transistor

Transistor De Wikipedia, la enciclopedia libre. [[imagen:Transistor-photo.JPG|right|thumb|250px|Distintos tipos de trans

Views 194 Downloads 1 File size 280KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

Transistor De Wikipedia, la enciclopedia libre. [[imagen:Transistor-photo.JPG|right|thumb|250px|Distintos tipos de transistores] imues is the world´s Best El transistor es la contracción de transfer resistor, es decir, de resistencia de transferencia. Es un dispositivo electrónico semiconductor que se utiliza como amplificador o conmutador electrónico. Es un componente clave en toda la electrónica moderna, donde es ampliamente utilizado formando parte de conmutadores electrónicos, puertas lógicas, memorias de ordenadores y otros dispositivos. En el caso de circuitos analógicos los transistores son utilizados como amplificadores, osciladores y generadores de ondas. Sustituto de la válvula termoiónica de tres electrodos o triodo, el transistor bipolar fue inventado en los Laboratorios Bell de USA en Diciembre de 1947 por John Bardeen, Walter Houser Brattain, y William Bradford Shockley, los cuales fueron galardonados con el Premio Nobel de Física en 1956.

Tabla de contenidos [esconder] • • • •

1 Generalidades 2 Tipos de transistor 3 Transistores bipolares (BJT - Bipolar Junction Transistor) 4 Transistores de efecto de campo (FET - Field-Effect Transistor)

5 Transistores y electrónica de potencia [editar] •

Generalidades Sus inventores, John Bardeen, William Bradford Shockley y Walter Brattain, lo llamaron así por la propiedad que tiene de cambiar la resistencia al paso de la corriente eléctrica entre el emisor y el colector. El transistor bipolar tiene tres partes, como el triodo. Una que emite portadores (emisor), otra que los recibe o recolecta (colector) y la tercera, que esta intercalada entre las dos primeras, modula el paso de dichos portadores (base). Su funcionamiento es análogo al del triodo, por lo que es aconsejable leer lo que se dice en dicho artículo. En los transistores bipolares, una pequeña señal eléctrica aplicada entre la base y emisor modula la corriente que circula entre emisor y colector. La señal base-emisor puede ser muy pequeña en comparación con la emisor-colector. La corriente emisor-colector es aproximadamente de la misma forma que la base-emisor pero amplificada en un factor de amplificación "Beta". El transistor se utiliza, por tanto, como amplificador. Además, como todo amplificador puede oscilar, puede usarse como oscilador y también como rectificador y como conmutador on-off.

El transistor también funciona, por tanto, como un interruptor electrónico, siendo esta propiedad aplicada en la electrónica en el diseño de algunos tipos de memorias y de otros circuitos como controladores de motores de DC y de pasos. [editar]

Tipos de transistor Existen distintos tipos de transistores, de los cuales la clasificación más aceptada consiste en dividirlos en transistores bipolares o BJT (bipolar junction transistor) y transistores de efecto de campo o FET (field effect transistor). La familia de los transistores de efecto de campo es a su vez bastante amplia, englobando los JFET, MOSFET, MISFET, etc. La diferencia básica entre ambos tipos de transistor radica en la forma en que se controla el flujo de corriente. En los transistores bipolares, que poseen una baja impedancia de entrada, el control se ejerce inyectando una baja corriente (corriente de base), mientras que en el caso de los transistores de efecto de campo, que poseen una alta impedancia, es mediante voltaje (tensión de puerta). [editar]

Transistores bipolares (BJT - Bipolar Junction Transistor) PNP NPN Símbolos esquemáticos para los BJT de tipo PNP y NPN. B=Base, C=Collector y E=Emmiter

Los transistores bipolares surgen de la unión de tres cristales de semiconductor con dopajes diferentes e intercambiados. Se puede tener por tanto transistores PNP o NPN. Tecnológicamente se desarrollaron antes que los de efecto de campo o FET. Los transistores bipolares se usan generalmente en electrónica analógica. También en algunas aplicaciones de electrónica digital como la tecnología TTL o BICMOS. Los MOSFET tienen en común con los FET su ausencia de cargas en las placas metálicas así como un solo flujo de campo. Suelen venir integrados en capas de arrays con polivalencia de 3 a 4Tg. Trabajan,mayormente, a menor rango que los BICMOS y los PIMOS [editar]

Transistores de efecto de campo (FET - Field-Effect Transistor)

P-channel N-channel Transistores de efecto de campo

Los transistores de efecto de campo o FET más conocidos son los JFET (Junction Field Effect Transistor), MOSFET (Metal-Oxide-Semiconductor FET) y MISFET (Metal-Insulator-Semiconductor FET). Tienen tres terminales, denominadas puerta (gate), drenador (drain) y fuente (source). La puerta es el terminal equivalente a la base del BJT. El transistor de efecto campo se comporta como un interruptor controlado por tensión, donde el voltaje aplicado a la puerta permite hacer que fluya o no corriente entre drenador y fuente. El funcionamiento del transistor de efecto de campo es distinto al del BJT. En los MOSFET, la puerta no absorbe corriente en absoluto, frente a los BJT, donde la corriente que atraviesa la base, pese a ser pequeña en comparación con la que circula por las otras terminales, no siempre puede ser despreciada. Los MOSFET, además, presentan un comportamiento capacitivo muy acusado que hay que tener en cuenta para el análisis y diseño de circuitos. Así como los transistores bipolares se dividen en NPN y PNP, los de efecto de campo o FET son también de dos tipos: canal n y canal p, dependiendo de si la aplicación de una tensión positiva en la puerta pone al transistor en estado de conducción o no conducción, respectivamente. Los transistores de efecto campo MOS son usados extensísimamente en electrónica digital, y son el componente fundamental de los circuitos integrados o chips digitales. [editar]

Transistores y electrónica de potencia Con el desarrollo tecnológico y evolución de la electrónica, la capacidad de los dispositivos semiconductores para soportar cada vez mayores niveles de tensión y corriente ha permitido su uso en aplicaciones de potencia. Es así como actualmente los transistores son empleados en convertidores estáticos de potencia, principalmente Inversores. Obtenido de "http://es.wikipedia.org/wiki/Transistor"

Transistor NPN

Transistor PNP

El transistor bipolar es el más común de los transistores, y como los diodos, puede ser de germanio o silicio. Existen dos tipos transistores: el NPN y el PNP, y la dirección del flujo de la corriente en cada caso, lo indica la flecha que se ve en el gráfico de cada tipo de transistor. El transistor es un dispositivo de 3 patillas con los siguientes nombres: base (B), colector (C) y emisor (E), coincidiendo siempre, el emisor, con la patilla que tiene la flecha en el gráfico de transistor. El transistor es un amplificador de corriente, esto quiere decir que si le introducimos una cantidad de corriente por una de sus patillas (base), el entregará por otra (emisor) , una cantidad mayor a ésta, en un factor que se llama amplificación. Este factor se llama b (beta) y es un dato propio de cada transistor. Entonces: - Ic (corriente que pasa por la patilla colector) es igual a b (factor de amplificación) por Ib (corriente que pasa por la patilla base). - Ic = β * Ib - Ie (corriente que pasa por la patilla emisor) es del mismo valor que Ic, sólo que, la corriente en un caso entra al transistor y en el otro caso sale de el, o viceversa. Según la fórmula anterior las corrientes no dependen del voltaje que alimenta el circuito (Vcc), pero en la realidad si lo hace y la corriente Ib cambia ligeramente cuando se cambia Vcc. Ver figura.

En el segundo gráfico las corrientes de base (Ib) son ejemplos para poder entender que a mas corriente la curva es mas alta Regiones operativas del transistor

Región de corte: Un transistor esta en corte cuando: corriente de colector = corriente de emisor = 0, (Ic = Ie = 0) En este caso el voltaje entre el colector y el emisor del transistor es el voltaje de alimentación del circuito. (como no hay corriente circulando, no hay caída de voltaje, ver Ley de Ohm). Este caso normalmente se presenta cuando la corriente de base = 0 (Ib =0) Región de saturación: Un transistor está saturado cuando: corriente de colector = corriente de emisor = corriente máxima, (Ic = Ie = I máxima) En este caso la magnitud de la corriente depende del voltaje de alimentación del circuito y de las resistencias conectadas en el colector o el emisor o en ambos, ver ley de Ohm. Este caso normalmente se presenta cuando la corriente de base es lo suficientemente grande como para inducir una corriente de colector β veces más grande. (recordar que Ic = β * Ib) Región activa: Cuando un transistor no está ni en su región de saturación ni en la región de corte entonces está en una región intermedia, la región activa. En esta región la corriente de colector (Ic) depende principalmente de la corriente de base (Ib), de β (ganacia de corriente de un amplificador, es un dato del fabricante) y de las resistencias que hayan conectadas en el colector y emisor). Esta región es la mas importante si lo que se desea es utilizar el transistor como un amplificador. Configuraciones: Hay tres tipos de configuraciones típicas en los amplificadores con transistores, cada una de ellas con características especiales que las hacen mejor para cierto tipo de aplicación. y se dice que el transistor no está conduciendo. Normalmente este caso se presenta cuando no hay corriente de base (Ib = 0) - Emisor común - Colector común - Base común Nota: Corriente de colector y corriente de emisor no son exactamente iguales, pero se toman como tal, debido a la pequeña diferencia que existe entre ellas, y que no afectan en casi nada a los circuitos hechos con transistores.

Transistor NPN

Transistor PNP

El transistor bipolar es el más común de los transistores, y como los diodos, puede ser de germanio o silicio. Existen dos tipos transistores: el NPN y el PNP, y la dirección del flujo de la corriente en cada caso, lo indica la flecha

que se ve en el gráfico de cada tipo de transistor. El transistor es un dispositivo de 3 patillas con los siguientes nombres: base (B), colector (C) y emisor (E), coincidiendo siempre, el emisor, con la patilla que tiene la flecha en el gráfico de transistor. El transistor es un amplificador de corriente, esto quiere decir que si le introducimos una cantidad de corriente por una de sus patillas (base), el entregará por otra (emisor) , una cantidad mayor a ésta, en un factor que se llama amplificación. Este factor se llama b (beta) y es un dato propio de cada transistor. Entonces: - Ic (corriente que pasa por la patilla colector) es igual a b (factor de amplificación) por Ib (corriente que pasa por la patilla base). - Ic = β * Ib - Ie (corriente que pasa por la patilla emisor) es del mismo valor que Ic, sólo que, la corriente en un caso entra al transistor y en el otro caso sale de el, o viceversa. Según la fórmula anterior las corrientes no dependen del voltaje que alimenta el circuito (Vcc), pero en la realidad si lo hace y la corriente Ib cambia ligeramente cuando se cambia Vcc. Ver figura.

En el segundo gráfico las corrientes de base (Ib) son ejemplos para poder entender que a mas corriente la curva es mas alta Regiones operativas del transistor Región de corte: Un transistor esta en corte cuando: corriente de colector = corriente de emisor = 0, (Ic = Ie = 0) En este caso el voltaje entre el colector y el emisor del transistor es el voltaje de alimentación del circuito. (como no hay corriente circulando, no hay caída de voltaje, ver Ley de Ohm). Este caso normalmente se presenta cuando la corriente de base = 0 (Ib =0) Región de saturación: Un transistor está saturado cuando:

corriente de colector = corriente de emisor = corriente máxima, (Ic = Ie = I máxima) En este caso la magnitud de la corriente depende del voltaje de alimentación del circuito y de las resistencias conectadas en el colector o el emisor o en ambos, ver ley de Ohm. Este caso normalmente se presenta cuando la corriente de base es lo suficientemente grande como para inducir una corriente de colector β veces más grande. (recordar que Ic = β * Ib) Región activa: Cuando un transistor no está ni en su región de saturación ni en la región de corte entonces está en una región intermedia, la región activa. En esta región la corriente de colector (Ic) depende principalmente de la corriente de base (Ib), de β (ganacia de corriente de un amplificador, es un dato del fabricante) y de las resistencias que hayan conectadas en el colector y emisor). Esta región es la mas importante si lo que se desea es utilizar el transistor como un amplificador. Configuraciones: Hay tres tipos de configuraciones típicas en los amplificadores con transistores, cada una de ellas con características especiales que las hacen mejor para cierto tipo de aplicación. y se dice que el transistor no está conduciendo. Normalmente este caso se presenta cuando no hay corriente de base (Ib = 0) - Emisor común - Colector común - Base común Nota: Corriente de colector y corriente de emisor no son exactamente iguales, pero se toman como tal, debido a la pequeña diferencia que existe entre ellas, y que no afectan en casi nada a los circuitos hechos con transistores.

Como probar un diodo. Poder determinar si un diodo está en buen estado o no. Es muy importante en la vida de un técnico en electrónica, pues esto le permitirá poner a funcionar correctamente un artículo electrónico. Pero no sólo son los técnicos los que necesitan saberlo. En el caso del aficionado que está implementando un circuito o revisando un proyecto, es indispensable saber en que estado se encuentran los componentes que utiliza. Hoy en día existen multímetros (VOM) digitales que permiten probar con mucha facilidad un diodo, pues ya vienen con esta alternativa listos de fábrica. El caso que se presenta aquí es el método típico de medición de un diodo con un tester analógico (el que tiene una aguja) Para empezar, se coloca el selector para medir resistencias (ohmios / ohms), sin importar de momento la escala. Se realizan las dos pruebas siguientes: - Se coloca el cable de color rojo en el ánodo de diodo (el lado de diodo que no tiene la franja) y el cable de color negro en el cátodo (este lado tiene la franja), el propósito es que el multímetro inyecte una corriente en el diodo (esto es lo que hace cuando mide resistencias). Si la resistencia que se lee es baja indica que el diodo, cuando está polarizado en directo funciona bien y circula corriente a través de él (como debe de ser). Si esta resistencia es muy alta, puede ser síntoma de que el diodo está "abierto" y deba de reemplazarlo. - Se coloca el cable de color rojo en el cátodo y el cable negro en el ánodo. En este caso como en anterior el propósito es hacer circular corriente a través del diodo, pero ahora en sentido opuesto a la flecha de este. Si la resistencia leída es muy alta, esto nos indica que el diodo se comporta como se esperaba, pues un diodo polarizado en inverso casi no conduce corriente. Si esta resistencia es muy baja podría significar que el diodo esta en "corto" y deba de reemplazarlo.

Nota: - El cable rojo debe ir conectado al terminal del mismo color en el multímetro - El cable negro debe ir conectado al terminal del mismo color en el multímetro (el común/ common)

Como probar un transistor Para probar transistores hay que analizar un circuito equivalente de este, en el que se puede utilizar lo aprendido al probar diodos. Ver la siguiente figura.

Se puede ver que los circuitos equivalentes de los transistores bipolares NPN y PNP están compuestos por diodos y se puede seguir la misma técnica que se sigue al probar diodos comunes. La prueba se realiza entre el terminal de la base (B) y el terminal E y C. Los métodos a seguir en el transistor NPN y PNP son opuestos. Al igual que con el diodo si uno de estos "diodos del equivalentes del transistor" no funcionan cono se espera hay que cambiar el transistor. Nota: Aunque este método es muy confiable (99 % de los casos), hay casos en que, por las características del diodo o el transistor, esto no se cumple. Para efectos prácticos se sugiere tomarlo como confiable en un 100%

Como probar componentes electrónicos Prueba de capacitores Capacitores de bajo valor La prueba de capacitores de bajo valor se limita a saber si los mismos están o no en cortocircuito. Valores por debajo de 100nf en general no son detectados por el multímetro y con el mismo en posición R×1k se puede saber si el capacitor esta en cortocircuito o no según muestra la figura.

Si el capacitor posee resistencia infinita significa que el componente no posee pérdidas excesivas ni está en cortocircuito. Generalmente esta indicación es suficiente para considerar que el capacitor está, en buen estado pero en algún caso podría ocurrir que el elemento estuviera "abierto", o que un terminal en el interior del capacitor no hiciera contacto con la placa. Para confirmar con seguridad el estado del capacitor e incluso conocer su valor, se puede emplear el circuito de la figura.

Para conocer el valor de la capacidad se deben seguir los pasos que se describen a continuación: 1. Armado el circuito se mide la tensión V1 y se anota. 2. Se calcula la corriente por el resistor que será la misma que atraviesa el capacitor por estar ambos elementos en serie I = V1 / R 3. Se mide la tensión V2 y se anota. 4. Se calcula la reactancia capacitiva del componente en medición XC = V2 / I 5. Se calcula el valor de la capacidad del capacitor con los valores obtenidos C = 1 / [ XC . 6 , 28 . f ] Observaciones Se debe emplear un solo voltímetro. La frecuencia será 50 ó 60Hz según el país donde estés ya que es la correspondiente a la red eléctrica. Elegir el valor de R según el valor del capacitor a medir: Capacidad a medir 0 , 01uf < Cx < 0 , 5uf

Resistencia serie 10K

Cx orden de los nanofarad Cx mayores hasta 10uf

100K 1K

Con este método pueden medirse capacitores cuyos valores estén comprendidos entre 0 , 01uf y 0 , 5uf. Si se desean medir capacidades menores debe tenerse en cuenta la resistencia que posee el multímetro usado como voltímetro cuando se efectúe la medición. Para medir capacidades mayores debe tenerse en cuenta que los capacitores sean no polarizados, debido a que la prueba se realiza con corriente alterna. Capacitores electrolíticos Los capacitores electrolíticos pueden medirse directamente con el multímetro utilizado como ohmetro. Cuando se conecta un capacitor entre los terminales del multímetro, este hará que el componente se cargue con una constante de tiempo que depende de su capacidad y de la resistencia del multímetro. Por lo tanto la aguja deflexionará por completo y luego descenderá hasta cero indicando que el capacitor está cargado totalmente, ver figura.

El tiempo que tarda la aguja en descender hasta 0 dependerá del rango en que se encuentra el multímetro y de la capacidad del capacitor. En la prueba es conveniente respetar la tabla I. TABLA I Valor del capacitor Hasta 5uf Hasta 22uf Hasta 220uf Mas de 220uf

Rango R×1k R×100 R×10 R×1

Si la aguja no se mueve indica que el capacitor está abierto, si va hasta cero sin retornar indica que está en cortocircuito y si retorna pero no a fondo de escala entonces el condensador tendrá fugas. En la medida que la capacidad del componente es mayor, es normal que sea menor la resistencia que debe indicar el instrumento. La tabla II indica la resistencia de pérdida que deberían tener los capacitores de buena calidad. TABLA II

Capacitor 10uf 47uf 100uf 470uf 1000uf 4700uf

Resistencia de pérdida Mayor que 5M Mayor que 1M Mayor que 700K Mayor que 400K Mayor que 200K Mayor que 50K

Se realizar la prueba dos veces, invirtiendo la conexión de las puntas de prueba del multímetro. Para la medición de la resistencia de pérdida interesa la que resulta menor según muestra la figura.

Prueba de diodos Los diodos son componentes que conducen la corriente en un solo sentido, teniendo en cuenta esto se pueden probar con un multímetro en la posición ohmetro. El funcionamiento de tal aparato de medida se basa en la medición de la corriente que circula por el elemento bajo prueba. Es muy importante conocer la polaridad de la batería interna del los multímetros analógicos en los cuales la punta negra del multímetro corresponde al terminal positivo de la batería interna y la punta roja corresponde al terminal negativo de la batería. Se empleará un multímetro y las medidas se efectuarán colocando el instrumento en las escalas de resistencia y preferiblemente en las escalas ohm x 1, ohm x 10 ó también ohm x 100. Así cuando se intenta medir la resistencia de un diodo, se encontrarán dos valores totalmente distintos, según el sentido de las puntas. Si la punta roja (negativo) se conecta a la zona N (cátodo del diodo) y la punta negra a la P (ánodo), la unión se polariza en directo y se hace conductora. El valor concreto indicado por el instrumento no tiene significado alguno, salvo el de mostrar que por la unión circula corriente.

Por el contrario, cuando la punta roja se conecta a la zona P (ánodo), y la negra a la zona N (cátodo), se esta aplicando una tensión inversa. La unión no conducirá, y esto será interpretado por el instrumento como una resistencia muy elevada.

Prueba de transistores Un transistor bipolar equivale a dos diodos en oposición (tiene dos uniones), por lo tanto las medidas deben realizarse sobre cada una de ellas por separado, pensando que el electrodo base es común a ambas direcciones.

Se empleará un multímetro analógico y las medidas se efectuarán colocando el instrumento en las escalas de resistencia y preferiblemente en las escalas ohm x 1, ohm x 10 ó también ohm x 100. Antes de aplicar las puntas al transistor es conveniente cerciorarse del tipo de éste, ya que si es NPN se procederá de forma contraria que si se trata de un PNP. Para el primer caso (NPN) se situará la punta negra (positivo) del multímetro sobre el terminal de la base y se aplicará la punta roja sobre las patillas correspondientes al emisor y colector. Con esto se habrá aplicado entre la base y el emisor o colector, una polarización directa, lo que traerá como consecuencia la entrada en conducción de ambas uniones, moviéndose la aguja del multímetro

hasta indicar un cierto valor de resistencia, generalmente baja (algunos ohm) y que depende de muchos factores.

A continuación se invertirá la posición de las puntas del instrumento, colocando la punta roja (negativa) sobre la base y la punta negra sobre el emisor y después sobre el colector. De esta manera el transistor recibirá una tensión inversa sobre sus uniones con lo que circulará por él una corriente muy débil, traduciéndose en un pequeño o incluso nulo movimiento de la aguja. Si se tratara de un transistor PNP el método a seguir es justamente el opuesto al descrito, ya que las polaridades directas e inversas de las uniones son las contrarias a las del tipo NPN.

Las comprobaciones anteriores se completan con una medida, situando el multímetro entre los terminales de emisor y colector en las dos posibles combinaciones que puede existir; la indicación del instrumento será muy similar a la que se obtuvo en el caso de aplicar polarización inversa (alta resistencia), debido a que al dejar la base sin conexión el transistor estará bloqueado. Esta comprobación no debe olvidarse, ya que se puede detectar un cortocircuito entre emisor y colector y en muchas ocasiones no se descubre con las medidas anteriores.

Transistores de Efecto de Campo Los transistores más conocidos son los llamados bipolares (NPN y PNP), llamados así porque la conducción tiene lugar gracias al desplazamiento de portadores de dos polaridades (huecos positivos y electrones negativos), y son de gran utilidad en gran número de aplicaciones pero tienen ciertos inconvenientes, entre los que se encuentra su impedancia de entrada bastante baja. Existen unos dispositivos que eliminan este inconveniente en particular y que pertenece a la familia de dispositivos en los que existe un solo tipo de portador de cargas, y por tanto, son unipolares. Se llama transistor de efecto campo. Un transistor de efecto campo (FET) típico está formado por una barrita de material p ó n, llamada canal, rodeada en parte de su longitud por un collar del otro tipo de material que forma con el canal una unión p-n. En los extremos del canal se hacen sendas conexiones óhmicas llamadas respectivamente sumidero (d-drain) y fuente (s-source), más una conexión llamada puerta (g-gate) en el collar.

La figura muestra el croquis de un FET con canal N

Símbolos gráficos para un FET de canal N

Símbolos gráficos para un FET de canal N

Disposición de las polarizaciones para un FET de canal N. La Figura muestra un esquema que ayudará a comprender el funcionamiento de un FET. En este caso se ha supuesto que el canal es de material de tipo N. La puerta está polarizada negativamente respecto a la fuente, por lo que la unión P-N entre ellas se encuentra polarizada inversamente y existe (se crea) una capa desierta. Si el material de la puerta está más dopado que el del canal, la mayor parte de la capa estará formada por el canal. Si al tensión de la puerta es cero, y Vds = 0, las capas desiertas profundizan poco en el canal y son uniformes a todo lo largo de la unión. Si Vds se hace positiva ( y Vgs sigue siendo cero) por el canal circulará una corriente entre sumidero y fuente, que hará que la polarización inversa de la unión no sea uniforme en toda su longitud y, en consecuencia, en la parte más próxima al sumidero, que es la más polarizada, la capa desierta penetrará más hacia el interior del canal. Para valores pequeños de Vds, la corriente de sumidero es una función casi lineal de la tensión, ya que la penetración de la capa desierta hacia el interior del canal no varía substancialmente de su valor inicial. Sin embargo, a medida que aumenta la tensión aumenta también la polarización inversa, la capa desierta profundiza en el canal y la conductancia de éste disminuye. El ritmo de incremento de corriente resulta, en consecuencia, menor y llega un momento en que el canal se ha hecho tan estrecho en las proximidades del sumidero que un incremento de Vds apenas tiene efecto sobre la corriente de sumidero. Entonces se dice que el transistor está trabajando en la zona de estricción (pinch-off), nombre cuyo origen se evidencia en la figura anterior, llamándose tensión de estricción Vp a la del punto de transición entre el comportamiento casi lineal y el casi saturado.

Si a la puerta se le aplica una polarización negativa estacionaria, la capa desierta penetra más en el interior que con la polarización nula; por tanto, para pasar a la zona de estricción se necesita menos tensión de sumidero. El aumentar la polarización negativa permite tener la transición a la zona de estricción a corrientes de sumidero aún inferiores.

El funcionamiento del FET se basa en la capacidad de control de la conductancia del canal por parte de la tensión de puerta y, como la unión puerta-canal se encuentra siempre polarizada inversamente, el FET es por esencia un elemento de alta impedancia de entrada. PARAMETROS DEL FET La corriente de sumidero Id es función tanto de la tensión de sumidero Vds como de la puerta Vgs. Como la unión está polarizada inversamente, suponemos que la corriente de puerta es nula, con lo que podemos escribir: Ig = 0 e Id = ƒ(Vds, Vgs) En la zona de estricción (saturación) en que las características son casi rectas (en el gráfico, son horizontales, pero en realidad tienen una pendiente positiva) podemos escribir la respuesta del transistor para pequeños incrementos de Vds y Vgs en esta forma

El parámetro rd se llama resistencia diferencial del sumidero del FET, y es la inversa de la pendiente de la curva. Que como en el gráfico, dicha pendiente es cero (en la realidad, como he dicho antes existe algo de pendiente), entonces la rd es infinita (muy grande). El parámetro gm se le denomina conductancia mutua o transconductancia, y es igual a la separación vertical entre las características que corresponden a diferencias de valor de Vgs de 1 voltio.

Probador de controles remotos Este sencillo dispositivo permite comprobar rápidamente si un control remoto emite la señal infrarroja (IR). Puede usarse cualquier fototransistor y se le puede agregar un transistor en la salida para amplificar más la señal, personalmente lo uso tal como esta descripto aquí.

Como veras es muy sencillo. Se puede armar en una caja de un remoto viejo (conviene que sea de pocas teclas o botones, por cuidar un poco la estética) y poner el receptor donde originalmente lleva el LED transmisor, en lugar de alguna de sus teclas se puede poner el LED indicador de encendido (D1) y en otra tecla poner el LED indicador de pulsos (D2). Debido a que el probador puede ser afectado si tiene incidencia directa de luz, el fototransistor (Q1) debe usar un filtro para atenuar la luz ambiente. El platico utilizado en la parte frontal de algunos controles puede ser apropiado. Se coloca el remoto cerca del probador (4 o 5 Cm) y se presionan una a una las teclas del mismo, D2 destellara mostrando la presencia de los pulsos IR. Con el uso te familiarizas con cada tipo de remoto y su emisión normal. Tiene una salida (AUX) para osciloscopio que te permite ver la forma de onda, porque hay veces que emiten infrarrojo, pero están corridos de frecuencia o la señal esta deformada.

Componentes: Q1 - Fototransistor MRD3056 o similar D1 - LED Verde D2 - LED Rojo de alto brillo C1 - Condensador 0.1uF 50V R1 - Resistencia 330 ohms 0.25W R2 - Resistencia 150 ohms 0.25W SW1 - Interruptor 9V - Bateria de 9V Colaboración de Sergio Estefan © ([email protected])

Otro proyecto Si dispones de un modulo receptor/amplificador IR de algún viejo TV u otro equipo electrónico puedes construir este otro circuito. Hay que identificar bien sus terminales y la tensión de funcionamiento (la mayoría utiliza 5V). Estos módulos generalmente tienen un alcance importante, de acuerdo, por supuesto, al modelo de receptor/amplificador usado.

Colaboración de Sergio Estefan © ([email protected])

Probador audible. Los probadores sugeridos, se pueden conectar a un amplificador de audio, o a un Seguidor de señales (Signal Tracer) para obtener una confirmación audible. También se le puede incorporar pequeño resonador piezoeléctrico. Una idea aportada por Mario Figueredo ([email protected]) de Argentina, es incorporar el receptor infrarrojo dentro de un receptor de radio de bolsillo, conectándolo a la etapa de audio para obtener un probador pequeño y practico que da una indicación audible cuando recibe la señal infrarroja.