Angel Radio de Giro

RADIO DE GIRO Se define el radio de giro como la distancia desde el eje de giro a un punto donde podríamos suponer conce

Views 93 Downloads 0 File size 455KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

RADIO DE GIRO Se define el radio de giro como la distancia desde el eje de giro a un punto donde podríamos suponer concentrada toda la masa del cuerpo de modo que el momento de inercia respecto a dicho eje se obtenga como el producto de la masa del cuerpo por el cuadrado del radio de giro.

Momento flector Se denomina momento flector (o también "flexor"), o momento de flexión, a un momento de fuerza resultante de una distribución de tensiones sobre una sección transversal de un prisma mecánico flexionado o una placa que es perpendicular al eje longitudinal a lo largo del que se produce la flexión. Es una solicitación típica en vigas y pilares y también en losas ya que todos estos elementos suelen deformarse predominantemente por flexión. El momento flector puede aparecer cuando se someten estos elementos a la acción de un momento (torque) o también de fuerzas puntuales o distribuidas. Los signos que determinan los momentos flectores en vigas como positivos o negativos dependen del efecto que dicho momento produce , cuando el efecto del momento produce tensiones en las fibras inferiores de la viga se habla de un momento positivo, mientras que si el momento produce tensiones en las fibras superiores de la viga se hablara que se produjo un momento negativo.

Esfuerzo cortante El esfuerzo cortante, de corte, de cizalla o de cortadura es el esfuerzo interno o resultante de las tensiones paralelas a la sección transversal de un prisma mecánico como por ejemplo una viga o un pilar. Se designa variadamente como T, V o Q.

Momento de inercia. El momento de inercia refleja la distribución de masa de un cuerpo o de un sistema de partículas en rotación, respecto a un eje de giro. El momento de inercia solo depende de la geometría del cuerpo y de la posición del eje de giro; pero no depende de las fuerzas que intervienen en el movimiento.

Flexión mecánica En ingeniería se denomina flexión al tipo de deformación que presenta un elemento estructural alargado en una dirección perpendicular a su eje longitudinal. El término "alargado" se aplica cuando una dimensión es dominante frente a las otras. Un caso típico son las vigas, las que están diseñadas para trabajar, principalmente, por flexión. Igualmente, el concepto de flexión se extiende a elementos estructurales superficiales como placas o láminas.

OBJETIVO: Aplicar los conocimientos del movimiento lineal al movimiento circular utilizando formulas muy similares

Es un movimiento en el cual la velocidad no cambia, pues solo hay un cambio en la dirección. El desplazamiento angular de un cuerpo describe la cantidad de rotación.

Medidas del desplazamiento angular.

El ángulo en radianes es la razón entre la distancia del arco s y el radio R del arco. Un radian no tiene unidades y es la razón entre dos longitudes. La velocidad angular es la razón de cambio de desplazamiento angular con respecto al tiempo. La aceleración angular es la tasa de cambio de la velocidad angular en el tiempo.

Formulas que se utilizan:

Relación entre los movimientos rotacional y lineal. Existe una importante relación entre la velocidad angular y la lineal debido a que q /t = w y s/t = v, como s = q R entonces

La aceleración tangencial representa un cambio en la velocidad lineal, mientras que la aceleración centrípeta representa tan solo un cambio de dirección del movimiento .Teniendo las siguientes formulas:

EJEMPLOS

1.- Un punto situado en el borde de un disco giratorio cuyo radio es de 8m se mueve a través de un ángulo de 37º .Calcule la longitud del arco descrito por el punto. DATOS FORMULA SUSTITUCIÓN RESULTADOS R = 8m Θ = s / R Ángulo = 8m ( 0.646 s = RΘ = 5.17 m = 37° rad)

Paso 1

Convertir los grados a radianes , ya que en todos los problemas es necesario que los ángulos o las revoluciones esten en radianes para poderlos escribir en las formulas y nos den las unidades correctas, Θ = ( 37º) 1 rad / 360º= 0.646 rad

2.- La rueda de una bicicleta tiene un diámetro de 66cm y da 40 revoluciones en 1 min. a)¿ Cuál es su velocidad angular? b)¿Qué distancia se desplazará la rueda? DATOS R= 33cm R= .33m ω = 40 rmp

FORMULA SUSTITUCIÓN RESULTADOS ω = 4.19 rad/s = 251rad ( .33 s = ΘR = 82.8 m m)

Convertir 40rmp en rad/s : 40 rmp = 40 rev / min ( 2p rad / rev ) ( 1 min / 60s) = 4.19 rad/s 40 rev ( 2 p rad/ 1rev ) = 251 rad .

En este tipo de conversiones se escriben dos paréntesis y se elimina lo que esta arriba con lo de abajo Y lo que esta abajo con lo de arriba

3.-Un volante aumenta su velocidad de rotación de 37.7 rad/s a 75.4 rad/s en 8 s ¿Cuál es se aceleración angular? DATOS

FORMULA

SUSTITUCIÓN

RESULTADOS

ωo = 37.7 rad/s ωf = 75.4 rad/s t= 8 s

α = (ωf - ωo) =75.4 rad/s - 37.7 /t rad/s

=4.71 rad/s^2

4.-Una rueda de esmeril que gira inicialmente con una velocidad angular de 6 rad/s recibe una aceleración constante de 2 rad/s^2 a)¿Cuál será su desplazamiento angular en 3 seg? b) ¿Cuál es su velocidad angular final? c)¿Cuál será su aceleración tangencial ,si la rueda tiene un racio de .05m? DATOS ωo = 6rad/s α= 2 rad/s^2 a) Θ= ? b) ωf=? c) αt= ?

FORMULA

SUSTITUCIÓN

RESULTADOS

Θ= ωot +(αt^2) / = 6rad/s(3s) + (2rad/s^2) =27 rad 2 /2 ωf = ωo +at = 6rad/s + 2 rad/s^2 ( 3s) = 12 rad/s a t = αR = 2 rad/s^2 ( .05m) = 0.1 m/s^2

ACTIVIDAD No. 8 INSTRUCCIONES: Resolver los siguientes ejercicios y entregarlos a su maestro en hojas blancas en la fecha indicada por él.

1.-Un punto al borde de una gran rueda cuyo radio es de 3 m. Se mueve a través e un ángulo de 40°. Encuentre la longitud del arco descrito por el punto.

2.- Un volante parte del reposo y alcanza una velocidad rotacional final de 900 rpm en 4 seg. Determine la aceleración angular y el desplazamiento angular después de 4 seg.

3.-Una pieza cilíndrica para almacenamiento de 6 in de diámetro gira en un torno a 800 rpm . ¿ Cuál es la velocidad lineal en la superficie del cilindro?.

TAREA No. 4 Resolver los siguientes ejercicios y enviarlos por mail a su profesor

1.- Un motor eléctrico gira a 600 rpm . ¿Cuál es la velocidad angular? ¿ Cuál es el desplazamiento angular después de 6 seg.?

2.-Una mujer que esta de pie en una plataforma giratoria a 4 m del centro de rotación recorre una distancia de 100 m en 20 seg. Si partió del reposo ¿ Cuál es la aceleración angular de la plataforma?¿ Cuál es la velocidad angular después de 20 seg.?

Tensor de inercia El tensor de inercia es un tensor simétrico de segundo orden que caracteriza la inercia rotacional de un sólido rígido. Expresado en una base del espacio viene dado por una matriz simétrica, dicho tensor se forma a partir de los momentos de inercia según tres ejes perpendiculares y tres productos de inercia (dicha construcción se explica en este otro artículo).

Definición[editar] El tensor de inercia sólido rígido se define como un tensor simétrico de segundo orden tal que la forma cuadrática construida a partir del tensor y la velocidad angular Ω da la energía cinética de rotación, es decir:

Donde las componentes de este tensor de inercia en una base ortonormal XYZ pueden calcularse a partir de los tres momentos de inercia según esos tres ejes perpendiculares:

Y los tres productos de inercia que se calculan como:

Todas las formas anteriores pueden resumirse en la siguiente fórmula tensorial:

Donde

y donde

.

Derivación formal del tensor de inercia[editar] La velocidad de un cuerpo rígido se puede escribir como la suma de la velocidad del centro de masa más la velocidad de un elemento del sólido, matemáticamente esto es:

donde es la velocidad, es la velocidad del centro de masa, es la velocidad angular de un sistema de coordenadas solidario al sólido, medida en el mismo sistema de coordenadas en el que se mide y es la distancia entre el origen de aquél sistema y el elemento del sólido. Si se toma la norma al cuadrado de este vector se puede obtener la energía cinética de dicho diferencial de cuerpo rígido, a saber

donde , con la densidad del cuerpo y un elemento de volumen. Para obtener la energía cinética total del cuerpo rígido se debe integrar en todo el volumen de éste:

Con el fin de anular el último término, i. e. simplificar la expresión (y las sucesivas), se elige el origen del sistema solidario al sólido en el centro de masa. De este modo:

pues, en virtud de la elección hecha

. Se tiene luego que

es evidente, que el primer término es la energía cinética debido a la traslación del cuerpo. El otro término, en consecuencia, debe ser la energía asociada a la rotación del mismo. Si se escribe explícitamente el integrando de este último término se tiene

donde es claro que:

con la delta de Kronecker. Poniendo este resultado en la expresión asociada a la energía cinética debido a la rotación y poniendo la integral dentro de la sumatoria se tiene

Debe notarse que el factor correspondiente a la integral depende únicamente de las característica geométricas (físicas) del cuerpo. En efecto, depende de su forma (volumen) y de la masa del cuerpo y de como cómo está distribuida en dicha forma. Este factor es la componente de una cierta matriz que se conoce como Tensor de Inercia, puesto que toda matriz corresponde a un tensor de segundo rango:

A los elementos se los llama momento de inercia respecto del eje . Claramente, se ve que el tensor de inercia es simétrico, por lo tanto es siempre diagonalizable. Es decir, siempre se puede encontrar una base de vectores tal que dicha matriz tenga forma diagonal. Tales vectores definen lo que se conoce como ejes principales. En otras palabras, siempre se puede elegir un sistema completo de vectores ortonormales (ejes principales) con los cuales el tensor de inercia toma forma diagonal.