cual se pone en peligro tanto a plantas como a animales.

Algunos contaminantes provienen de fuentes naturales [editar] 

Los incendios forestales emiten partículas, gases y sustancias que se evaporan en la atmósfera, son los llamados Compuestos Orgánicos Volátiles, también conocidos como COVs o VOCs, por sus siglas en inglés, (Volatile Organic Compounds).



Partículas de polvo ultra finas creadas por la erosión del suelo cuando el agua y el clima sueltan capas del suelo, aumentan los niveles de partículas en suspensión en la atmósfera.



Los volcanes arrojan dióxido de azufre y cantidades importantes de roca de lava pulverizada conocida como cenizas volcánicas.



El metano se forma en los procesos de pudrición de materia orgánica y daña la capa de ozono. Puede acumularse en el subsuelo en altas concentraciones o mezclado con otros hidrocarburos formando como bolsas de gas natural.

Efectos nocivos para la salud [editar] Muchos estudios han demostrado enlaces entre la contaminación y los efectos para la salud. Los aumentos en la contaminación del aire se han ligado a quebranto en la función pulmonar y aumentos en los ataques cardíacos. Niveles altos de contaminación atmosférica según el Índice de Calidad del Aire de la Agencia de Protección Ambiental de los Estados Unidos (EPA, por sus siglas en inglés) perjudican directamente a personas que padecen asma y otros tipos de enfermedad pulmonar o cardíaca. La calidad general del aire ha mejorado en los últimos 20 años pero las zonas urbanas son aún motivo de preocupación. Los ancianos y los niños son especialmente vulnerables a los efectos de la contaminación del aire. El nivel de riesgo depende de varios factores:



La cantidad de contaminación en el aire,



La cantidad de aire que respiramos en un momento dado,



La salud general.

Otras maneras menos directas en que las personas están expuestas a los contaminantes del aire son:



El consumo de productos alimenticios contaminados con sustancias tóxicas del aire que se han depositado donde crecen,



Consumo de agua contaminada con sustancias del aire,



Contacto con suelo, polvo o agua contaminados

Índice de Calidad del Aire [editar] El Índice de Calidad del Aire (AQI, por sus siglas en inglés) es una herramienta usada por la EPA y otras agencias para proveerle al público información oportuna y fácil de comprender sobre la calidad del aire local. También indica si los niveles de polución son perjudiciales a la salud. El AQI informa al público si la condición del aire debe preocuparle por su salud. El AQI se enfoca en los efectos de salud que pueden pasar dentro unas horas o días después de respirar el aire.

Dispositivos de control [editar] Los siguientes instrumentos son utilizados comúnmente como dispositivos de control de contaminación en la industria o en vehículos. Pueden transformar contaminantes o eliminarlos de una corriente de salida antes de ser emitidos a la atmósfera.



Precipitadores electrostáticos, y filtros de aire



Carbón activado



Condensadores



Convertidores catalíticos



Recirculación de gases de escape



Desulfuración de gas de flujo y otros gas scrubbers



Columnas incineradoras

Gestión ambiental del componente aire [editar] Establecimiento de una red de monitoreo ambiental [editar] La gestión ambiental en el componente aire parte por realizar un modelamiento atmosférico del sector de estudio. Para ello se establecen estaciones de monitoreo de la calidad del Aire ubicando estaciones con representatividad poblacional EMRP, estas debe estar ubicadas dentro de un área urbana mínima de 2 km de díametro para que sea representativa. La red de monitoreo debe estar mínimamente sustentada por un equipo tripartito de Aseguramiento de la Calidad, una unidad de Control de Calidad y una unidad de distribución de la información.

El Aseguramiento de la Calidad tiene por misión soportar la unidad de monitoreo con recursos, la unidad de Control tiene por misión la trazabilidad, la calibración y el cruzamiento de resultados entre sus equipos y otros de referencia. Se debe detectar los corrimientos del valor cero, la saturación de los monitores, fuentes de emisión imprevistas no-comunes y focalizadas, cortes de energía eléctrica y aquellos valores escapados que induzcan a un mal pronóstico de Emergencia Ambiental. La unidad informativa tiene por misión dar disponibilidad y análisis de la información confeccionando modelos informativos de contaminación del componente aire. Modelamiento atmosférico-climático y confección de un modelo de contaminación atmosférico [editar] Para seleccionar las locaciones más apropiadas con los objetivos propuestos del monitoreo, es necesario manejar información que incluya, entre otros factores:



Ubicación de fuentes emisoras en coordenadas geográficas denotadas en un sistema SIG.



Variabilidad geográfica o distribución espacial de las concentraciones del contaminante, ciclos horarios del contaminante, transporte, procesos formativos del contaminante.



Condiciones meteorológicas y climáticas, régimen de vientos, modelamiento climático y atmosférico, pluviometría, temperaturas diarias, estacionales y/o con influencia de fenómenos climáticos, radiación solar, humedad relativa, topografía.



Densidad de la población y a la ubicación, extensión y composición de los recursos que se desea preservar. Adicionalmente biotopos a preservar, catastro de la fauna y flora exótica y endémica.



Inventario de las fuentes de emisión fijas y móviles.



Identificación de zonas latentes y saturadas



Quemas de pastizales autorizadas o ilegales.

Estos puntos conducen a establecer modelos de contaminación atmosféricos y evaluación de la calidad del aire. Europa [editar] La '''Directiva 2001/81/ CE', del Parlamento Europeo y del Consejo, de 23 de octubre de 2001, sobre techos nacionales de emisión de determinados contaminantes atmosféricos, tiene como objeto limitar las emisiones de contaminantes para reforzar la protección del medio ambiente y de la salud humana y avanzar hacia el objetivo de no superar los niveles críticos de contaminantes y de proteger de forma eficaz a toda la población frente a los riesgos para la salud que se derivan de la contaminación atmosférica mediante la fijación de techos nacionales de emisión.

El programa Aire puro para Europa es una estrategia temática coherente de lucha contra la contaminación atmosférica y sus efectos. Este programa ha sido elaborado por el Sexto programa de Acción en Materia de Medio Ambiente recientemente aprobada por la Comisión (COM (2001) 31 de 24.01.2001). Esta estrategia consiste en evaluar la aplicación de las directivas relativas a la calidad del aire y la eficacia de los programas sobre calidad del aire en los Estados miembros. Además pretende mejorar el control de la calidad del aire y la divulgación de la información al público mediante la utilización de indicadores. Finalmente se establecerán prioridades para la adopción de nuevas medidas, examinando y actualizando los umbrales de calidad del aire y los límites máximos nacionales de emisión.l. Recoge múltiples y variados objetivos con el fin de mejorar la calidad de vida de las poblaciones de Europa. Prevenir las enfermedades y proteger el medio que nos rodean serán algunos de los objetivos prioritarios que se desarrollarán a lo largo de la estrategia planteada. Sin embargo debemos también mencionar algunos objetivos más específicos que mejoraran la labor de análisis técnico, para mejorar así la política sobre la calidad del aire.

Como medida para instar al cumplimiento de los techos, la directiva obliga a los Estados miembros a elaborar unos programas nacionales de reducción progresiva de las emisiones. España ha elaborado mediante Acuerdo de Consejo de Ministros de 7 de diciembre el II Programa Nacional de Reducción de Emisiones (Resolución de 14 de enero de 2008, de la Secretaría General para la Prevención de la Contaminación y el Cambio Climático . BOE nº 25, 29.01.08).



Ley 34/2007 , de 15 de noviembre, de calidad del aire y protección de la atmósfera. ORDEN MAM/1444/2006, de 9 de mayo.

Establece las bases en materia de prevención, vigilancia y reducción de la contaminación atmosférica con el fin de evitar y cuando esto no sea posible, aminorar los daños que de ésta puedan derivarse para las personas, el medio ambiente y demás bienes de cualquier naturaleza. El objetivo general de dicha ley es desarrollar una política estratégica integrada a largo plazo para proteger la salud humana y el medio ambiente de los efectos de la contaminación atmosférica. De acuerdo con el tratado, esta política tendrá por objetivo garantizar un elevado nivel de protección del medio ambiente sobre la base del principio de cautela, tomando los mejores datos científicos y técnicos disponibles y las ventajas y cargas que puedan resultar de la acción o de la falta de acción



La ley26/2007, de 23 de octubre, de Responsabilidad Medioambiental incorpora a nuestro ordenamiento jurídico un régimen administrativo de responsabilidad ambiental de carácter objetivo e ilimitado basado en los principios de prevención y de que «quien contamina paga».5

Véase también

A.6: ANÁLISIS DE LA CONTAMINACIÓN ATMOSFÉRICA.Se define la atmósfera como la cubierta gaseosa que rodea a la tierra. Esta envoltura se caracteriza por tener unas propiedades físicas y químicas muy específicas. Son estas características las que generan un ambiente proclive para la vida. La atmósfera terrestre ha estado sometida desde sus orígenes a cambios en su composición, temperatura y capacidad de autolimpieza. Sin embargo, la influencia ejercida por el desarrollo de las actividades humanas ha provocado alteraciones en el ritmo y naturaleza de estos cambios. Así, el rápido crecimiento urbano y el tipo de actividades que lleva asociado, ha tenido como resultado la emisión a la atmósfera de enormes cantidades de sustancias nocivas que disminuyen la calidad del aire. Se entiende por calidad del aire la adecuación a niveles de contaminación atmosférica, cualesquiera que sean las causas que la produzcan, que garanticen que las materias o formas de energía, incluidos los posibles ruidos y vibraciones, presentes en el aire no impliquen molestia grave, riesgo a daño inmediato o diferido, para las personas y para los bienes de cualquier naturaleza. (Ley 7/1994 de Protección Ambiental de Andalucía). Deberá entenderse por Contaminación Atmosférica la presencia en el aire de materias o formas de energía que impliquen riesgo, daño, o molestia grave para las personas y bienes de cualquier naturaleza. (Ley38/1972 de Protección del Ambiente Atmosférico). La calidad del aire debe evaluarse en relación con valores límite o umbrales de alerta, y, respecto al ozono con valores objetivo o valores límite, teniendo en cuenta al tamaño de las

poblaciones y de los ecosistemas expuestos a la contaminación atmosférica, así como al medio ambiente [...] las zonas y aglomeraciones urbanas de los Estados miembros deben tratar de conservar la mejor calidad del aire ambiente posible que sea compatible con un desarrollo sostenible (Directiva96/62/CE del Consejo de 27 de septiembre sobre Evaluación y Gestión de la Calidad del Aire Ambiente). La problemática de la contaminación atmosférica tiene tres aspectos bien diferenciados: 1. La causa del problema, es decir el conjunto de fuentes (puntuales, lineales y difusas) donde se genera y produce (en superficie o en altura) la emisión de contaminantes a la atmósfera. 2. El medio receptor donde son emitidos los contaminantes, la atmósfera, donde tienen lugar una serie de fenómenos de dispersión y transformación (advección, difusión, reacciones químicas, deposición, etc.) que en conjunto tienden a transportar y cambiar la concentración de las sustancias emitidas.