vehiculos hibridos

Vehículos híbridos Introducción Debido a los problemas que siguen teniendo los vehículos eléctricos, escasa energía es

Views 134 Downloads 8 File size 3MB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Vehículos híbridos

Introducción Debido a los problemas que siguen teniendo los vehículos eléctricos, escasa energía específica que actualmente se obtiene de las baterías y su limitación en cuanto a velocidad y autonomía, son los automóviles híbridos los que ofrecen una solución de compromiso más satisfactoria. Además pueden aprovecharse de los desarrollos en el campo de los motores de combustión interna que aún tienen margen de mejora. El fabricante Toyota por ejemplo esta desarrollando una serie de alternativas a los vehículos convencionales que consumen combustibles fósiles, desarrollando nuevas tecnologías que van desde los vehículos híbridos actuales hasta los que son impulsados por hidrogeno (FCHV: Fuel Cell Hybrid Vehicle).

Se han llamado “híbridos” a los automóviles que utilizan un motor eléctrico, y un motor de combustión interna para realizar su trabajo. A diferencia de los automóviles solo eléctricos, hay vehículos híbridos que no es necesario conectar a una toma de corriente para recargar las baterías, el generador y el sistema de "frenos regenerativos" se encargan de mantener la carga de las mismas.  Al utilizar el motor térmico para recargar las baterías, se necesitan menor número de estas por lo que el peso total del vehículo es menor ya que el motor térmico suele ser pequeño.

Tradicionalmente, los motores que han propulsado a los automóviles convencionales han sido sobredimensionados con respecto a lo estrictamente necesario para un uso habitual. La nota dominante ha sido, y es aún, equipar con motores capaces de dar una potencia bastante grande, pero que sólo es requerida durante un mínimo tiempo en la vida útil de un vehículo. Los híbridos se equipan con motores de combustión interna, diseñados para funcionar con su máxima eficiencia. Si se genera más energía de la necesaria, el motor eléctrico se usa como generador y carga la baterías del sistema. En otras situaciones, funciona sólo el motor eléctrico, alimentándose de la energía guardada en la batería. En algunos híbridos es posible recuperar la energía cinética al frenar, que suele disiparse en forma de calor en los frenos, convirtiéndola en energía eléctrica. Este tipo de frenos se suele llamar "regenerativos".

La combinación de un motor de combustión operando siempre a su máxima eficiencia, y la recuperación de energía del frenado (útil especialmente en la ciudad), hace que estos vehículos alcancen mejores rendimientos que los vehículos convencionales. Se dispone de un sistema electrónico para determinar qué motor usar y cuándo hacerlo.

Los híbridos se pueden fabricar en diferentes configuraciones: •Paralelos: tanto la parte eléctrica como la térmica pueden hacer girar las ruedas. •En serie: solo la parte eléctrica da tracción, el motor térmico se utiliza para generar electricidad. También se pueden clasificar según sea la carga de las baterías. •Regulares: se recargan por el funcionamiento normal del vehículo. •Enchufables: también se recargan conectándose a la red eléctrica.

Ventajas: Esta tecnología ha permitido conseguir que el consumo de combustible sea de un 20% hasta un 60% menor que en vehículos comparables de tipo convencional. Se maximiza el rendimiento del uso del combustible, pues los motores de combustión interna para híbridos son fabricados pensando en el mayor rendimiento.. Reducción de emisión de gases dañinos para el medio ambiente y los seres vivos.

Desventajas: Los vehículos híbridos tienen menos potencia (CVs) que automóviles convencionales comparables. No obstante, el avance de esta tecnología apunta a aminorar esta brecha y tanto la velocidad máxima del vehículo, como la autonomía son parecidas a los puramente térmicos. Mayor peso que un coche convencional (hay que sumar el motor eléctrico y, sobre todo, las baterías), y por ello un incremento en la energía necesaria para desplazarlo. El peso del vehículo se puede aminorar usando carrocerías mas ligeras de aluminio, fibra de carbono o fibra de vidrio. Más complejidad, lo que dificulta las revisiones y reparaciones del vehículo. La inversión inicial es mayor para adquirir un “híbrido” que para adquirir un “convencional” comparable. Sin embargo, el ahorro económico que le entrega el menor consumo de combustible le devuelve esa inversión. Como desarrollo para un futuro, están las celdas de combustible, que prometen reemplazar al motor de combustión mediante el uso de nuevas energías. Su única emisión por el tubo de escape es vapor de agua.

Entre los 10 automóviles híbridos más demandados del 2007 están los siguientes: •Toyota Prius •Toyota Camry hybrid •Toyota Highlander hybrid •Ford Escape hybrid •Honda Civic hybrid •Lexus GS450h •Lexus RX400h •Nissan Altima hybrid •Mercury Mariner hybrid •Honda Accord hybrid

Estructura La configuración de un vehículo híbrido depende de la disposición de los elementos que lo componen, por lo que se pueden clasificar en híbridos serie e híbridos en paralelo. •Híbrido en serie En estos vehículos el motor de combustión proporciona movimiento a un generador que o carga las baterías o suministra la potencia directamente al sistema de propulsión (motor eléctrico) y por lo tanto reduce la demanda a la batería. El dispositivo generador se utiliza principalmente como un ampliador de prestaciones, por lo que en la mayoría de los kilómetros se circula con las baterías. Cuando la duración del viaje excede a las prestaciones de la batería, el dispositivo generador se enciende. Para viajes más largos, el dispositivo generador puede ser conectado automáticamente cuando las baterías alcanzan un nivel predeterminado de descarga. El motor térmico impulsa un generador eléctrico, normalmente un alterador trifásico, que recarga las baterías, una vez rectificada la corriente, y alimenta al motor o motores eléctricos y estos son los que impulsan al vehículo.

Dependiendo del rango de velocidades que se quieran ofrecer el dispositivo generador debe ser mayor o menor. En un principio se propusieron soluciones de bajo rango de velocidades, pero la tendencia hoy en día es la de ir a un rango mayor. Esto implica sistemas de generación mucho mayores. La batería se dimensiona en función de los picos de demanda. Así, a altas velocidades, sólo parte de la energía proviene de las baterías, siendo éstas las que suministran la potencia necesaria para aceleraciones y adelantamientos. A velocidad de crucero, la potencia generada en exceso se utiliza para recargar las baterías. Este sistema resulta eficiente si el 80% de los kilómetros recorridos son alimentados por la energía de las baterías que se han recargado desde la red. En caso contrario es difícil la justificación de este tipo de propulsión híbrida ya que la energía eléctrica de las baterías proviene en realidad de la combustión del motor térmico.

La principal ventaja que ofrece este diseño frente al de en "paralelo" es la de un diseño mecánico simple. Se dispone de un motor térmico diseñado y optimizado para trabajar siempre en el mismo régimen de revoluciones. La desventaja de este tipo de vehículos es que toda la energía producida por el motor térmico tiene que atravesar el generador eléctrico sufriendo muchas pérdidas, debido a la transformación de energía mecánica a eléctrica, y toda la energía para la tracción tiene que pasar por el motor eléctrico.

Híbrido en paralelo Este tipo de vehículo utiliza dos sistemas de tracción en paralelo. Según esta configuración ambos proveen de potencia a las ruedas de modo que los dos sistemas pueden ser utilizados independientemente o simultáneamente para obtener una potencia máxima. Aunque mecánicamente más complejo, este método evita las pérdidas inherentes a la conversión de energía mecánica en eléctrica que se da en los híbridos en serie. Además como los picos de demanda de potencia le corresponden al motor de combustión interna, las baterías pueden ser mucho menores. El motor a gasolina entra en funcionamiento cuando el vehículo necesita más energía. Y al detenerse, el híbrido aprovecha la energía normalmente empleada en frenar para recargar su propia batería (frenado regenerativo).

Dentro de los vehículos híbridos "paralelos" podemos distinguir dos arquitecturas: Los que usan un generador independiente para cargar las baterías, o los que aprovechan el motor eléctrico para funcionar también como generador. •Con generador independiente: su inconveniente es que tiene mas componentes, el generador, el conversor de corriente alterna a corriente continua y la transmisión ente el motor térmico y el generador por lo que será más pesado y caro. Sin embargo tiene la ventaja que el generador al estar diseñado para funcionar sólo como generador, será más eficiente que el motor funcionando como generador. •Usando el motor eléctrico como generador: se disminuye el número de componentes, pero puede disminuir el rendimiento.

El vehículo híbrido paralelo con generador independiente también se le clasifica como vehículo híbrido "paralelo-serie“. Esta configuración combina las ventajas de ambos sistemas y es la mas utilizada por los fabricantes de automóviles como por ejemplo: Toyota en su modelo Prius.

Los tiempos de funcionamiento del motor eléctrico (motor) y del motor térmico (engine) se reparten en distinta proporción dependiendo de la configuración del vehículo híbrido. Para verlo mas claro tenemos la gráfica inferior donde se ve que en el híbrido "serie" los tiempos de funcionamiento se reparten por igual al 50%, en el híbrido "paralelo" sin embargo funciona mucho mas el motor térmico, en el híbrido "paralelo/serie" funciona mas tiempo el motor eléctrico.

Motores Los automóviles normalmente tienen motores de combustión interna que rondan entre los 60 y 180 CV de potencia máxima. Esta potencia se requiere en situaciones particulares, tales como aceleraciones a fondo, subida de grandes pendientes con gran carga del vehículo y a gran velocidad. El hecho de que la mayoría del tiempo dicha potencia no sea requerida supone un despilfarro de energía, puesto que sobredimensionar el motor para posteriormente emplearlo a un porcentaje muy pequeño de su capacidad, sitúa el punto de funcionamiento en un lugar donde el rendimiento es bastante malo. Un vehículo medio convencional, si se emplea mayoritariamente en ciudad o en recorridos largos y estacionarios a velocidad moderada, ni siquiera necesitará desarrollar 20 caballos.

El hecho de desarrollar una potencia muy inferior a la que el motor puede dar supone un despilfarro por dos motivos: Por una parte se incurre en gastos de fabricación del motor superiores a lo que requeriría realmente, y por otra, el rendimiento de un motor que pueda dar 100 caballos cuando da sólo 20 es muy inferior al de otro motor de menor potencia máxima funcionando a plena potencia y dando esos mismos 20 caballos. Este segundo factor es el principal responsable de que el consumo urbano de un mismo vehículo equipado con un motor de gran potencia consuma, en recorridos urbanos, muchísimo más que uno del mismo peso equipado con un motor más pequeño. En conclusión, el motor ha de ser el idóneo para el uso al que se destina. Otro factor que penaliza el rendimiento brutalmente en recorridos urbanos es la forma de detener el vehículo. Ésta detención se realiza mediante un proceso tan ineficiente cómo es disipar y destruir la energía en forma de movimiento, energía cinética, que lleva el vehículo para transformarla en calor liberado inútilmente al ambiente.

Sin embargo, tampoco parece razonable limitar la potencia máxima de un motor en demasía en pro de conseguir excelentes consumos, puesto que en ciertas ocasiones es estrictamente necesario disponer de potencia para determinados esfuerzos tan puntuales como inevitables, tales como adelantamientos y aceleraciones en pendiente. He aquí donde el sistema híbrido toma su mayor interés. Por una parte combina un pequeño motor térmico, suficiente para el uso en la inmensa mayoría de las ocasiones, de buen rendimiento y por tanto bajo consumo y emisiones contaminantes, con un sistema eléctrico capaz de realizar dos funciones vitales. Por una parte desarrolla el suplemento extra de potencia necesario en contadas, pero inevitables, situaciones como las anteriormente citadas. Por otra, no supone en absoluto ningún consumo extra de combustible. Al contrario, supone un ahorro, puesto que la energía eléctrica es obtenida a base de cargar las baterías en frenadas o retenciones del vehículo al descender pendientes, momentos en los que la energía cinética del vehículo se destruiría (transformaría en calor irrecuperable para ser más exactos) con frenos tradicionales.

Además, no sólo aporta potencia extra en momentos de gran demanda de ésta, sino que posibilita emplear solo la propulsión eléctrica en arrancadas tras detenciones prolongadas (semáforos por ejemplo) o aparcamientos y mantener el motor térmico parado en éstas situaciones en las que no es empleado, o se requiere de él una potencia mínima, sin comprometer la capacidad para retomar la marcha instantáneamente. Esto es posible porque tiene la capacidad de arrancar en pocas décimas de segundo el motor térmico en caso de necesidad. Además de la altísima eficiencia, la posibilidad de emplear los motores eléctricos, exclusivamente, durante un tiempo permite evitar la producción de humos en situaciones molestas, como por ejemplo en garajes. En conclusión, desde el punto de vista de la eficiencia energética, el vehículo híbrido representa un avance importante tanto en la reducción del consumo de combustible y de la contaminación. Sin embargo, no todos son ventajas actualmente los costes de producción de baterías, el peso de las mismas y la escasa capacidad de almacenamiento limitan aún su empleo generalizado.

El gran problema actual con el que se encuentra el motor eléctrico para sustituir al térmico en el vehículo es la capacidad de acumulación de energía eléctrica, que es muy baja en comparación con la capacidad de acumulación de energía en forma de combustible. Aproximadamente, 1 kg de baterías puede almacenar la energía equivalente de 18 gramos de combustible, si bien este cálculo no tiene en cuenta el escaso aprovechamiento energético de esa energía en un motor de combustión, en comparación con un motor eléctrico. Aun así esto supone una barrera tecnológica importante para un motor eléctrico. Los motores eléctricos han demostrado capacidades de sobra para impulsar otros tipos de máquinas, como trenes y robots de fábricas, puesto que pueden conectarse sin problemas a líneas de corriente de alta potencia. Sin embargo, las capacidades de almacenamiento energético en un vehículo móvil obligan a los diseñadores a usar una complicada cadena energética multidisciplinar, e híbrida, para sustituir a una sencilla y barata cadena energética clásica depósitomotor-ruedas. La electricidad, como moneda de cambio energética, facilita el uso de tecnologías muy diversas, ya que el motor eléctrico consume electricidad, independientemente de la fuente empleada para generarla.

Toyota Prius Hibrido

El Toyota Prius es el híbrido más demandado entre los compradores de este tipo de vehículos. Funciona con gasolina pero gasta menos que un Diesel (4,3 L/100 km) y es el modelo que emite menos CO2 del mercado, con sólo 104 gr/km; un 30% menos que el resto de turismos. Su secreto es la tecnología Hybrid Sinergy Drive (HSD), desarrollada por Toyota, y que combina un motor térmico con otro eléctrico alimentado por unas baterías que se recarga con la fuerza de las frenadas. Lo que inicialmente parece una idea tan sencilla como brillante, resulta, a la postre, técnicamente muy compleja, y con en reto añadido de que todos los componentes extra que precisa una mecánica semejante deben ocupar el mismo espacio que habitualmente precisa el motor de un automóvil convencional.

El Toyota Prius a evolucionado con los años montando una nueva versión (THS II) que ha mejorado la primera versión THS (Toyota Hybrid System)..

Para el funcionamiento del Prius se dispone de dos motores; por una parte, tenemos un motor de gasolina de 1,5 litros, con 78 CV de potencia máxima a 5.000 rpm. Por otra, se apoya en un motor eléctrico, con una potencia máxima equivalente a 68 CV (50 Kw), con lo cual, cuando los dos trabajan al unísono, se logra una potencia total de unos 111 CV. El par máximo es impresionante, alrededor de 400 Nm., desde el motor parado y hasta las 1.200 revoluciones. Con todo ello los consumos de combustible anunciados por Toyota son de 4,3 litros a los 100 kilómetros en ciclo combinado, 4,2 litros cada 100 kilómetros en carretera y 5 litros cada 100 kilómetros en ciudad.

Motor El motor térmico funciona según el llamado "ciclo Atkinson", ideado por el ingeniero inglés James Atkinson (1887), y que se diferencia ligeramente del tradicional motor de "ciclo Otto" de cuatro tiempos. Bien es sabido que el rendimiento termodinámico de cualquier motor de combustión interna se ve favorecido por un alto valor de la relación de compresión, que a su vez tiene el inconveniente de la tendencia que posee la gasolina a producir detonación para altas relaciones de compresión. El ciclo Atkinson trata de aprovechar las ventajas que supone una alta relación de compresión reduciendo la duración efectiva de la carrera de compresión con respecto a la de expansión del tradicional ciclo Otto. La forma más viable y sencilla de conseguir esto es retrasar el cierre de la válvula de admisión, permitiendo un cierto reflujo de gases hacia el colector de admisión mientras el pistón asciende. Esa mezcla se aprovecha en el siguiente ciclo de aspiración.

El cierre de la válvula determina la cantidad de gases que permanecen en el interior del cilindro y el comienzo de la compresión. La menor cantidad de mezcla retenida se traduce en unas menores prestaciones, pero autoriza a usar relaciones de compresión altas (13:1 en el Toyota Prius) sin que se produzca detonación, lo que permite un mayor aprovechamiento de la energía liberada en la combustión durante la carrera de expansión. Este ciclo ha sido en ocasiones denominado como «de cinco tiempos»: admisión, reflujo de gases, compresión, expansión y escape.

El motor Toyota que lleva el Prius tiene distribución variable de tipo VVT-i. Puede cerrar la válvula de admisión entre 78° y 105° después del punto muerto inferior. Es decir, en función de las condiciones de funcionamiento, es posible que no cierre las válvulas de admisión hasta después de llevar media carrera ascendente. La relación de compresión real nunca es más de 9:1, mientras que la relación de expansión es 13:1.

El funcionamiento de este vehículo dispone que el "motor eléctrico" es el que actúa a bajas velocidades y cuando no se exige un rendimiento mecánico elevado. El "motor de gasolina", en cambio, entra en funcionamiento cuando se aumenta la velocidad o se solicita más potencia. Este proceso se realiza de forma completamente automática y sin que el conductor note apenas el trabajo de uno u otro, a pesar de que el monitor de energía, situado en la pantalla multifunción de la consola central, informa a los ocupantes de los tránsitos de energía térmica y eléctrica, el estado de carga de la batería y la recuperación de energía cinética. Ésta última es precisamente una de las grandes ventajas de este coche, que no necesita alimentación externa –su batería no precisa ser recargada–, ya que la fuerza de las frenadas y el funcionamiento del motor de explosión ya recargan la batería de ion-litio, la más sofisticada y potente del mundo en su género. Gracias a esta inteligente combinación, el Prius logra un consumo medio homologado de combustible de 4,3 litros a los 100 km, todo un récord para un coche “de gasolina”.

El Prius tiene un motor eléctrico permanentemente engranado al diferencial de la transmisión, sin ningún tipo de embrague. Es decir, el motor eléctrico y las ruedas son siempre solidarios. El funcionamiento del motor eléctrico es posible durante unos pocos km y por debajo de 50 km por hora y esto suponiendo que la batería este a plena carga, porque sino la autonomía seria mucho menor. Para mover a las ruedas, el motor eléctrico puede estar impulsado eléctricamente (por una batería, un generador o ambas cosas a la vez) o mecánicamente (por un motor de gasolina). El motor térmico nunca mueve directamente a las ruedas; su fuerza se aprovecha para mover a un generador eléctrico o para mover mecánicamente al motor eléctrico.

Con la electricidad que produce el generador eléctrico cuando lo impulsa el motor de gasolina se puede: mover al motor eléctrico, almacenar energía en la batería o ambas cosas al mismo tiempo.

La batería sirve como fuente de electricidad para todo el coche. Obtiene la energía por dos medios: uno, del motor térmico, a través del generador. Dos, del motor eléctrico cuando éste no impulsa al coche (en ese caso, el motor eléctrico se convierte en otro generador).

En la imagen siguiente, que simula una aceleración y una deceleración del coche, se pueden apreciar todos los procesos citados.

El sistema está controlado por una centralita que distribuye la fuerza de cada elemento, de acuerdo con la fuerza que sea necesaria en cada momento y con el nivel de carga de la batería. En la siguiente imagen se puede ver un ejemplo de funcionamiento. En las demás imágenes se ve una ilustración del flujo de fuerza en cada caso, junto con el esquema que puede aparecer en el monitor del coche.

Si el conductor selecciona la función de máxima retención con el mando del cambio, el motor térmico gira sin alimentación de combustible (es decir, se convierte en una bomba de aire). En esa posición del cambio, además, la retención que da el motor eléctrico convertidor en generador también es mayor. Hay un botón que anula completamente el motor térmico, si la batería no baja de una cierta carga y si el conductor no solicita demasiada fuerza del sistema (una aceleración fuerte, un rampa pronunciada o una velocidad superior a unos 50 km/h). Esta función puede ser útil para salir circular por espacios cerrados (como aparcamientos), sin que el coche contamine ni haga ruido.  

Transmisión Toyota denomina a la transmisión utilizada en el Prius como “Power Split Device”. Esta transmisión no tiene una caja de cambios convencional con distintos engranajes, ni una caja automática de variador continuo con correa. Este vehículo dispone de un "engranaje planetario" para transmitir el movimiento a las ruedas. No tener una caja de cambio normal aporta ventajas notables y especialmente necesarias en un coche como éste: menos peso, más espacio y menos pérdidas por rozamiento.

Dado que el motor funciona siempre casi a plena carga y con un margen de revoluciones no muy amplio, hacía falta algo para que (en esas condiciones) valiera igual para arrancar en marcha lenta y para ir a gran velocidad. Ese algo es el engranaje planetario, que tiene tres elementos: un «planeta» o engranaje central; unos «satélites» que giran alrededor de él; y una «corona» con un dentado interior a la cual también están engranados los satélites. El engranaje planetario utilizado en esta transmisión une cada uno de sus componentes: Engranaje central o "planetario" está unido al generador eléctrico. El portasatélites está unido al motor térmico. La corona esta unida al motor eléctrico.

A uno de estos elementos está engranado el motor térmico, al otro un generador eléctrico y el otro es solidario con las ruedas el coche. La clave del sistema es que el giro del generador eléctrico puede ser mayor o menor, en función de la resistencia que oponga. Si es preciso un desarrollo corto, el generador eléctrico opone una gran resistencia al movimiento. A consecuencia de ello «roba» fuerza al motor térmico y la envía al motor eléctrico, que también impulsa a las ruedas. La fuerza que va a parar al motor es finalmente la misma, si no entran en juego las baterías. Pero, mediante este método, el engranaje epicicloidal tiene el desarrollo corto que hace falta (por ejemplo para arrancar) y largo para alcanzar un velocidad alta, a igualdad de régimen del motor.

A medida que el coche gana velocidad, el generador eléctrico opone menos resistencia y su giro aumenta. A causa de ello, el desarrollo se hace más largo. Si las baterías no intervienen en la aceleración, toda la fuerza de la que dispone el coche parte del motor térmico. Pero puede llegar a las ruedas bien a través del motor eléctrico, alimentado por el generador, o bien directamente a través del motor térmico, si el generador no actúa. La corona del engranaje planetario está solidariamente unida a las ruedas delanteras del coche, a través de un diferencial con grupo 4,113 a 1. Esa relación de 4,113 a 1 da un desarrollo de 27,6 km/h cada 1.000 r.p.m. del motor eléctrico. S Si el coche puede salir desde parado con una marcha tan «larga», es porque —hasta unos 25 km/h— el par que puede generar el sistema de propulsión es unos 480 Nm. Como en cualquier otro coche, la transmisión multiplica ese par (en este caso por 4,113).

Por razones de espacio, la transmisión de par entre la corona y el diferencial se hace mediante una cadena de transmisión y dos pares de engranajes (figura inferior).

Siempre que el coche está en movimiento, la corona del engranaje planetario también se mueve. La fuerza para moverse proviene del motor eléctrico directamente o del empuje que le da el motor térmico. Cuanto más lenta es la velocidad del coche, tanto mayor fuerza proviene del motor eléctrico. Cerca de la velocidad máxima, toda la fuerza proviene del motor térmico.

Estos son algunos ejemplos del funcionamiento del sistema: El coche se mueve sólo con la energía de la batería. Un régimen del motor eléctrico distinto de cero indica que el coche está en marcha. El motor térmico está parado y el generador funciona en sentido inverso, sin producir corriente. El coche está parado y el motor térmico está recargando la batería. Si el coche está parado y la batería llega al límite tolerado de descarga, el motor térmico se pone en marcha. El generador ofrece par resistente y por eso genera una energía que se destina a recargar la batería.

El coche está avanzado a velocidad constante. En este caso, el coche se está desplazando porque el portasatélites (motor térmico) empuja a la corona (motor eléctrico) mientras el que planeta está detenido (generador). En estas condiciones la propulsión es enteramente mecánica, aunque se realice (también mecánicamente) a través del motor eléctrico.

El coche acelera fuertemente. Cuando el coche está en marcha y el conductor pisa el acelerador, el generador se pone en marcha. En ese caso, la fuerza con que el motor eléctrico impulsa a las ruedas procede de tres fuentes simultáneamente: una, el motor térmico mueve al generador que —a su vez— alimenta al motor eléctrico. Dos, el motor térmico impulsa mecánicamente al motor eléctrico. Tres, la batería suministra electricidad al motor eléctrico.

Hay otras condiciones de funcionamiento posibles, pero en cualquiera de ellas el principio de funcionamiento es el mismo. La energía que suministra el generador no depende sólo de su giro. El sistema puede variar o eliminar completamente el par resistente del generador para adecuar la energía que genera a cada condición de funcionamiento. Esta transmisión no dispone de marcha atrás, de esta función se encarga el motor eléctrico que puede girar en ambos sentidos, por lo tanto la marcha atrás se hará siempre con el motor eléctrico, para esta función no se utiliza el motor térmico.

Batería La batería del Prius es de níquel e hidruro metálico; la fabrica Panasonic. Proporciona 202 V, tiene 6,5 Ah de capacidad (3 horas), pesa 42 kg y tiene la densidad de energía más alta del mundo entre las baterías de su tamaño. Esta batería sólo se recarga con el generador, al que impulsa el motor térmico. No tiene ningún tipo de conexión para conectarla a una red o a otro dispositivo de carga.

La batería no tiene «efecto memoria» porque el sistema eléctrico está hecho para que nunca baje de un cierto nivel de carga, mientras el coche está funcionando. Cuando el coche queda parado y desconectado, el proceso de descarga es muy lento. No está prevista su sustitución en el programa de mantenimiento y, como todos los elementos del sistema híbrido, tiene ocho años de garantía. Está conectada a un elemento que convierte los 202 V de corriente continua en 500 de corriente alterna. Este dispositivo también invierte la corriente eléctrica cuando hay que cargar la batería (bien con el generador, o bien con el motor eléctrico).

Generador El generador es el elemento que transforma en electricidad el trabajo del motor térmico; también funciona como motor de arranque del motor térmico. Es de corriente alterna síncrono y —como máximo— gira al doble de régimen que el motor térmico. Motor Eléctrico El motor eléctrico lo fabrica Toyota. Es un motor síncrono de imanes permanentes de neodimio. Funciona a 500 V y puede dar 50 Kw entre 1.200 y 1.540 rpm. Su par máximo es 400 Nm hasta 1.200 r.p.m.. Pesa 104 kg y —según Toyota— no hay otro motor eléctrico en el mundo (en ningún sector de la industria) que dé más potencia con menos tamaño y peso que éste.  Dado el desarrollo de transmisión que tiene el coche y su velocidad máxima (170 km/h), el régimen máximo del motor eléctrico es unas 6.150 r.p.m.

Inversor Se encarga de transformar y administrar el flujo de electricidad entre la batería y el motor eléctrico. Además posee un convertidor integrado que envía parte de la electricidad del sistema a la batería auxiliar de 12 V. El inversor se encarga de las siguientes funciones: Convierte los 201,6 V DC (corriente continua) que entrega la batería HV en 201,6 V AC trifásica (corriente alterna). Multiplica estos 201,6 V AC trifásica hasta un máximo de 500 V AC trifásica al motor y al generador eléctricos del THSD Convierte los 201,6 V DC en 201,6 V AC para el compresor eléctrico del aire acondicionado. Convierte los 201,6 V DC en 12V DC y 100 A. para recargar la batería de 12V, dada la ausencia de alternador y alimentar a los demás elemento eléctricos del vehículo (luces, audio, ventiladores, etc.).

El inversor, el motor eléctrico y el generador son enfriados mediante un sistema refrigeración independiente de la refrigeración del motor térmico. La unidad de control HV es la que se encarga de controlar la bomba eléctrica de agua. En las versiones del Prius del "04" y posteriores el radiador ha sido simplificado y el espacio que ocupa ha sido minimizado.

Instalación de alta tensión La instalación eléctrica para la propulsión funciona con 500 V, hay otra instalación de 12 V para los demás elementos eléctricos del coche (incluida una toma de corriente para arrancar el motor con una batería normal, si fuera preciso). Para reducir peso (y precio) la red de cables de alta tensión no es de cobre, sino de aluminio. Hay sensores que cortan instantáneamente la corriente en caso de accidente o de cortocircuito. La tensión de funcionamiento del circuito de alta tensión (HV) varia en función de la evolución del sistema híbrido THS (Toyota Hybrid System)..

Sistema de control  El sistema de control de THS II gestiona el vehículo en su máxima eficiencia controlando la energía usada por el vehículo, lo cual incluye la energía para mover el vehículo así como también la energía usada para dispositivos auxiliares, como el aire acondicionado, los calentadores, los focos delanteros y el sistema de navegación. El control de sistema monitorea los requisitos y las condiciones operativas de componentes del sistema híbrido, como elemento principal, el motor térmico que es la fuente de energía para el vehículo híbrido entero; El generador, que se utiliza como motor de arranque para el motor térmico y además convierte la energía del motor térmico sobrante en electricidad; El motor eléctrico, que mueve el vehículo usando la energía eléctrica de la batería; Y la batería, que almacena la energía eléctrica generada a través de la regeneración de electricidad por el motor eléctrico durante la desaceleración. El sistema de control también tiene en cuenta las informaciones que recibe del sensor de freno, sensor de velocidad, posición del acelerador, así como cuando el conductor actúa sobre la palanca de cambio.

Frenado regenerativo El sistema de frenado regenerativo funciona cuando queremos disminuir la velocidad del vehículo, utilizando el motor térmico como freno o bien pisando el pedal de freno. En esta situación el motor eléctrico funciona como un generador, convirtiendo la energía cinética del vehículo en energía eléctrica, la cuál se usa para cargar las baterías. Este sistema es particularmente efectivo en recobrar energía cuando se circula por ciudad, donde se producen aceleraciones y deceleraciones frecuentes. Cuando se pisa el pedal de freno, el sistema controla la coordinación entre el freno hidráulico del ECB (Electronic Control Braking) y el freno regenerativo y preferentemente usa el freno regenerativo, por consiguiente recobrando energía aun en las velocidades inferiores del vehículo. Con este sistema se consigue una regeneración de energía muy eficiente. En la gráfica inferior se ve como se ha mejorado el sistema de frenado regenerativo en el THS II con respecto a la versión inicial (THS).

Las perdidas por rozamiento en la transmisión son mínimas ya que el movimiento de las ruedas se transmite a través del diferencial y los engranajes intermedios al motor eléctrico que se convierte en este caso en generador. El sistema de frenado regenerativo consigue recuperar un 65% de la energía eléctrica que carga las baterías.

Lexus RX 400h (Híbrido 4WD)

El sistema híbrido del Lexus RX 400h consta de un motor de gasolina, dos motores eléctricos, un generador, un conjunto de engranajes, una batería de alto voltaje y una unidad electrónica que controla todo el sistema.

Este vehículo combina un motor térmico de 3.3 V6 con dos motores eléctricos, uno delantero y otro en el eje trasero (4 WD). El sistema “Lexus Hybrid Drive” se complementa con un generador, unidad de control y baterías especiales. El motor de gasolina da 211 CV y 288 Nm a 4.400 rpm, los eléctricos 165 CV y 67 CV, como máximo entregan a la vez 272 CV (norma DIN). No hay conexión entre ejes, el eje trasero se mueve sólo con motor eléctrico. El motor eléctrico delantero es un motor síncrono de corriente alterna de imanes permanentes con disposición en V (de este modo se eliminan las escobillas, que es un elemento de desgaste) con refrigeración agua/aceite. Se alimenta con 650 V (en el Prius 500 V). Da 165 CV a 4.500 rpm y un par máximo de 333 Nm constante entre 0 y 1.500 rpm. Tiene una velocidad máxima de giro de 12.400 rpm. El trasero, alimentado también con 650 V, produce 68 CV entre 4.610 y 5.120 rpm y da 130 Nm de forma constante de 0 hasta 610 rpm. La velocidad máxima de giro es 10.752 rpm. El acoplamiento entre el motor y las ruedas traseras se hace a través de unos engranajes que reducen la velocidad (relación 6,8591 a 1).

La unidad electrónica que controla el sistema consta de un amplificador de tensión, un reductor de tensión y un rectificador de corriente y pesa 32 kg. La tensión de la batería (288 V) es aumentada hasta 650 V para alimentar a los motores eléctricos. Con una tensión elevada se disminuye las pérdidas de potencia, puesto que la intensidad de corriente es menor: la potencia es el producto de la tensión por la intensidad; para una potencia dada, si se aumenta la tensión, disminuye la intensidad. Como las pérdidas son proporcionales al cuadrado de la intensidad, estás también disminuyen. Hay un rectificador de corriente que transforma el suministro de corriente continua de 650 V, proveniente del amplificador anterior, a corriente alterna, que es como trabajan los motores y el generador. También se reduce la tensión de 288 a 12 V para alimentar la batería convencional de 12 V, a la que van conectados el resto de dispositivos eléctricos del coche, que funcionan a esa tensión. Esta batería se encuentra localizada en el vano motor.

La batería de níquel e hidruro metálico (NiMH) fabricada por Panasonic, pesa 69 kg. Está dividida en tres bloques (para ubicarla bajo el asiento trasero sin quitarle espacio), dos de 12 módulos y uno de 6 (total: 30). Cada módulo (9,6 V) cuenta con 8 células de 1,2 V. Como hay un total de 240 células, y están conectadas en serie, la tensión suministrada por esta batería es 288 V. Está aislada por una cubierta metálica que hace de escudo frente a los campos magnéticos y permite una mejor refrigeración que una de plástico. La refrigeración se efectúa mediante un flujo de aire (forzado por unos ventiladores muy silenciosos) a través de unas rejillas de ventilación que hay bajo la parte delantera de la banqueta. La batería se desconecta si algún sensor de airbag se activa.

La batería HV alimenta a los siguientes componentes: Motor eléctrico delantero Motor eléctrico trasero Generador eléctrico Sistema de dirección eléctrico EPS Compresor del A/A Cables de alta tensión Nota: cuando las aceleraciones son muy fuertes y puede haber pérdidas de tracción entra en funcionamiento también el motor eléctrico trasero, momento éste último en el que traccionan las cuatro ruedas. Es decir, sin que el conductor tenga que seleccionar nada manualmente, este coche puede “andar” con uno, dos o tres motores; y con tracción delantera o total. Los dos motores eléctricos se convierten en generadores al frenar o cuando se levanta el pie del acelerador. De este modo, además de recuperar la energía cinética y transformarla en eléctrica (cargando la batería), se consigue mayor capacidad de retención del vehículo.

Funcionamiento

Arranque: el vehículo empieza a moverse con el motor eléctrico delantero. Normal: el vehículo va aumentando de velocidad, arranca el motor térmico haciendo el trabajo de mover el vehículo y cargar la batería. Aceleración: en aceleraciones fuertes funcionan el motor térmico y el eléctrico delantero. Deceleración: en esta fase los dos motores eléctricos recuperan energía para recargar la batería. Detención: el motor térmico se detiene para no gastar combustible.

Transmisión El RX 400h puede moverse, en función de la situación, con el motor eléctrico delantero únicamente, con éste y con el motor térmico, o con los tres motores a la vez. Todas estas posibilidades, gestionadas automáticamente sin intervención del conductor, se basan en la utilización de un sistema de engranajes planetarios. El Lexus utiliza dos grupos de engranajes planetarios en vez de uno que utiliza el Toyota Prius en su transmisión . Esto es así porque el par de un motor eléctrico es proporcional a su tamaño y, como éste tiene que ser pequeño para caber en el vano del motor, no puede dar mucho par. Para conseguir una potencia elevada han utilizado un motor que gira muy rápidamente y para aumentar el par han optado por utilizar unos engranajes reductores de velocidad (puesto que el par aumenta de forma inversa a la velocidad). Ese grupo de engranajes adicional tiene una relación de dientes entre el planeta y la corona de 1 a 2,478.

El motor trasero funciona de forma independiente y se activa cuando el dispositivo que controla la tracción lo considera necesario: cuando hay pérdidas de tracción, en aceleraciones fuertes o cuando el control de estabilidad lo requiere para mantener la trayectoria.

Circuito de alto voltaje Existe un dispositivo de seguridad que desconecta la batería HV al circuito de alto voltaje cuando el vehículo esta desconectado. Se utilizan unos relés de 12 V gobernados por la unidad de control híbrida (THS II ECU). El dispositivo de seguridad desconecta también la batería HV del circuito de alto voltaje cuando existe una colisión y se activa el SRS o lo detecta el sensor de colisión trasero.

Honda Civic IMA

Honda comenzó su andadura con los coches híbridos con el innovador modelo Insight allá por el año 1999, continuando con la introducción posterior del Civic IMA. Ahora se renueva este Civic mediante el empleo del mismo sistema IMA (Integrated Motor Assist) evolucionado con un motor eléctrico que apoya al motor de combustión, así como hace la competencia directa al Toyota Prius, que se decanta por los mismos elementos para funcionar aunque de forma inversa, puesto que es el de combustión el que apoya al motor eléctrico.

Lo más destacado de este Civic es su innovador sistema propulsor, que básicamente se compone de un motor de gasolina asistido por uno eléctrico de forma inteligente. En conjunto desarrollan una potencia de 115 CV a 6.000 rpm frente a los 90 CV del Civic IMA anterior. De la cifra de potencia corresponden 95 CV a 6.000 rpm al nuevo motor de gasolina 1.3 i-DSI VTEC y 20 CV a 2.000 rpm al motor eléctrico, deduciendo que el motor eléctrico sólo desarrollará su función hasta ese bajo régimen y ayudará en aceleraciones leves. La principal ventaja de este sistema es que desarrolla una potencia y unas prestaciones comparables con las de un motor de gasolina, obteniendo unos consumos equivalentes a los de un motor diesel.

Los automóviles híbridos principalmente utilizan el motor de gasolina, pero el motor impulsado por las baterías eléctricas asiste o ayuda al motor de gasolina, cuando esta ayuda se pone en acción mejora el consumo de la mezcla de gasolina, emitiendo menos gases contaminantes. Esta mecánica es silenciosa por dos razones: primero, porque el motor de gasolina se apaga automáticamente, si el coche se detiene por completo y el conductor mantiene el pie en el freno (si la temperatura está entre -12 y 38ºC, si la batería está suficientemente cargada, si el motor de gasolina no está frío y si no está conectado el servicio eléctrico que deshace el hielo del parabrisas). Si el coche no supera 12 km/h, el motor de gasolina sólo se para hasta un máximo de dos veces. Si el motor se ha parado (que es lo más normal), cuando el conductor suelta el pedal del freno, el motor térmico se pone en marcha automáticamente de una forma extraordinariamente rápida y suave. El sistema de transmisión también contribuye a que el coche sea muy silencioso, porque hace que el motor funcione (siempre que se pise poco el acelerador) a un régimen muy bajo (si está puesta la posición «D» de la palanca de cambios). Si se pisa súbitamente el acelerador, aumenta mucho el ruido del motor (porque alcanza un régimen muy alto) sin que se note una gran aceleración.

Es una característica de los coches que tienen transmisión por variador (CVT) y motores poco potentes. Analizando la arquitectura del IMA, cabe señalar que una de las principales características del Civic Hybrid es la colocación del motor eléctrico en línea con el térmico. Con esa disposición, ambos motores giran solidarios sobre el mismo cigüeñal, con lo que es más fácil agrupar sus esfuerzos y se aprovecha mejor la energía (aunque las cifras de par no son directamente sumables, pues sus picos se producen a diferentes regímenes). Con relación al anterior Civic IMA, éste tiene cambios en la parte mecánica y en la parte eléctrica, que hacen posible un funcionamiento más eficiente y que le dan capacidades que no tenía el anterior. El motor eléctrico es solidario con el térmico y está en el lugar que ocuparía el volante del motor. El cambio es de tipo variador y no tiene ningún elemento adicional de unión al motor (embrague o convertidor hidráulico de par); es el motor eléctrico el que hace esas funciones.

Motor El motor térmico del Civic es básicamente un cuatro cilindros de 1,3 l de doble encendido secuencial con la distribución variable (VTEC) de tres fases. En el caso de este Civic, las tres fases de la distribución corresponden a condiciones de funcionamiento de "carga baja", "carga alta" o "retención". Para carga baja hay unas levas que dan poca alzada a las válvulas. Para carga alta hay levas de mayor perfil, que dan más alzada. Cuando el conductor suelta el acelerador, las levas no pisan las válvulas, de manera que quedan cerradas permanentemente. Lo que se consigue al cerrar las válvulas es que el motor no bombee aire y, por tanto, haga menos retención. Según Honda, al dejar las válvulas cerradas se disminuye la retención del motor en un 66%; en esas condiciones, el aire que queda en las cámaras se sigue comprimiendo y descomprimiendo, y (como en cualquier motor) se corta la inyección de combustible.

Como el motor ofrece menos retención, es posible utilizar más la inercia del coche en cargar la batería; según Honda, con relación al anterior Civic IMA, la capacidad para recuperar energía se ha multiplicado por 1,7. Es un motor con un árbol de levas y dos válvulas por cilindro, dispuestas en un ángulo estrecho (30º). El bloque del motor es de aluminio con paredes finas. Para disminuir las pérdidas por rozamiento, las camisas están pulidas a espejo y los pistones tienen segmentos de baja tensión. El bulón del émbolo está descentrado con relación al eje del cilindro. Los pistones tienen microdepresiones para retener más aceite. Este motor proporciona 95 CV de potencia máxima a 6.000 rpm y 123 Nm de par máximo a 4.500 rpm. Son unos valores normales para un motor de su cilindrada; la máxima presión media efectiva que alcanza es 11,5 bar.

Funcionamiento Funcionalmente, hay dos diferencias notables con respecto a un Toyota Prius. La primera, es que el Civic Hybrid no puede comenzar la marcha desde parado únicamente con el motor eléctrico. Para que se mueva exclusivamente impulsado por el motor eléctrico, la velocidad debe estar entre unos 20 y 50 km/h y el conductor no debe acelerar mucho. Segundo, el motor de gasolina del Civic no deja de girar en ningún caso cuando el coche está rodando (el eléctrico y el de gasolina van unidos solidariamente), lo que sí que hace es funcionar con un esquema de distribución donde no da retención, ni opone más resistencia al avance que el propio rozamiento de sus elementos sometidos a giro.

Para la activación del sistema IMA, el motor no necesitará ser puesto en marcha mediante la llave de encendido y se deberán cumplir ciertas condiciones para el arranque automático: • Que no esté presionado el pedal de freno. • Presionar el pedal del acelerador. •La transmisión esté en alguna posición de marcha. •El vehículo comience a rodar o esté sobre un piso inclinado, el pedal de freno esté presionado suavemente y el automóvil se mueva. •El estado de carga de batería esté bajo. •El sistema de reserva de vacío para ayuda de frenos, esté bajo o con fallas. •Los indicadores de baja presión de aceite y/o baja carga de batería están iluminados. •La luz indicadora de Idle Stop esté apagada. •El motor haya sido puesto en marcha nuevamente, mediante la llave de ignición.

Transmisión El cambio es un variador continuo (CVT), como en el anterior Civic, pero con una apertura mayor. La relación más corta en este caso es 2,520 a 1 y la más larga es 0,421 a 1. El grupo es muy corto (4,94 a 1), como suele ocurrir en los cambios de variador, para que la caja no tenga que hacer una reducción grande (entre otras cosas, eso haría que fuera de gran tamaño). Marcha atrás: 4.511 a 1.875. Con las ruedas 195/65 15, sale un desarrollo mínimo de 9,3 y uno máximo de 55,8 km/h cada 1.000 rpm.

Circuito eléctrico de alto voltaje

Como en el anterior Civic IMA, la batería de Ni-MH (Niquel-Hidruro de metal) está colocada detrás del respaldo trasero. En este modelo, el volumen de la batería se ha reducido de 68 a 59 L. La tensión que da esta batería es más alta (158 V en lugar de 144), pero su capacidad es menor (5,5 Ah en lugar de 6,0). Normalmente no hay que tener ninguna precaución especial con el estado de la batería que mueve el motor eléctrico (como sí ocurre en un Prius), porque lo frecuente es no llegar al límite en donde deja de asistir al motor térmico en aceleración, ni siquiera después de acelerar a fondo durante unos cuantos kilómetros en cuesta arriba. Además, a poco que las condiciones no sean desfavorables, la batería carga hasta el máximo con facilidad.

El motor/generador eléctrico es síncrono, sin escobillas e imanes permanentes. Está compuesto de un rotor de imanes permanentes y un estator bobinado. El motor/generador es quien pone en marcha el motor térmico hasta llegar a las 1.000 rpm. También se encarga de acoplarlo nuevamente luego de realizada la operación autostop, esto es, la parada automática del motor térmico, por ejemplo al parar en el semáforo. En estas ocasiones la contaminación y el consumo de combustible es cero, sin mencionar la nula contaminación sonora y el alto confort que brinda a los ocupantes del vehículo. En el interior, sólo un marcador diferencial en el tablero de instrumentos y una ventilación bajo la luneta, para los componentes situados detrás de las plazas traseras, permiten diferenciar a esta versión del clásico Civic a combustión. En el respaldo del asiento trasero además del modulo de baterías, tenemos el sistema IPU (Unidad de Poder Integrado), donde se halla el inversor, el módulo de control de motor, el módulo convertidor de voltaje y la unidad de refrigeración.

El sistema IMA dispone de algunos elementos que benefician el ahorro de energía, como un compresor para el aire acondicionado que se puede mover mecánicamente (con una polea) o eléctricamente (con un motor eléctrico incorporado de 144 V). Normalmente sólo consume energía eléctrica pero, si la carga de la batería no es suficiente o si se requiere un enfriamiento muy rápido, lo mueve el motor térmico a través de la polea. En las plazas traseras también abunda el espacio y tres adultos pueden viajar sin demasiados apuros. El maletero en cambio, promete más de lo que luego da. Aunque sus 350 litros son bastante dignos, no están en consonancia con lo que aparenta el gran voladizo del Hybrid. La culpa es de las baterías del sistema IMA, que se comen una buena parte del maletero.

Frenado regenerativo El sistema IMA recupera y convierte la energía que normalmente se pierde en una desaceleración o al frenar y la acumula para asistir al motor cuando sea necesario. Al desacelerar, el motor eléctrico actúa como generador, convirtiendo energía cinética en eléctrica que se utiliza para recargar el modulo de baterías de alta tensión..

En la figura inferior se puede ver el nuevo Honda Insight, modelo mas moderno y económico que el Civic

Sistema Híbrido de Bosch

El sistema híbrido de Bosch a diferencia de otros, es un sistema que se puede utilizar en distintos modelos y fabricantes de vehículos. Se trata de un sistema híbrido de configuración en "paralelo" a diferencia de otros sistemas como el del famoso Toyota Prius que tiene una configuración "paraleloserie". El sistema híbrido de Bosch esta compuesto por un Generador Motor Integrado (IMG), un sistema electrónico de potencia también refrigerado y una batería de níquel metal hidruro (NiMH) que también cuenta con un sistema de refrigeración.

El generador motor eléctrico (IMG), de 30 cm de diámetro, es refrigerado por agua y está ubicado junto a un acoplamiento propio en un módulo híbrido entre el motor de combustión y el mecanismo de transmisión. El IMG tiene una potencia de 34 kilovatios y un par de giro máximo de 300 Nm. Con ello, por ejemplo el VW Touareg, Audi Q5 y Porsche Cayenne, que montan este sistema híbrido, pueden circular a un máximo de 60 Km/h sólo con su motor eléctrico, siempre que el estado de carga de la batería de níquel metal hidruro (NiMH) lo permita. Esta batería tiene una capacidad de 1,7 kilovatios hora con una tensión de 288 voltios. Al frenar, el motor eléctrico funciona como alternador y recupera la energía cinética que se acumula en la batería de alto voltaje.

Junto a los componentes centrales como el sistema electrónico de potencia y el generador motor eléctrico, Bosch también suministra a ambos fabricantes el sistema de control inteligente, de última generación, que gestiona la interacción entre el motor de combustión y el motor eléctrico. El sistema Motronic para vehículos híbridos regula cuándo trabaja el motor eléctrico, cuándo el motor de combustión y cuándo trabajan ambos motores juntos. Como hemos dicho antes el sistema híbrido de Bosch tiene una configuración "paralela", lo que representa una gran exigencia técnica, puesto que en lugar de desviar la potencia a través de un engranaje planetario, el sistema de control y de regulación distribuye los pares de accionamiento entre el motor eléctrico y el motor de combustión. Con ello se reducen costes y complejidad a la hora del montaje.

En aceleraciones fuertes en caso necesario, el motor eléctrico y el motor de combustión trabajan al mismo tiempo, en paralelo proporcionando un extra de potencia al vehículo. Al frenar el vehículo, el motor eléctrico funciona como alternador y recupera la energía cinética que se acumula en la batería de alto voltaje. Cuando el conductor deja de pisar el acelerador se activa la llamada “función por inercia” hasta una velocidad de unos 160 Km/h. Entonces, el motor de combustión se apaga automáticamente y el vehículo rueda libremente sin consumir combustible, pero todos los sistemas de seguridad y de confort siguen funcionando sin limitación alguna. El sistema electrónico de potencia es un componente central que hace de puente entre el alto voltaje del accionamiento eléctrico y los 12 V de la red de a bordo, y cuyo inversor transforma la corriente continua de la batería en corriente alterna trifásica para el motor eléctrico y viceversa.

También este sistema híbrido incluye la función start&Stop apagando el motor cuando el vehículo se detiene en semáforos en rojo para ahorrar gasolina. Siempre que el estado de carga de la batería lo permita, arrancan de forma puramente eléctrica cuando el semáforo cambia a verde. El motor de combustión entra más tarde en acción. Además, cuando el conductor levanta el pie del acelerador, se apaga el motor de combustión.

Vehículo eléctrico de autonomía extendida

El Chevrolet Volt es un vehículo híbrido eléctrico enchufable desarrollado por General Motors lanzado en Estados Unidos en diciembre de 2010. El Volt también es vendido como Opel Ampera o Vauxhall Ampera en Europa.

El Volt funciona con un motor de gasolina de cuatro cilindros y 1.4 litros de cilindrada y un motor eléctrico de 111 kW (150 CV) de potencia. No obstante, la compañía ha evitado el uso del término «híbrido», prefiriendo llamarlo «vehículo eléctrico de autonomía extendida» debido a su diseño. La particularidad de este vehículo radica en que el motor de gasolina no mueve el coche de forma directa, sino que está unido a un generador de 53 KW que carga la batería cuando se está agotando, por lo que el coche siempre es propulsado por el motor eléctrico. La batería de iones de litio, tiene una capacidad de 16 KWh, de los cuales sólo son aprovechables 8,8 KWh, debido a que nunca se carga más del 85% y nunca se descarga del todo, puesto que al bajar al 30% empieza a cargarse con el motor de combustión interna. La autonomía es de 64 kilómetros en modo exclusivamente eléctrico, (poca autonomía si lo comparamos con modelos todo eléctricos, pero muy superior a la de modelos híbridos como la del Toyota Prius Plug-in (enchufable) y cuando se descarga la batería, el motor de gasolina funciona como generador para recargar la batería, lo que aumenta su alcance en aproximadamente 500 kilómetros adicionales, hasta que se acabe el combustible.

Se puede cargar el Volt desde tu propia casa con una carga de 230 V normal, utilizando el conjunto de cable de carga estándar (alrededor de 6 horas), o desde una Estación externa (alrededor de 4 horas). La batería La batería del Volt tiene 16 kWh de capacidad. De ese total, solo se utiliza un porcentaje de aproximadamente el 65 por ciento (unos 10,4 kWh). Esto se hace para aumentar (o no acortar, según se mire) la vida de la batería, que se estima en 10 años o 240 000 km (la garantía es 8 años o 160 000 km).

De esa zona utilizable, hay dos partes. Una es la que da la autonomía eléctrica al vehículo, la que se puede recargar al enchufar el coche a la red eléctrica y la que se puede consultar en los indicadores del coche. Según estos, una descarga completa de la batería equivale a 10,2 kWh. La segunda parte corresponde al «buffer» cuya gestión es invisible a los ojos del usuario. A partir de ahora, y para simplificar, voy a llamar a la primera parte de la batería Parte A y al «buffer» Parte B. La Parte B se utiliza para ayudar a impulsar el coche cuando la Parte A se ha agotado. De este modo, aunque el motor de gasolina solo produce 87 CV, el motor eléctrico puede seguir dando 151 CV, gracias a la potencia suministrada por el generador y la Parte B de la batería. Por ello, aún con la Parte A agotada, el Volt se desplaza en ocasiones sin que el motor de gasolina esté en funcionamiento (principalmente al iniciar la marcha).

Sólo si la exigencia de potencia es elevada de forma continua la Parte B también se agota y la potencia total disminuye. Su capacidad es variable, en condiciones normales está entre el 20 y el 25 por ciento. Conocer las dos partes utilizables de la batería también sirve para comprender el funcionamiento del modo «montaña» (más información de los modos de conducción). Al seleccionarlo, lo que se hace es aumentar la capacidad de la Parte B —hasta alcanzar un 40-45 por ciento de la capacidad—. Si el coche está funcionando en modo eléctrico, esa energía se «roba» de la Parte A (disminuye la autonomía eléctrica). Si esta funcionando con el motor de gasolina, el generador aumenta la producción de energía para poder llenar la Parte B. Así, al llegar a la zona montañosa se ha generado una reserva de energía.

Chevrolet Volt. Modelo 2012. La batería del Volt es de iones de litio (cuya densidad energética es mayor que las de níquel e hidruro metálico), mide 168 cm de longitud, pesa 198 kg, tiene forma de «T» y está situada en el túnel central del vehículo y a lo largo del eje trasero, por delante de él, protegida por acero de resistencia ultra alta. Tiene la misma capacidad eléctrica que la batería de plomo-ácido del Chevrolet EV1 (un vehículo eléctrico que G.M. dejó de fabricar en 1999), pero el tamaño y peso de la batería del Volt son la tercera parte que los de aquella.

Tiene un circuito de refrigeración por líquido que la mantiene dentro de un rango de temperaturas para mejorar sus prestaciones y duración. Este líquido circula por unos intercambiadores de calor montados internamente en los módulos de la batería. Según Chevrolet, está diseñada para que tenga un funcionamiento fiable, cuando se enchufa, a temperaturas desde -25 ºC hasta 50 ºC. Cuando hace frío la batería se precalienta cuando se carga, para que proporcione la máxima capacidad de carga. Cuando hace calor la batería puede enfriarse al cargar.

La batería se recarga conectado el Volt a la red eléctrica de 230 V mediante un cargador. Éste permite seleccionar entre 16, 13, 10 y 6 A. Cuanto menor es la intensidad elegida mayor es el tiempo necesario para la recarga, desde tres horas y media (aproximadamente) en el mejor de los casos hasta un máximo de casi nueve horas. El cargador puede dejarse a la intemperie incluso con lluvia (tiene un grado de protección IP 55).

Transmisión La unidad motriz del Volt consta de dos motores, tres embragues y un sistema de transmisión con engranes planetarios que mejoran la eficiencia global mediante la reducción de la velocidad de rotación combinada de los motores eléctricos. Esta configuración reduce la descarga de la batería a velocidades de autopista, agregando tres kilómetros más a la autonomía eléctrica.   De las dos máquinas eléctricas, hay una de 111 kW que se utiliza para impulsar las ruedas («impulsor») y otra de 55 kW que puede usarse para generar electricidad («generador») y también para impulsar al coche. El motor impulsor está conectado al planeta y el portasatélites a las ruedas (a través de una reducción con engranajes).

El sistema de propulsión del Chevrolet Volt tiene cuatro modos de funcionamiento. Para cambiar entre los diferentes modos utiliza tres embragues. Uno bloquea la corona (C1 en la imagen), otro conecta la corona al generador (C2) y el tercero conecta el motor térmico al generador (C3).

El funcionamiento electromecánico del Volt se divide en dos fases principales, teniendo en cuenta si las baterías tienen carga suficiente o no, cuando esto último ocurre se encenderá el motor térmico. A su vez estas dos fases se dividen en otras dos teniendo en cuenta esta vez la velocidad del vehículo. Los dos primeros modos de funcionamiento corresponden a cuando el motor térmico está apagado porque la batería tiene carga suficiente como para funcionar en modo exclusivamente eléctrico: 1.Cuando se circula a velocidad baja, se activa el embrague que bloquea la corona y se hace funcionar el motor impulsor. Esto provoca un movimiento de los satélites y del portasatélites, que a su vez impulsa las ruedas.

2. Cuando se circula a mayor velocidad, se activa el embrague que conecta la corona con el generador. En este modo de funcionamiento tanto el impulsor como el generador trabajan para mover las ruedas. Como el generador hace girar la corona, el impulsor puede girar a menor velocidad, lo que aumenta el rendimiento del sistema (la eficiencia de los motores eléctricos desciende cuando se acercan a su límite máximo de giro).

En los otros dos modos de funcionamiento el motor térmico está en marcha, porque el nivel de carga de la batería ha llegado al mínimo: 1.A velocidad baja el motor eléctrico de impulsión hace toda la fuerza para mover las ruedas, mientras que la batería y el generador, movido por el motor térmico, proporcionan la electricidad al motor eléctrico de impulsión a través del inversor. En este modo de funcionamiento la corona se bloquea y el motor térmico se conecta con el generador con los embragues correspondientes.

2. A velocidad alta se cierran los embragues que conectan el motor térmico con el generador y el generador con la corona. Esto hace que el motor térmico mueva al generador, que alimenta la batería, y a la vez mueve la corona, lo que junto con la fuerza del motor impulsor hace que se muevan las ruedas.

Motor térmico El motor térmico que interviene en el Volt funciona con gasolina, tiene 1,4 l de cilindrada, 63 kW (86 CV) de potencia, cuatro válvulas por cilindro con distribución variable en admisión y escape y culata de aluminio. El bloque es de fundición de hierro. Tiene transmisión con cadena, chorros de aceite para enfriar los pistones, bobinas individuales y bujías con electrodos de platino (las bujías se cambian cada 160.000 km). Como el Volt puede circular sin el trabajo de este motor, hay unas funciones de mantenimiento que se activan automáticamente. Una lo hace para garantizar la lubricación (si el motor de gasolina no funciona, o lo hace poco, en seis semanas aparece un aviso, advirtiendo que se va a poner en marcha. Esta acción se pude retrasar veinticuatro horas. De igual modo, si el motor ha funcionado poco tiempo en el periodo de un año, se pone en marcha hasta agotar el combustible, para obligarnos a repostar (la gasolina se degrada con el paso del tiempo).