Comportamiento estructural

EJERCICIO 1 DATOS π‘˜π‘”β„ π‘π‘š2 π‘˜π‘” 𝑓𝑦 = 2800 ⁄ 2 π‘π‘š πœ™π‘£π‘Žπ‘Ÿ 2.22 𝑑 = β„Ž βˆ’ π‘Ÿπ‘’π‘ βˆ’ πœ™π‘’π‘ π‘‘ βˆ’ = 55 βˆ’ 4 βˆ’ 0.95 βˆ’ = 48.94 π‘π‘š 2 2 𝑓´𝑐 = 280

Views 86 Downloads 2 File size 622KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

EJERCICIO 1

DATOS π‘˜π‘”β„ π‘π‘š2 π‘˜π‘” 𝑓𝑦 = 2800 ⁄ 2 π‘π‘š πœ™π‘£π‘Žπ‘Ÿ 2.22 𝑑 = β„Ž βˆ’ π‘Ÿπ‘’π‘ βˆ’ πœ™π‘’π‘ π‘‘ βˆ’ = 55 βˆ’ 4 βˆ’ 0.95 βˆ’ = 48.94 π‘π‘š 2 2 𝑓´𝑐 = 280

𝐴𝑠 = 2#7 = (2)(3.88) = 7.76 π‘π‘š2

𝛽1 = 0.85 para un 𝑓´𝑐 = 280

π‘˜π‘”β„ π‘π‘š2

Equilibrio de Fuerzas 𝐢𝑐 = 𝑇𝑠 0.85𝑓´𝑐 π‘Žπ‘ = 𝑓𝑦 𝐴𝑠 π‘Ž=

𝑓𝑦 𝐴𝑠 2800 Γ— 7.76 = = 3.65 π‘π‘š 0.85𝑓´𝑐 𝑏 0.85 Γ— 280 Γ— 25 𝑐=

π‘Ž 3.65 = = 4.30 π‘π‘š 𝛽1 0.85

DeformaciΓ³n del acero πœ€π‘  =

(𝑑 βˆ’ 𝑐)πœ€π‘π‘’ 0.003(48.94 βˆ’ 4.30) = = 0.03114 𝑐 4.30 πœ€π‘  > 0.005 𝑢𝑲

π‘ˆπ‘‘π‘–π‘™π‘–π‘§π‘Žπ‘Ÿ βˆ… = 0.9

Haciendo momento en el acero a tensiΓ³n 𝑀𝑛 = 𝐢𝑐 (𝑑 βˆ’ π‘Žβ„2) 𝑀𝑛 = 0.85𝑓´𝑐 π‘Žπ‘(𝑑 βˆ’ π‘Žβ„2) 𝑀𝑛 = 0.85(280)(3.65)(25)(48.94 βˆ’ 3.65⁄2) 𝑀𝑛 = 1023220.013 π‘˜π‘”. π‘π‘š = 10.23 π‘‡π‘œπ‘›. π‘š

Calculando momento ultimo 𝑀𝑒 = βˆ…π‘€π‘› 𝑀𝑒 = 0.9(10.13) 𝑴𝒖 = πŸ—. 𝟐𝟏 𝑻𝒐𝒏. π’Ž

EJERCICIO 2

DATOS π‘˜π‘”β„ π‘π‘š2 π‘˜π‘” 𝑓𝑦 = 2800 ⁄ 2 π‘π‘š 𝑓´𝑐 = 210

𝑑 = β„Ž βˆ’ π‘Ÿπ‘’π‘ βˆ’ πœ™π‘’π‘ π‘‘ βˆ’ πœ™π‘£π‘Žπ‘Ÿ = 55 βˆ’ 4 βˆ’ 0.95 βˆ’ 2.87 = 47.18 π‘π‘š 𝐴𝑠 = 6𝑁°9 = (6)(6.45) = 38.70 π‘π‘š2 Porcentaje de refuerzo: πœŒπ‘ = 0.0371 𝜌=

𝐴𝑠 38.70 = = 0.03281 β†’ 𝜌 < πœŒπ‘ πΉπ‘Žπ‘™π‘™π‘Ž π‘π‘œπ‘Ÿ 𝑑𝑒𝑛𝑠𝑖ó𝑛 𝑏𝑑 25π‘₯47.18

Entonces: 𝑓𝑠 = 𝑓𝑦 𝑦 πœ€π‘  =

(𝑑 βˆ’ 𝑐)πœ€π‘π‘’ 2,800 ; πœ€π‘¦ = = 0.0013 𝑐 2.03π‘₯106

Equilibrio: 𝐢𝑐 = 𝑇𝑠 0.85𝑓´𝑐 π‘Žπ‘ = 𝑓𝑦 𝐴𝑠

π‘Ž=

π‘Ž=

𝑓𝑦 𝐴𝑠 0.85𝑓´𝑐 𝑏

2800 Γ— 38.70 = 24.28 π‘π‘š 0.85 Γ— 210 Γ— 25

𝑐=

π‘Ž 24.28 = = 28.56 π‘π‘š 𝛽1 0.85

Entonces: πœ€π‘  =

0.003(47.18 βˆ’ 28.56) = 0.00196 β†’ πœ€π‘¦ < πœ€π‘  < πœ€π‘  = 0.005 28.56

π‘π‘œπ‘›π‘Ž 𝑑𝑒 π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘–π‘π‘–Γ³π‘› β†’ πœ‘ = 0.65 + (πœ€π‘  βˆ’ πœ€π‘¦ ) (

πœ‘ = 0.65 + (0.00196 βˆ’ 0.00138) (

0.25 ) 0.005 βˆ’ πœ€π‘¦

0.25 ) = 0.69 0.005 βˆ’ 0.00138

Momento nominal, haciendo sumatoria de momentos en acero a tensiΓ³n: 𝑀𝑛 = 𝐢𝑐 (𝑑 βˆ’ π‘Žβ„2) = 0.85𝑓´𝑐 π‘Žπ‘(𝑑 βˆ’ π‘Žβ„2) 𝑀𝑛 = 0.85(210)(24.28)(25)(47.18 βˆ’ 24.18⁄2 ) 𝑀𝑛 = 37.97 π‘‡π‘œπ‘›. π‘š Momento ultimo: 𝑀𝑒 = βˆ…π‘€π‘› = 0.69(37.97) 𝑴𝒖 = πŸπŸ”. 𝟐𝟎 𝑻𝒐𝒏. π’Ž

EJERCICIO 3

DATOS: π‘˜π‘”β„ π‘π‘š2 π‘˜π‘” 𝑓𝑦 = 3500 ⁄ 2 π‘π‘š πœ™π‘£π‘Žπ‘Ÿ 2.22 𝑑 = β„Ž βˆ’ π‘Ÿπ‘’π‘ βˆ’ πœ™π‘’π‘ π‘‘ βˆ’ = 55 βˆ’ 4 βˆ’ 0.95 βˆ’ = 48.49 π‘π‘š 2 2 πœ™π‘£π‘Žπ‘Ÿ 1.90 𝑑´ = π‘Ÿπ‘’π‘ + πœ™π‘’π‘ π‘‘ + = 4 + 0.95 + = 5.90 π‘π‘š 2 2 𝑓´𝑐 = 420

𝐴𝑠 = 3#7 = (3)(3.88) = 11.64 π‘π‘š2 𝐴´𝑠 = 2#6 = (2)(2.85) = 5.70 π‘π‘š2 𝛽1 = 0.75 para un 𝑓´𝑐 = 420

π‘˜π‘”β„ π‘π‘š2

Relaciones geomΓ©tricas πœ€π‘π‘’ πœ€Β΄π‘  πœ€π‘  = = 𝑐 𝑐 βˆ’ 𝑑′ 𝑑 βˆ’ 𝑐 πœ€π‘  =

πœ€π‘π‘’ (π‘‘βˆ’π‘) 𝑐

πœ€Β΄π‘  =

πœ€π‘π‘’ (π‘βˆ’π‘‘Β΄) 𝑐

Equilibrio de Fuerzas 𝐢𝑐 + 𝐢𝑠 = 𝑇𝑠 0.85𝑓´𝑐 π‘Žπ‘ + 𝐴´𝑠 𝑓´𝑠 = 𝑓𝑦 𝐴𝑠 0.85𝑓´𝑐 π‘Žπ‘ +

𝐴´𝑠 𝐸𝑠 πœ€π‘π‘’ (𝑐 βˆ’ 𝑑´) = 𝑓𝑦 𝐴𝑠 𝑐

(5.70)(2.03π‘₯106 )(0.003)(𝑐 βˆ’ 5.90) = 11.64(3500) 𝑐

0.85(420)(0.75)(25)𝑐 +

6693.75𝑐 +

34713(𝑐 βˆ’ 5.90) = 40740 𝑐

34713𝑐 βˆ’ 204806.7 = 40740𝑐 βˆ’ 6693.75𝑐 2 6693.75𝑐 2 βˆ’ 6027𝑐 βˆ’ 204806.7 = 0 Resolviendo ecuaciΓ³n cuadrΓ‘tica se obtiene 𝑐1 = 5.99 π‘π‘š 𝑐2 = βˆ’5.01 π‘π‘š

π‘Ž = 𝛽1 𝑐 = 0.75(5.99) = 4.49 π‘π‘š

Comprobando deformaciones πœ€π‘¦ =

πœ€Β΄π‘  =

πœ€π‘π‘’ (π‘βˆ’π‘‘Β΄) 𝑐

πœ€π‘  =

=

πœ€π‘π‘’ (π‘‘βˆ’π‘) 𝑐

3500 = 0.001724 2.03π‘₯106

0.003(5.99βˆ’5.90) 5.99

=

= 0.0000451

0.003(48.94βˆ’5.99) 5.99

πœ€π‘  > 0.005

= 0.021511

π‘ˆπ‘‘π‘–π‘™π‘–π‘§π‘Žπ‘Ÿ βˆ… = 0.9

πœ€Β΄π‘  < πœ€π‘¦ 𝑂𝐾 πœ€π‘  > πœ€π‘¦

Calculando esfuerzo del acero 𝑓´𝑠 = πœ€Β΄π‘  𝐸𝑠 = (0.0000451)(2.03π‘₯106 ) = 91.50

π‘˜π‘” π‘π‘š2

Haciendo momento en el acero a tensiΓ³n

𝑀𝑛 = 𝐢𝑐 (𝑑 βˆ’ π‘Žβ„2) + 𝐢𝑠 (𝑑 βˆ’ 𝑑´) 𝑀𝑛 = 0.85𝑓´𝑐 π‘Žπ‘(𝑑 βˆ’ π‘Žβ„2) + 𝐴´𝑠 𝑓´𝑠 (𝑑 βˆ’ 𝑑´) 𝑀𝑛 = 0.85(420)(4.49)(25)(48.94 βˆ’ 4.49⁄2) + (5.70)(91.50) (48.94 βˆ’ 5.90) 𝑀𝑛 = 18.98 π‘‡π‘œπ‘›. π‘š

Calculando momento ultimo 𝑀𝑒 = βˆ…π‘€π‘› 𝑀𝑒 = 0.9(18.75) 𝑴𝒖 = πŸπŸ•. πŸŽπŸ– 𝑻𝒐𝒏. π’Ž

EJERCICIO 4

DATOS 𝑓 β€² 𝑐 = 350 π‘˜π‘”/π‘π‘š2 𝑓𝑦 = 2800 π‘˜π‘”/π‘π‘š2 𝐴𝑠1 = 𝐴𝑠2 = 𝐴𝑠3 = 𝐴𝑠4 = 2(1.98) = 3.96π‘π‘š2 πœ€π‘¦ =

𝑓𝑦 2800 = = 0.001379 𝐸 2.03π‘₯106 π‘Ž = 𝛽1 𝑐

Como f'c = 350 kg/cm2;

Ξ²= 0.8

Calculando distancias entre hasta las varillas 𝑑1 = 𝑑1 =

βˆ…π‘ΒΊ8 + βˆ…π‘’π‘ π‘‘ + 𝑅𝑒𝑐 2

1.59 + 0.95 + 4.0 = 5.75 π‘π‘š 2

𝑑4 = β„Ž βˆ’ 𝑑4 = 55 βˆ’

βˆ…π‘ΒΊ8 βˆ’ βˆ…π‘’π‘ π‘‘ βˆ’ 𝑅𝑒𝑐 2

1.59 βˆ’ 0.95 βˆ’ 4.0 = 49.26 π‘π‘š 2

Para d2 y d3 se calcula la separaciΓ³n vertical S 𝑆=

𝑑4 βˆ’ 𝑑1 49.26 βˆ’ 5.75 = = 14.5 π‘π‘š 3 3

Calculando 𝑑2 = 𝑑1 + 𝑆 = 5.75 + 14.5 = 20.25 π‘π‘š 𝑑3 = 𝑑2 + 𝑆 = 20.25 + 14.5 = 34.75 π‘π‘š

Relaciones GeomΓ©tricas (Se asume que todas las secciones de acero estΓ‘n a tensiΓ³n y que las secciones 2, 3 y 4 ya han entrado a fluencia. πœ€π‘π‘’ 0.003 πœ€π‘ 1 πœ€π‘ 2 πœ€π‘ 3 πœ€π‘ 4 = = = = = 𝑐 𝑐 𝑑1 βˆ’ 𝑐 𝑑2 βˆ’ 𝑐 𝑑3 βˆ’ 𝑐 𝑑4 βˆ’ 𝑐

πœ€π‘ 1 =

0.003(𝑑1 βˆ’ 𝑐) < πœ€π‘¦ 𝑐

πœ€π‘ 2 =

0.003(𝑑2 βˆ’ 𝑐) > πœ€π‘¦ 𝑐

πœ€π‘ 3 =

0.003(𝑑3 βˆ’ 𝑐) > πœ€π‘¦ 𝑐

πœ€π‘ 4 =

0.003(𝑑4 βˆ’ 𝑐) > πœ€π‘¦ 𝑐

Equilibrio Se tiene que 𝑓𝑠2 = 𝑓𝑠3 = 𝑓𝑠4 = 𝑓𝑦 𝐢𝑐 = 𝑇𝑠 0.85 𝑓 β€² 𝑐 π‘Žπ‘ = 𝐴𝑠1 𝑓𝑦 + 𝐴𝑠2 𝑓𝑦 + 𝐴𝑠3 𝑓𝑦 + 𝐴𝑠4 𝑓𝑦

0.85 (350)(0.8)(25)𝑐 = 3.96 (

0.003(5.75 βˆ’ 𝑐) ) (2.03π‘₯106 ) + 3(3.96)(2800) 𝑐

Simplificando la ecuaciΓ³n se obtiene: 5950 𝑐 2 βˆ’ 9147.6 𝑐 βˆ’ 139071.24 = 0 Factorizando se llega a que: 𝐢 = 5.66 π‘π‘š Comprobando con las deformaciones: πœ€π‘ 1 =

0.003(5.75 βˆ’ 5.66) = 0.000048 < πœ€π‘¦ 5.66

π‘‚π‘˜!

πœ€π‘ 2 =

0.003(20.25 βˆ’ 5.66) = 0.007733 > πœ€π‘¦ 5.66

π‘‚π‘˜!

πœ€π‘ 3 =

0.003(34.75 βˆ’ 5.66) = 0.015419 > πœ€π‘¦ 5.66

π‘‚π‘˜!

πœ€π‘ 4 =

0.003(49.26 βˆ’ 5.66) = 0.023109 > πœ€π‘¦ 5.66

π‘‚π‘˜!

TambiΓ©n: π‘Ž = 𝛽1 𝑐 π‘Ž = (0.8)(5.66) = 4.53 π‘π‘š

Calculando βˆ‘M en el eje que pasa por d1 π‘Ž 𝑀𝑛 = 𝐢𝑐 (𝑑1 βˆ’ ) + 𝑇𝑠((𝑑2 βˆ’ 𝑑1 ) + (𝑑3 βˆ’ 𝑑1 ) + (𝑑4 βˆ’ 𝑑1 )) 2 𝑀𝑛 = 33677 (5.75 βˆ’

4.53 ) + 11088((20.25 βˆ’ 5.75) + (34.75 βˆ’ 5.75) + (49.26 βˆ’ 5.75)) 2 𝑀𝑛 = 1083131.225 𝐾𝑔. π‘π‘š 𝑀𝑛 = 10.82 π‘‡π‘œπ‘›. π‘š

Calculando Momento Último. Como πœ€π‘ 4 =

0.003(49.26 βˆ’ 5.66) = 0.023109 > πœ€π‘  = 0.005 5.66

Entonces βˆ… = 0.9 𝑀𝑒 = βˆ…π‘€π‘› 𝑀𝑒 = (0.9)(10.82) 𝑴𝒖 = πŸ—. πŸ•πŸ’ 𝑻𝒐𝒏. π’Ž

EJERCICIO 5

DATOS 𝑓 β€² 𝑐 = 280

𝐾𝑔 ⁄ 2 π‘π‘š

𝑓𝑦 = 2800

𝐾𝑔⁄ π‘π‘š2

𝑑 = 50 βˆ’ 4 = 44 π‘π‘š 𝐴𝑠 = 2𝑁5 = (2)(1.98) = 3.96 π‘π‘š2 Área a compresiΓ³n: 𝐴𝑐 =

π‘Žπ‘ β€² 2

De relaciones geomΓ©tricas: 50 π‘Ž = 25 𝑏 β€² 𝑏′ =

25 π‘Ž 50

𝑏′ =

π‘Ž ; 2

Entonces: 𝐴𝑐 =

π‘Ž π‘Ž π‘Ž2 ( ) β†’ 𝐴𝑐 = 2 2 4

Equilibrio: (fs=fy) 𝐢𝑐 = 𝑇𝑠 0.85𝑓 β€² 𝑐 𝐴𝑐 = 𝐴𝑠𝑓𝑦 (0.85)(𝑓 β€² 𝑐) (

π‘Ž2 ) = 𝐴𝑠𝑓𝑦 4

4(𝐴𝑠𝑓𝑦) π‘Ž=√ 0.85𝑓 β€² 𝑐 (4)(2800)(3.96) π‘Ž=√ (0.85)(280) π‘Ž = 13.65 π‘π‘š TambiΓ©n: 𝑐=

π‘Ž 13.65 = 0.85 0.85

𝑐 = 16.06 π‘π‘š

Comprobando con deformaciones: πœ€π‘¦ =

𝑓𝑦 2800 = β†’ πœ€π‘¦ = 0.001379 𝐸𝑠 2.03 π‘₯ 106

De Relaciones GeomΓ©tricas πœ€π‘π‘’ πœ€π‘  = 𝑐 π‘‘βˆ’π‘ πœ€π‘  =

(𝑑 βˆ’ 𝑐)πœ€π‘π‘’ (44 βˆ’ 16.06)(0.003) = 𝑐 16.06 πœ€π‘  = 0.00522

πΆπ‘œπ‘šπ‘œ πœ€π‘  > πœ€π‘¦ 𝑦 π‘¦π‘Ž π‘žπ‘’π‘’ πœ€π‘  > 0.005,

πœ™ = 0.9

Haciendo Momento en el acero 𝑀 = 0.85𝑓 β€² 𝑐 𝐴𝑐 (𝑑 βˆ’

𝑀 = 0.85𝑓 β€² 𝑐

𝑀 = (0.85)(280) (

2π‘Ž ); 3

𝐴𝑐 =

π‘Ž2 4

π‘Ž2 2π‘Ž (𝑑 βˆ’ ) 4 3

13.652 2 βˆ— 13.65 ) ) (44 βˆ’ 4 3

𝑀𝑛 = 386907.99 π‘˜π‘”. π‘π‘š Momento ΓΊltimo: 𝑀𝑒 = πœ™π‘€π‘› = (0.9)(38907.99) = 348217.19π‘˜π‘”. π‘π‘š β†’ 𝑴𝒖 = πŸ‘. πŸ’πŸ– 𝒕𝒐𝒏. π’Ž

EJERCICIO 6

DATOS 𝑓 β€² 𝑐 = 210 π‘˜π‘”/π‘π‘š2 𝑓𝑦 = 3500 π‘˜π‘”/π‘π‘š2 𝐴𝑠 = 2(3.88) = 7.76π‘π‘š2 πœ€π‘¦ =

𝑓𝑦 3500 = = 0.001724 𝐸 2.03π‘₯106

π‘Ž = 𝛽1 𝑐

Ξ² = 0.85

𝑑 = 50 βˆ’ 7.5 = 42.5 π‘π‘š Relaciones GeomΓ©tricas 50 50 βˆ’ π‘Ž = 25 𝑏′ 𝑏′ =

50 βˆ’ π‘Ž 2

TambiΓ©n: πœ€π‘  =

πœ€π‘π‘’ (𝑑 βˆ’ 𝑐) > πœ€π‘¦ 𝑐

Equilibrio: 𝐢𝑐 = 𝑇𝑠 0.85 𝑓 β€² 𝑐 (

0.85 𝑓 β€² 𝑐 (

0.85 (210) (

625 βˆ’ (

β„Žπ‘ (β„Ž βˆ’ π‘Ž)𝑏 β€² βˆ’ ) = 𝐴𝑠 𝑓𝑦 2 2

β„Žπ‘ (β„Ž βˆ’ π‘Ž) (50 βˆ’ π‘Ž) βˆ’ ) = 𝐴𝑠 𝑓𝑦 2 2 2

(50)(25) (50 βˆ’ π‘Ž)2 βˆ’ ) = 7.76(3500) 2 2

502 βˆ’ 100π‘Ž + π‘Ž2 7.76(3500) )= 4 0.85 (210)

Simplificando: π‘Ž2 βˆ’ 100π‘Ž + 608.64 = 0 Factorizando se obtiene: π‘Ž = 6.51 π‘π‘š Entonces: 𝑐=

π‘Ž 6.51 = = 7.66 π‘π‘š 𝛽 0.85

Comprobando con Relaciones geomΓ©tricas: πœ€π‘  =

0.003(42.5 βˆ’ 7.66) = 0.013645 > πœ€π‘¦ 7.66

Por lo que: 𝑏′ =

50 βˆ’ 6.51 = 21.75 π‘π‘š 2

CΓ‘lculo de Momento: π‘Ž π‘Ž 𝑀𝑛 = 𝐢𝑐1 (𝑑 βˆ’ ) + 𝐢𝑐2 (𝑑 βˆ’ ) 2 3

π‘‚π‘˜!

(25 βˆ’ 𝑏 β€² )π‘Ž π‘Ž π‘Ž 𝑀𝑛 = 0.85 𝑓 β€² 𝑐 𝑏 β€² π‘Ž (𝑑 βˆ’ ) + 0.85 𝑓 β€² 𝑐 ( ) (𝑑 βˆ’ ) 2 2 3 𝑀𝑛 = 0.85(210)(21.75)(6.51) (42.5 βˆ’ + 0.85(210) (

6.51 ) 2

(25 βˆ’ 21.75)(6.51) 6.51 ) ) (42.5 βˆ’ 2 3

𝑀𝑛 = 1068043.799 π‘˜π‘”. π‘π‘š = 10.68 π‘‡π‘œπ‘›. π‘š

Debido a que πœ€π‘  =

0.003(42.5 βˆ’ 7.66) = 0.013645 > πœ€π‘  = 0.005 7.66

Momento ΓΊltimo: 𝑀𝑒 = βˆ…π‘€π‘› 𝑀𝑒 = (0.9)10.68 𝑴𝒖 = πŸ—. πŸ”πŸ 𝑻𝒐𝒏. π’Ž

βˆ… = 0.9

EJERCICIO 7

DATOS 𝑓 β€² 𝑐 = 210

𝐾𝑔⁄ π‘π‘š2

𝑓𝑦 = 3500

𝐾𝑔 ⁄ 2 π‘π‘š

𝑑 = 50 βˆ’ 4 = 44 π‘π‘š 𝐴𝑠 = 2𝑁6 = (2)(2.85) = 5.70 π‘π‘š2

Equilibrio: Asumiendo a=7.5 cm, y acero en fluencia (fs=fy) 𝐢𝑐 = 𝑇𝑠 0.85𝑓 β€² 𝑐 π‘Žπ‘ = 𝐴𝑠𝑓𝑦 (0.85)(210)(7.5)(25) = (5.7)(3500) 33468.75 = 19950

El esfuerzo del concreto cuando a = 7.5 cm mayor al del acero, β€œa” debe ser menor, entonces se considera una secciΓ³n rectangular de ancho 25 cm. Equilibrio suponiendo fluencia en el acero: 𝐢𝑐 = 𝑇𝑠 0.85𝑓 β€² 𝑐 π‘Žπ‘ = 𝐴𝑠𝑓𝑦 (0.85)(210)(π‘Ž)(25) = (5.7)(3500) π‘Ž = 4.47π‘π‘š < 7.5π‘π‘š Solo una parte del patΓ­n estΓ‘ trabajando. Entonces: 𝑐=

π‘Ž 4.47 = = 5.26π‘π‘š 0.85 0.85

Comprobando fluencia en el acero: πœ€π‘¦ =

𝑓𝑦 3500 = β†’ πœ€π‘¦ = 0.00152 𝐸𝑠 2.03 π‘₯ 106

De relaciones geomΓ©tricas: πœ€π‘π‘’ πœ€π‘  (𝑑 βˆ’ 𝑐)πœ€π‘π‘’ (44 βˆ’ 5.26)(0.003) = β†’ πœ€π‘  = β†’ β†’ πœ€π‘  = 0.02209 𝑐 π‘‘βˆ’π‘ 𝑐 5.26 πΆπ‘œπ‘šπ‘œ πœ€π‘  > πœ€π‘¦ 𝑦 π‘¦π‘Ž π‘žπ‘’π‘’ πœ€π‘  > 0.005,

πœ™ = 0.9

Momento en el acero: π‘Ž 𝑀 = (0.85𝑓 β€² 𝑐 π‘Žπ‘) (𝑑 βˆ’ ) 2 𝑀 = (0.85)(210)(4.47)(25) (44 βˆ’

4.47 ) 2

𝑀𝑛 = 833102.12 π‘˜π‘”. π‘π‘š Momento ΓΊltimo: 𝑀𝑒 = πœ™π‘€π‘› = (0.9)(833102.12) = 749791.91π‘˜π‘”. π‘π‘š β†’ 𝑴𝒖 = πŸ•. πŸ“πŸŽ 𝒕𝒐𝒏. π’Ž

EJERCICIO 8

DATOS π‘˜π‘”β„ π‘π‘š2 π‘˜π‘” 𝑓𝑦 = 2800 ⁄ 2 π‘π‘š 𝑓´𝑐 = 210

𝑑 = 50 βˆ’ 3.75 = 46.25 π‘π‘š 𝐴𝑠 = 2𝑁°6 = (2)(2.85) = 5.70 π‘π‘š2 πœ€π‘¦ = 0.00138 Asumiendo a πœ€π‘  = 0.005 πΉπ‘Žπ‘™π‘™π‘Ž π‘Ž 𝑑𝑒𝑛𝑠𝑖ó𝑛 𝑦 βˆ… = 0.90

Momento nominal, haciendo sumatoria de momentos en acero a tensiΓ³n: 𝑀𝑛 = 𝐢𝑐 (𝑑 βˆ’ π‘Žβ„2) = 0.85𝑓´𝑐 π‘Žπ‘(𝑑 βˆ’ π‘Žβ„2) 𝑀𝑛 = 0.85(210)(8.94)(10)(46.25 βˆ’ 8.94⁄2 ) 𝑀𝑛 = 6.67 π‘‡π‘œπ‘›. π‘š Momento ultimo: 𝑀𝑒 = βˆ…π‘€π‘› = 0.90(6.67) 𝑴𝒖 = πŸ”. 𝟎𝟎 𝑻𝒐𝒏. π’Ž

EJERCICIO 9:

DATOS 𝑓𝑐′ = 210

π‘˜π‘” π‘˜π‘” , 𝑓𝑦 = 4200 2 π‘π‘š π‘π‘š2

πœ™π‘ Β° 7 = 2.22 π‘π‘š, 𝐴𝑁°7 = 3.88 π‘π‘š2 𝐴𝑠 = 4(3.88) = 15.52 π‘π‘š2 𝑑 = 45 βˆ’ 7.5 = 37.5 π‘π‘š Relaciones geomΓ©tricas: πœ€π‘π‘’ πœ€π‘  πœ€π‘π‘’ (𝑑 βˆ’ 𝑐) = ; πœ€π‘  = 𝑐 ( 𝑑 βˆ’ 𝑐) 𝑐 Porcentaje de acero balanceado: πœŒπ‘ = πœŒπ‘€π‘ + πœŒπ‘“ πœŒπ‘€π‘ = 0.0214 ( π‘‘π‘Žπ‘π‘™π‘Ž 𝐴. 7 ) πœŒπ‘“ =

𝐴𝑠𝑓 0.85 𝑓𝑐′ β„Žπ‘“ (𝑏 βˆ’ 𝑏𝑀 ) 0.85(210)(5)(25 βˆ’ 10) ; 𝐴𝑠𝑓 = = = 3.19 π‘π‘š2 𝑏𝑀 𝑑 𝑓𝑦 4200 πœŒπ‘“ =

𝐴𝑠𝑓 3.19 = = 0.0085 𝑏𝑀 𝑑 (10)(37.5)

πœŒπ‘ = 0.0214 + 0.0085 = 0.0299

Porcentaje de acero a tensiΓ³n:

𝜌=

𝐴𝑠 15.52 = = 0.0414 ; 𝜌 > πœŒπ‘ 𝑏𝑀 𝑑 10(37.5)

𝒇𝒂𝒍𝒍𝒂 𝒂 π’„π’π’Žπ’‘π’“π’†π’”π’ŠΓ³π’

πœ€π‘  < πœ€π‘¦ β†’ 𝑓𝑠 = πœ€π‘  𝐸𝑠 Equilibrio: 𝐢𝑀𝑏 + 𝐢𝑓 = 𝑇𝑠 0.85𝑓′𝑐 π‘Ž 𝑏𝑀 + 𝐴𝑠𝑓 𝑓𝑠 = 𝐴𝑠 𝑓𝑠 πœ€π‘π‘’ (𝑑 βˆ’ 𝑐) πœ€π‘π‘’ (𝑑 βˆ’ 𝑐) 0.85𝑓′𝑐 π‘Ž 𝑏𝑀 + 𝐴𝑠𝑓 ( ) 𝐸𝑠 = 𝐴𝑠 ( ) 𝐸𝑠 𝑐 𝑐 𝑐=

π‘Ž π‘˜π‘” ; 𝑓′𝑐 = 210 < 280 β†’ 𝛽1 = 0.85 𝛽1 π‘π‘š2

π‘Ž 0.003 (37.5 βˆ’ ) 0.85 0.85(210)(10)π‘Ž + 3.19 ( ) (2.03 Γ— 106 ) π‘Ž 0.85 π‘Ž 0.003 (37.5 βˆ’ ) 0.85 = 15.52 ( ) (2.03 Γ— 106 ) π‘Ž 0.85 Despejando a: π‘Ž = 21.20 π‘π‘š ;

π‘Ž > β„Žπ‘“ = 5 π‘π‘š 𝑢𝑲

Entonces:

𝑐=

π‘Ž 21.20 = = 24.94 π‘π‘š 𝛽1 0.85

Comprobando deformaciΓ³n del acero: πœ€π‘π‘’ (𝑑 βˆ’ 𝑐) 0.003(37.5 βˆ’ 24.94) = = 0.00151083 𝑐 24.94 𝑓𝑦 4200 πœ€π‘¦ = = = 0.00206897 ; πœΊπ’” < πœΊπ’š 𝑢𝑲 𝐸𝑠 2.03 Γ— 106 πœ€π‘  =

𝑓𝑠 = πœ€π‘  𝐸𝑠 = 0.00151083(2.03 Γ— 106 ) = 3066.98

π‘˜π‘” < 𝑓𝑦 π‘π‘š2

Momento en el acero a TensiΓ³n: 𝑀𝑛 = 𝐢𝑀𝑏 (𝑑 βˆ’

β„Žπ‘“ π‘Ž ) + 𝐢𝑓 (𝑑 βˆ’ ) 2 2

𝑀𝑛 = 0.85𝑓′𝑐 π‘Ž 𝑏𝑀 (𝑑 βˆ’ 𝑀𝑛 = 0.85(210)(21.20)(10) (37.5 βˆ’

β„Žπ‘“ π‘Ž ) + 𝐴𝑠𝑓 𝑓𝑠 (𝑑 βˆ’ ) 2 2

21.20 5 ) + 3.19(3066.98) (37.5 βˆ’ ) 2 2

𝑀𝑛 = 13.60 𝑇. π‘š

𝑀𝑒 = βˆ…π‘€π‘›

πœ€π‘  < πœ€π‘¦ β†’ βˆ… = 0.65

𝑀𝑒 = 0.65(13.60) 𝑴𝒖 = πŸ–. πŸ–πŸ’ 𝑻. π’Ž

EJERCICIO 10:

DATOS 𝑓𝑐′ = 280

π‘˜π‘” π‘˜π‘” , 𝑓𝑦 = 4200 , 𝑅 = 22.5 π‘π‘š 2 π‘π‘š π‘π‘š2

πœ™π‘ Β° 7 = 2.22 π‘π‘š, 𝐴𝑁°7 = 3.88 π‘π‘š2 𝐴𝑠 = 2(3.88) = 7.76 π‘π‘š2 𝑑 = 45 βˆ’ 7.5 = 37.5 π‘π‘š Relaciones geomΓ©tricas: πœ€π‘π‘’ πœ€π‘  πœ€π‘π‘’ + πœ€π‘  πœ€π‘π‘’ (𝑑 βˆ’ 𝑐) = = ; πœ€π‘  = 𝑐 ( 𝑑 βˆ’ 𝑐) 𝑑 𝑐 πœƒ 2

π‘Ž = 𝑅 (1 βˆ’ cos ) 𝑙 = π‘…βˆš2 βˆ’ 2 cos πœƒ Área de segmento circular 𝐴𝑐𝑐 = 𝑅 2 ( 𝐴𝑐𝑐 πœƒ π‘’π‘ π‘‘π‘Ž 𝑒𝑛 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘’π‘  1

Área del sector triangular:

𝐴1 = 2 π‘β„Ž

Área del sector circular:

𝐴 𝑇 = 𝐴1 + 𝐴𝑐𝑐

πœƒ πœƒ πœƒ βˆ’ sin cos ) 2 2 2

𝑅2 ( πœƒ βˆ’ sin πœƒ) = 2

Equilibrio: 𝐢𝑐 = 𝑇𝑠 0.85𝑓𝑐′ 𝐴𝑐𝑐 = 𝐴𝑠 𝑓𝑦 0.85(280)𝐴𝑐𝑐 = 7.76(4200) 𝐴𝑐𝑐 = 136.94 π‘π‘š2 (Γ‘rea del segmento circular)

𝐴𝑐𝑐 =

𝑅2 ( πœƒ βˆ’ sin πœƒ) 2

136.94 =

136.94 =

𝑅2 ( πœƒ βˆ’ sin πœƒ) 2

22.52 ( πœƒ βˆ’ sin πœƒ) 2

0.54099753 = πœƒ βˆ’ sin πœƒ

Resolviendo para ΞΈ: πœƒ = 1.540539837 Entonces: πœƒ 1.540539837 π‘Ž = 𝑅 (1 βˆ’ cos ) = 22.5 (1 βˆ’ cos ) = 6.35 π‘π‘š 2 2

𝑐=

π‘Ž π‘˜π‘” ; 𝑓′𝑐 = 280 β†’ 𝛽1 = 0.85 𝛽1 π‘π‘š2 𝑐=

6.35 = 7.47 π‘π‘š 0.85

Evaluando deformaciΓ³n del acero a tensiΓ³n: πœ€π‘  =

πœ€π‘π‘’ (𝑑 βˆ’ 𝑐) 0.003(37.5 βˆ’ 7.47) = = 0.01206024 𝑐 7.47

πœ€π‘  > 0.005

βˆ… = 0.9 𝒇𝒂𝒍𝒍𝒂 𝒂 π’•π’†π’π’”π’ŠΓ³π’

Área del sector triangular: 𝑙 = π‘…βˆš2 βˆ’ 2 cos πœƒ = 22.5√2 βˆ’ 2 cos 1.540539837 = 31.33 π‘π‘š 1 1 𝐴1 = π‘β„Ž = (31.33)(22.5 βˆ’ 6.35) = 252.99 π‘π‘š2 2 2 2 2 𝑦1 = β„Ž = (22.5 βˆ’ 6.35) = 10.77 π‘π‘š (𝑑𝑒𝑠𝑑𝑒 𝑒𝑙 π‘π‘’π‘›π‘‘π‘Ÿπ‘œ 𝑑𝑒𝑙 π‘π‘–π‘Ÿπ‘π‘’π‘™π‘œ) Μ…Μ…Μ… 3 3 Área del sector circular: 𝐴 𝑇 = 𝐴1 + 𝐴𝑐𝑐 = 252.99 + 136.94 = 389.93 π‘π‘š2

π‘ŒΜ… =

πœƒ 1.540539837 2𝑅 sin 2 2(22.5) sin 2 = = 13.56 π‘π‘š (𝑑𝑒𝑠𝑑𝑒 𝑒𝑙 π‘π‘’π‘›π‘‘π‘Ÿπ‘œ 𝑑𝑒𝑙 π‘π‘–π‘Ÿπ‘π‘’π‘™π‘œ) πœƒ 1.540539837 3( ) 3 ( ) 2 2

Recordando EstΓ‘tica: βˆ‘ 𝐴 π‘ŒΜ… = βˆ‘ 𝐴𝑖 𝑦̅𝑖 𝐴 𝑇 π‘ŒΜ… = 𝐴1 Μ…Μ…Μ… 𝑦1 + 𝐴𝑐𝑐 Μ…Μ…Μ…Μ…Μ… 𝑦𝐴𝑐𝑐 389.93(13.56) = 252.99(10.77) + 136.94 Μ…Μ…Μ…Μ…Μ… 𝑦𝐴𝑐𝑐 Μ…Μ…Μ…Μ…Μ… 𝑦𝐴𝑐𝑐 = 18.71 π‘π‘š (π‘šπ‘’π‘‘π‘–π‘‘π‘Ž 𝑑𝑒𝑠𝑑𝑒 𝑒𝑙 π‘π‘’π‘›π‘‘π‘Ÿπ‘œ 𝑑𝑒𝑙 π‘π‘–π‘Ÿπ‘π‘’π‘™π‘œ)

Momento en el acero a tensiΓ³n: 𝑀𝑛 = 𝐢𝑐 𝑏 = 0.85𝑓𝑐′ 𝐴𝑐𝑐 (𝑑 βˆ’ (𝑅 βˆ’ Μ…Μ…Μ…Μ…Μ…)) 𝑦𝐴𝑐𝑐 𝑀𝑛 = 0.85(280)(136.94)(37.5 βˆ’ (22.5 βˆ’ 18.71)) 𝑀𝑛 = 10.987 𝑇. π‘š 𝑀𝑒 = βˆ…π‘€π‘›

πœ€π‘  > 0.005 β†’ βˆ… = 0.90

𝑀𝑒 = 0.90(10.987) 𝑴𝒖 = πŸ—. πŸ–πŸ–πŸ–πŸ‘ 𝑻. π’Ž