Ciclo Rankine

Ciclo Rankine Es un ciclo de potencia representativo del proceso termodinámico que tiene lugar en una central térmica de

Views 248 Downloads 34 File size 334KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

  • Author / Uploaded
  • nildo
Citation preview

Ciclo Rankine Es un ciclo de potencia representativo del proceso termodinámico que tiene lugar en una central térmica de vapor. Utiliza un fluido de trabajo que alternativamente evapora y condensa, típicamente agua. Mediante la quema de un combustible, el vapor de agua es producido en una caldera a alta presión para luego ser llevado a una turbina donde se expande para generar trabajo mecánico en su eje (este eje, solidariamente unido al de un generador eléctrico, es el que generará la electricidad en la central térmica). El vapor de baja presión que sale de la turbina se introduce en un condensador, equipo donde el vapor condensa y cambia al estado líquido (habitualmente el calor es evacuado mediante una corriente de refrigeración procedente del mar, de un río o de un lago). Posteriormente, una bomba se encarga de aumentar la presión del fluido en fase líquida para volver a introducirlo nuevamente en la caldera, cerrando de esta manera el ciclo. Existen algunas mejoras al ciclo descrito que permiten mejorar su eficiencia, como por ejemplo sobrecalentamiento del vapor a la entrada de la turbina, recalentamiento entre etapas de turbina o regeneración del agua de alimentación a caldera. El diagrama T-s de un ciclo Rankine ideal está formado por cuatro procesos: dos isoentrópicos y dos isobáricos. La bomba y la turbina son los equipos que operan según procesos isoentrópicos (adiabáticos e internamente reversibles). La caldera y el condensador operan sin pérdidas de carga y por tanto sin caídas de presión. Los estados principales del ciclo quedan definidos por los números del 1 al 4 en el diagrama T-s (1: vapor sobrecalentado; 2: mezcla bifásica de título elevado o vapor húmedo; 3: líquido saturado; 4: líquido subenfriado). Los procesos que tenemos son los siguientes para el ciclo ideal (procesos internamente reversibles):





 

Proceso 1-2: Expansión isoentrópica del fluido de trabajo en la turbina desde la presión de la caldera hasta la presión del condensador. Se realiza en una turbina de vapor y se genera potencia en el eje de la misma. Proceso 2-3: Transmisión de calor a presión constante desde el fluido de trabajo hacia el circuito de refrigeración, de forma que el fluido de trabajo alcanza el estado de líquido saturado. Se realiza en un condensador (intercambiador de calor), idealmente sin pérdidas de carga. Proceso 3-4: Compresión isoentrópica del fluido de trabajo en fase líquida mediante una bomba, lo cual implica un consumo de potencia. Se aumenta la presión del fluido de trabajo hasta el valor de presión en caldera. Proceso 4-1: Transmisión de calor hacia el fluido de trabajo a presión constante en la caldera. En un primer tramo del proceso el fluido de trabajo se calienta hasta la temperatura de saturación, luego tiene lugar el cambio de fase líquido-vapor y finalmente se obtiene vapor sobrecalentado. Este vapor sobrecalentado de alta presión es el utilizado por la turbina para generar la potencia del ciclo (la potencia neta del ciclo se obtiene realmente descontando la consumida por la bomba, pero ésta suele ser muy pequeña en comparación y suele despreciarse).

Cada una de las cuatro primeras ecuaciones se obtiene del balance de energía y del balance de masa para un volumen de control. La quinta ecuación describe la eficiencia termodinámica o rendimiento térmico del ciclo y se define como la relación entre la potencia de salida con respecto a la potencia térmica de entrada. Qin: Potencia térmica de entrada (energía por unidad de tiempo) m: Caudal másico (masa por unidad de tiempo) W: Potencia mecánica suministrada o absorbida (energía por unidad de tiempo) n: Rendimiento térmico del ciclo (relación entre la potencia generada por el ciclo y la potencia térmica suministrada en la caldera, adimensional) h1, h2, h3, h4: Entalpías específicas de los estados principales del ciclo.

La idea para mejorar un ciclo Rankine es aumentar el salto entálpico entre 1 y 2, es decir, el trabajo entregado a la turbina. Las mejoras que se realizan de forma habitual en centrales térmicas (tanto de carbón, como ciclos combinados o nucleares) son: Reducción de la presión del condensador: En este procedimiento se disminuye automáticamente la temperatura del condensador otorgando un mayor trabajo a la turbina, una disminución del calor rechazado. La desventaja es que la humedad del vapor empieza a aumentar ocasionando erosión en los álabes de la turbina. Aumentar la presión de la caldera para una temperatura fija: Al aumentar la presión aumenta la temperatura a la cual se añade calor aumentando el rendimiento de la turbina por ende la del ciclo. La desventaja es la humedad excesiva que aparece. Sobrecalentar la temperatura de entrada de la turbina: se procede a recalentar el vapor a altas temperaturas para obtener un mayor trabajo de la turbina, tiene como ventaja que la humedad disminuye. Este aumento de la temperatura está limitado por los materiales a soportar altas temperaturas. Recalentamientos intermedios del vapor, escalonando su expansión. Esto es, tener varias etapas de turbina, llevando a condiciones de sobrecalentamiento mediante recalendadores (Dino) (Moisture Steam Reheaters en el caso de centrales nucleares) y de economizador. Este escalonamiento de la expansión da lugar a los cuerpos de alta, media y baja presión de turbina. Realizar extracciones de vapor en la turbina, calentando el agua de alimentación a la caldera, aumentando su entalpía. El número de extracciones no suele superar las 7, ya que no implicaría una mejora de rendimiento considerable frente a la complicación técnica que conllevan. Ciclo Otto ideal Es una aproximación teórica al comportamiento de un motor de explosión. Las fases de operación de este motor son las siguientes:

Admisión (1) El pistón baja con la válvula de admisión abierta, aumentando la cantidad de mezcla (aire + combustible) en la cámara. Esto se modela como una expansión a presión constante (ya que al estar la válvula abierta la presión es igual a la exterior). En el diagrama PV aparece como la línea recta E→A. Compresión (2) El pistón sube comprimiendo la mezcla. Dada la velocidad del proceso se supone que la mezcla no tiene posibilidad de intercambiar calor con el ambiente, por lo que el proceso es adiabático. Se modela como la curva adiabática reversible A→B, aunque en realidad no lo es por la presencia de factores irreversibles como la fricción. Combustión Con el pistón en su punto más alto, salta la chispa de la bujía. El calor generado en la combustión calienta bruscamente el aire, que incrementa su temperatura a volumen prácticamente constante (ya que al pistón no le ha dado tiempo a bajar). Esto se representa por una isócora B→C. Este paso es claramente irreversible, pero para el caso de un proceso isocoro en un gas ideal el balance es el mismo que en uno reversible. Expansión (3) La alta temperatura del gas empuja al pistón hacia abajo, realizando trabajo sobre él. De nuevo, por ser un proceso muy rápido se aproxima por una curva adiabática reversible C→D. Escape (4) Se abre la válvula de escape y el gas sale al exterior, empujado por el pistón a una temperatura mayor que la inicial, siendo sustituido por la misma cantidad de mezcla fría en la siguiente admisión. El sistema es realmente abierto, pues intercambia masa con el exterior. No obstante, dado que la cantidad de aire que sale y la que entra es la misma podemos, para el balance energético, suponer que es el mismo aire, que se ha enfriado. Este enfriamiento ocurre en dos fases. Cuando el pistón está en su punto más bajo, el volumen permanece aproximadamente constante y tenemos la isócora D→A. Cuando el pistón empuja el aire hacia el exterior, con la válvula abierta, empleamos la isobara A→E, cerrando el ciclo. En total, el ciclo se compone de dos subidas y dos bajadas del pistón, razón por la que se le llama motor de cuatro tiempos. En un motor real de explosión varios cilindros actúan simultáneamente, de forma que la expansión de alguno de ellos realiza el trabajo de compresión de otros. En la compresión de la mezcla A→B, se realiza un trabajo positivo sobre el gas. Al ser un proceso adiabático, todo este trabajo se invierte en incrementar la energía interna, elevando su temperatura. En la expansión C→D es el aire el que realiza trabajo sobre el pistón. De nuevo este trabajo útil equivale a la variación de la energía interna, este trabajo es negativo, por ser el sistema el que lo realiza. El trabajo útil realizado por el motor será el trabajo neto entregado, igual a lo que produce (en valor absoluto) menos lo que emplea en funcionar. Por tratarse de un proceso cíclico, la variación de la energía interna es nula al finalizar el ciclo. Esto implica que el calor neto introducido en el sistema debe ser igual al trabajo neto realizado por este, en valor absoluto.

El rendimiento (o eficiencia) de una máquina térmica se define, en general como “lo que sacamos dividido por lo que nos cuesta”. En este caso, lo que sacamos es el trabajo neto útil, | W | . Lo que nos cuesta es el calor Qc, que introducimos en la combustión. No podemos restarle el calor | Qf | ya que ese calor se cede al ambiente y no es reutilizado (lo que violaría el enunciado de Kelvin-Planck). Por tanto Sustituyendo el trabajo como diferencia de calores

Esto es, la eficiencia depende solamente de la temperatura al inicio y al final del proceso de compresión, y no de la temperatura tras la combustión, o de la cantidad de calor que introduce ésta. Puesto que TB < TC, siendo TC la temperatura máxima que alcanza el aire, vemos ya que este ciclo va a tener un rendimiento menor que un ciclo de Carnot que opere entre esas las temperaturas TA y TC. Ciclo Diésel ideal Es un modelo simplificado de lo que ocurre en un motor diésel. En un motor de esta clase, a diferencia de lo que ocurre en un motor de gasolina la combustión no se produce por la ignición de una chispa en el interior de la cámara. En su lugar, aprovechando las propiedades químicas del gasóleo, el aire es comprimido hasta una temperatura superior a la de autoignición del gasóleo y el combustible es inyectado a presión en este aire caliente, produciéndose la combustión de la mezcla. Puesto que sólo se comprime aire, la relación de compresión (cociente entre el volumen en el punto más bajo y el más alto del pistón) puede ser mucho más alta que la de un motor de gasolina (que tiene un límite, por ser indeseable la autoignición de la mezcla). La relación de compresión de un motor diésel puede oscilar entre 12 y 24, mientras que el de gasolina puede rondar un valor de 8. Para modelar el comportamiento del motor diésel se considera un ciclo Diesel de seis pasos, dos de los cuales se anulan mutuamente: Admisión E→A El pistón baja con la válvula de admisión abierta, aumentando la cantidad de aire en la cámara. Esto se modela como una

expansión a presión constante (ya que al estar la válvula abierta la presión es igual a la exterior). En el diagrama PV aparece como una recta horizontal. Compresión A→B El pistón sube comprimiendo el aire. Dada la velocidad del proceso se supone que el aire no tiene posibilidad de intercambiar calor con el ambiente, por lo que el proceso es adiabático. Se modela como la curva adiabática reversible A→B, aunque en realidad no lo es por la presencia de factores irreversibles como la fricción. Combustión B→C Un poco antes de que el pistón llegue a su punto más alto y continuando hasta un poco después de que empiece a bajar, el inyector introduce el combustible en la cámara. Al ser de mayor duración que la combustión en el ciclo Otto, este paso se modela como una adición de calor a presión constante. Éste es el único paso en el que el ciclo Diesel se diferencia del Otto. Expansión C→D La alta temperatura del gas empuja al pistón hacia abajo, realizando trabajo sobre él. De nuevo, por ser un proceso muy rápido se aproxima por una curva adiabática reversible. Escape D→A y A→E Se abre la válvula de escape y el gas sale al exterior, empujado por el pistón a una temperatura mayor que la inicial, siendo sustituido por la misma cantidad de mezcla fría en la siguiente admisión. El sistema es realmente abierto, pues intercambia masa con el exterior. No obstante, dado que la cantidad de aire que sale y la que entra es la misma podemos, para el balance energético, suponer que es el mismo aire, que se ha enfriado. Este enfriamiento ocurre en dos fases. Cuando el pistón está en su punto más bajo, el volumen permanece aproximadamente constante y tenemos la isócora D→A. Cuando el pistón empuja el aire hacia el exterior, con la válvula abierta, empleamos la isobara A→E, cerrando el ciclo. En total, el ciclo se compone de dos subidas y dos bajadas del pistón, razón por la que es un ciclo de cuatro tiempos, aunque este nombre se suele reservar para los motores de gasolina. Un ciclo diésel contiene dos proceso adiabáticos, A→B y C→D, en los que no se intercambia calor. De los otros dos, en el calentamiento a presión constante B→C, el gas recibe una cantidad de calor | Qc | del exterior igual a En el enfriamiento a volumen constante D→A el sistema cede una cantidad de calor al ambiente El rendimiento del ciclo será entonces, con γ = cp / cV la proporción entre las capacidades caloríficas.

Los Ciclos Stirling y Ericsson difieren del ciclo de Carnot en que los procesos isentrópicos son reemplazados por procesos de regeneración. Regeneración es el Proceso durante el cual se transfiere calor a un dispositivo, llamado Regenerador, durante una parte del ciclo y se transfiere de nuevo al fluido de trabajo durante otra parte del ciclo. El ciclo de Stirling es un ciclo termodinámico reversible de potencia que busca obtener el máximo rendimiento. Es semejante al ciclo de Carnot ya que es el único capaz de aproximarse al rendimiento de Carnot, por lo que es la mejor opción. En este ciclo termodinámico el fluido evoluciona realizando dos transformaciones isotérmicas y dos transformaciones isocóricas (a volumen constante). 1-2: Expansión isotérmica. Se absorbe calor de la fuente caliente. 2-3: Compresión Isocórica. Se cede una cantidad de calor al regenerador a volumen constante, disminuyendo la temperatura. 3-4: Compresión Isotérmica. Se cede al exterior una cantidad de calor a la fuente fría. 4-1: Expansión Isocórica. Absorción de calor a volumen constante. El gas absorbe del regenerador una cantidad de calor y aumenta su temperatura, lo que provoca un aumento de presión. Aplicación en energía solar: Transformación de la energía térmica solar en energía eléctrica.

Es interesante examinar que pasa cuando el numero de etapas tanto de enfriamiento y de recalentamiento se hace infinitamente grande, donde los procesos isentrópicos de compresión y expansión pasan a ser isotérmicos, el ciclo se puede presentar mediante 2 etapas a temperaturas constantes y 2 procesos a presión constante con regeneración. A un proceso así se le llama ciclo de Ericsson. Consta de 4 fases: 1-2: Expansión Isotérmica y proceso de absorción de calor. 2-3: Compresión Isobárica y proceso de rechazo de calor. (El aire pasa a través del regenerador donde su temperatura se reduce a T3 a presión constante) 3-4: Compresión Isotérmica 4-1: Expansión Isobárica. Los procesos de expansión y compresión isotérmicos se llevan a cabo en la turbina y el compresor. El regenerador es un intercambiador de calor de contraflujo. La transferencia de calor sucede entre las dos corrientes. Motor Ericsson: Son de combustión externa por lo que el gas del motor se calienta desde el exterior.

Para mejorar el rendimiento térmico dispone de un regenerador. Puede funcionar en un ciclo abierto o cerrado. Aplicaciones solares, mecánicas y en la industria automotriz. El ciclo Ericsson y Stirling son usados en motores de combustión externa. Tienen en teoría un rendimiento ideal. Estos dos ciclos junto al de Carnot son reversibles, los tres ciclos tendrán la misma eficiencia térmica cuando operen entre los mismos límites de temperatura. Este ciclo Joule - Brayton tiene la ventaja de producir bastante potencia con poco peso de las máquinas, lo que las hace ideales para la aviación con el uso de las turbinas a gas. El inconveniente es el alto consumo de combustible comparándolo con el ciclo Rankine y los motores de combustión interna. El ciclo Brayton es la aproximación del ciclo de aire estándar ideal para los motores de turbinas de gas. Este ciclo difiere de los ciclos Otto y Diesel en que los procesos que componen el ciclo ocurren en sistemas abiertos o volúmenes de control. Por lo tanto, un sistema abierto, el análisis de flujo estable es usado para determinar la transferencia de calor y trabajo para el ciclo. Asumiremos que el fluido de trabajo es aire y que los calores específicos son constantes y consideraremos el ciclo estándar de aire frío. 1-2 Compresión isentrópica (en un compresor). 2-3 Adición de calor a presión constante. 3-4 Expansión isentrópica (en una turbina). 4-1 Rechazo de calor a presión constante.

La eficiencia de este ciclo varia con la relación de las presiones, es directamente proporcional, el cambio es mas significativo para relaciones de presión de 5 a 15 luego a medida que va aumentando esta relación de presiones el cambio es menos brusco, como se puede observar. Aplicando la ecuación general de la primera ley a través de los balances de energía en cada dispositivo, podemos conseguir la energía presente en cada uno de ellos, bien sea calor o trabajo, ya que la energía cinética y potencial es despreciable en este tipo de dispositivos: De esta manera podemos emplear la ecuación de la eficiencia para el ciclo Brayton simple:

Se sabe que para los procesos isoentrópicos

se cumple que:

Sustituyendo estas relaciones isoentrópicas podemos simplificar un poco la ecuación de la eficiencia:

Refrigeración: El ciclo de Carnot es totalmente reversible, permitiendo que los cuatro procesos que comprenden el ciclo puedan invertirse. El resultado es un ciclo que opera en dirección contraria a las manecillas del reloj, que se llama ciclo invertido de Carnot. Un refrigerador o bomba de calor que opera en este ciclo recibe el nombre de refrigerador o bomba de calor de Carnot. Aunque en la práctica no es utilizado, sirve de referencia para evaluar el desempeño de un dispositivo real que trabaje bajo las mismas condiciones de temperatura. En el proceso de compresión de vapor se realizan modificaciones al ciclo de Carnot basados en las siguientes consideraciones: • En el proceso de compresión, el fluido de trabajo solo debe estar en la fase de vapor. • Para expansionar el refrigerante es recomendable utilizar un dispositivo más económico y con cero mantenimientos (válvula de estrangulamiento o tubo capilar). • La temperatura de condensación no debe limitarse a la zona de saturación. Muchos aspectos imprácticos asociados con el ciclo invertido de Carnot, se eliminan al evaporar el refrigerante completamente antes de que se comprima y al sustituir la turbina con un dispositivo de estrangulamiento, tal como una válvula de expansión o tubo capilar.

Para cada proceso, la ecuación general de energía en régimen estacionario por unidad de masa, despreciando la variación de la energía cinética y potencial está dada por:

La capacidad de refrigeración, es el flujo de calor transferido en el evaporador planteada así:

En el compresor y en el proceso de estrangulamiento no se transfiere calor, mientras que sólo existe trabajo en el proceso de compresión. El coeficiente de operación o de performance del ciclo está dado por: