Tower Analysis Report Monopole 13 M_2tenant_120kph

REPORT ANALYSIS STRUCTURAL DESIGN ANALYSIS MONOPOLE 13 M With 120 KPH PT. LAKSANA TEHNIKA UTAMA For PT. IFORTE SOLUSI IN

Views 127 Downloads 24 File size 361KB

Report DMCA / Copyright

DOWNLOAD FILE

Recommend stories

Citation preview

REPORT ANALYSIS STRUCTURAL DESIGN ANALYSIS MONOPOLE 13 M With 120 KPH PT. LAKSANA TEHNIKA UTAMA For PT. IFORTE SOLUSI INFOTEK (2 Tenant)

February, 2013 PT. VANDA SMART Jl. Vanda 17A Jatibening Satu ‐ Pondokgede  Bekasi ‐ Jawa Barat 17412 ‐ Indonesia  Phone: +62‐21‐84994277 

SUMMARY STRUCTURAL DESIGN ANALYSIS MONOPOLE 13 METER With Wind Load 120 KPH 1. Loading (2 Tenant) Number

Type Antenna

Antenna 6

Sector Antenna

6

RU + Bracket

Azimuth

Dim

Weight

Elevation

o

(hxwxd) mm

(Kg)

(m)

2033x280x125

140.4

12.0

516x464x286

300

8.0

() 000, 060, 120, 180, 240, 300 000, 060, 120, 180, 240, 300

1

UPS

090

1300x650x650

300

2.0

1

RECTIFIER

270

965x695x660

250

2.0

1

KWH BOX

000

455x360x190

8

2.5

1

ACPDB BOX

090

490x300x200

8

3.0

2

PJU LAMP

090, 270

300x200x250

3

9.0

1

OTB

270

220x220x100

2

3.0

2. Analysis 120 kph as maximum basic wind velocity Maximum Design Ratio

0.889

80 kph as operational basic wind velocity

Limit

OK / NOT OK

< 1.00

OK

Limit

OK / NOT OK

Twist

0.7824 O

1

O

OK

Sway

0.0004

O

1

O

OK

Displacement

0.1078 m

13m / 100 = 0.13 m

OK

3. Support Reactions (with Loading Proposed) Compress

C

18.997 kN

Moment

T

122.344 kNm

Horizontal Force X direction

Fx

17.342 kN

Horizontal Force Y direction

Fy

17.342 kN

RECOMMENDATION STRUCTURAL DESIGN ANALYSIS MONOPOLE 13 METER According to EIA Standard EIA – 222 – F, based on maximum basic wind velocity is 120 kph and operational basic wind velocity is 80 kph, structure of tower support to additional loading.

TOWER ANALYSIS REPORT

CONTENT :

1. SUMMARY AND RECOMMENDATION 2. ANALYSIS CRITERIA 3. ANALYSIS MONOPOLE 13 M WITH LOADING PROPOSED 4. BOLT AND BASE PLATE

2. ANALYSIS CRITERIA

ANALYSIS CRITERIA

A. LOADING 1. Dead Load Dead Load is the dead weight of tower structure and all appurtenances such as ladder, feeder, antenna, etc. 2. Wind Load Wind Load includes wind load acting on tower structure, appurtenances, antenna, etc. Wind Load is based on the 120 kph as maximum basic wind velocity. According to EIA/TIA-222 F, the operational basic wind velocity is 80 kph. The pressure to the tower varies as a function of height. a. Wind load calculation method on the tower and appurtenance are as follows : F

= qz . GH . CF . AE . and not to exceed 2 . qz . GH . AG

qz = 0.613 . Kz . V2 Kz = [z/10]2/7 GH = 0.65 + 0.60 / (h/10)

1/7

CF = 4.0 e2 – 5.9 e + 4.0 ( Square cross section ) CF = 3.4 e2 – 4.7 e + 3.4 ( Triangular cross section ) e

= (AF+AR / AG

RR = 0.51e + 0.57 AE = DF . AF + DR . AR. RR ( RR = Reduction Factor ) Where : F

= Horizontal wind force ( kN )

qz = Velocity pressure ( N/mm2 ) GH = Gust Response Factor for fastest mile basic wind speed ( 1.00 < GH < 2.58 ) CF = Structur force coefficient for each section CA = Linear or discrete appurtenance force coefficient AA = Projected area of a linear appurtenance ( m2 ) AG = Gross area of one tower face as if the face of the section ( m2 ) z

= Height above average ground level to midpoint of the section (m)

AE = Effective projected area of structural component in one face (m2 ) Kz = Exposure coefficient ( 1.00 < Kz < 1.25 ) AF = Projected area of flat structural component in one face of the section ( m2 )

AR = Projected area of round structural component in one face of the section ( m2 ) V

= Basic wind speed for the structure location ( m/s )

h

= Total height of structure ( m )

e

= Solidity ratio

AF = Projected area of flat structural component in one face of the section ( m2 ) DF = Wind direction factor 1.0 for square cross section and normal wind direction 1 + 0.75 e for square cross section and + 45o wind direction DR = Wind direction factor for round structural component in one face of the section b. Wind load calculation of parabolic antenna : Fa = Ca . A . Kz . GH . V2 Fs = Cs . A . Kz . GH . V2 M = Cm . D . A . Kz . GH . V2 Ha = v ( Fa2 + Fs2 ) Mt = Fa . X + Fs . Y + M. Where : Fa = Axial Force ( lb ) Fs = Side Force ( lb ) M = Twisting Moment ( ft-lb ) Ca = Wind Load Coefficient Cs = Wind Load Coefficient Cm = Wind Load Coefficient Ha = Wind load antenna ( lb ) Mt = Total twisting moment ( ft-lb ) V

= Wind Velocity ( mph )

A

= Normal projected area of antenna (ft2 )

D

= Antenna diameter ( ft )

X

= The offset of the mounting pipe ( ft )

Y

= The distance on the reflector axis from the reflector vertex to the center of the mounting pipe ( ft )

c. Load Combination According to EIA Standard EIA – 222 – F, only the following load combination shall be investigated when calculating the maximum member stresses and structure reactions :

D1 + Wo Where : D1 = Dead weight of the structure and appurtenances Wo = Design wind load on the structure, appurtenances, etc. 3. Properties of Loading $name type $

Dim

(units) RU BOX ANTEN

.52 CYL

UPS BOX

50

.24 23.4

1.3

.455

300

ACPDB2 LAMP2

BOX CYL

OTBBOX

.22

.42

.07

0

8

.3

15

.06

.06 .05

.05

.02

0

0

0

0

0

0 1

0

.49

2

0

0

0 0

0

0 0

m

0

1

1

1

0

1

1

1

0

1

1

1

100

.66

.695

1

100

.19

1

1

0 0

xicg fcx fcy fzm icon dx dy dz

m

1 0

0 0

xcg

m

0 0

0

0

.15

m2

0

.57 .035

.46

aice zre

m2

.13 0

.67

.16

asf

m2

.85

200

8

af

kg

2.03

REC BOX .965 BOX

mass

m

0 0

1 1

0

100

1

0.52

$RU Micro BTS

2.033 $ Sector Antenna

1

100

.65

1 1

1

.46

.125 .28

1 1

.29

14

100 33

1

100

.65

.965 .36 .2

1.3

$UPS

$Rectifier .455 .3

KWH2

$KWH .49

$ACPDB

.25

.2

.3

$ LAMP

.1

.22

.22

$OTB

Where : name

: Name by which the antenna is referenced in the TWR file.

coeff

: Name of set of coefficients to be used in calculating the projected area and wind resistance of the antenna.

dim

: Reference dimension, in m, normally the dish diameter, used in computing forces and moments about the antenna axes and the BS 8100 gust factor for the antenna.

mass

: Mass of the ancillary, in kg.

af

: Frontal area of the antenna, in m2.

asf

: Side area of antenna, in m2. This will be used to compute the projected area of the antenna at different angles if the projected area coefficients are zero. In this case, the projected area will be computed as: af × cos²(angle) + asf × sin²(angle)

aice

: Surface area of a the antenna that may be coated with ice, in m2. Used in computing the weight of ice on an iced antenna.

zref

: Z dimension from the antenna origin for wind loads and the level of the antenna in the TWR file, in m. Usually, either the centerline of radiation or the mounting level of the antenna.

xcg

: Horizontal offset from the antenna origin to the center of gravity of the un-iced antenna, in m.

xicg

: Horizontal offset from the antenna origin to the center of gravity of a uniform ice coating on the antenna in m.

fcx

: Correction factor to be applied to drag coefficient for drag force along the axis of the antenna.

fcy

: Correction factor to be applied to drag coefficient for horizontal drag force normal to the axis of the antenna.

fzm

: Correction factor to be applied to drag coefficient for yawing moment (twisting about the vertical axis of the antenna).

ishape

: Shape code for the antenna, used to select a symbol for plotting.

4. Cable Ladder Load - Cables with diameter 5/8 “, weight 1 kg/m - Cables with diameter 7/8 “ from, weight 3 kg/m - Cables with diameter 1 7/8 “ from, weight 4 kg/m 5. Worker Load - Horizontal members must be safe for worker and his tools 100 kg at middle span

- Bordes / platform must be safe for distributed load 200 kg/m2 B. STRENGTH ASESSMENT The tower members shall be designed according to EIA /. TIA – 222 – F C. SLENDERNESS RATIO Limiting values of effective slenderness ratio (KL/r) of compression member shall be 120 for legs, 200 for bracing, 250 for redundant. Redundant is defined as members used solely to reduce slenderness of others members. D. MATERIAL Tower structure material shall conform to JIS or other equivalent standard. Material

Standard

Grade

Fy (MPa)

Fu (MPa)

Pipe

ASTM A53/ JIS G3444

SS400

245

400

Angle and Plate

ASTM A36/ JIS G3103

SS400

245

400

Bolt

ASTM A325/JIS B1051

8.8

-

800

Anchor

ASTM 307 / JIS G3112

-

240

400

Welded

AWS D1.1 E.7018

-

345

-

Note : Bolt JIS grade 8.8 is equivalent to ASTM A325. E. STRUCTURAL ANALYSIS Three dimensional structure analysis should be applied to determine tower member stresses. The analysis is carried out by computer program on the basis of a valid stress analysis program. Moment of inertia is reduced with 0.1 factor since the tower is design is based on the axial analysis. F. OPERATIONAL CONDITION Maximum twist and sway is 1 degree at 80 km/hour operational wind velocity, maximum vertical displacement H/1000, and maximum horizontal displacement H/200, where H is height tower.

3. ANALYSIS MONOPOLE 13 M

STRUCTURAL ANALYSIS REPORT MONOPOLE 13 M:

A. GEOMETRI B. ANALYSIS INPUT DATA C. STRENGTH ASSESSMENT D. SUPPORT REACTION E. TWIST AND SWAY F. DISPLACEMENT

A. GEOMETRI

Civil Engineering Job: Tapered-Pole 13 m TAPERED POLE 13 M 2 TENANT 120 KPH

8 Feb 2013 03:39 PM

Z

Y X theta: 300 phi: 30

MStower [V6.00.010]

F:\!PROJECT\21. LTU\MONOPOLE 13 M\POLE 13 M_120 KPH\Tapered-Pole 13 m

Civil Engineering Job: Tapered-Pole 13 m TAPERED POLE 13 M 2 TENANT 120 KPH

8 Feb 2013 03:39 PM

Z

Y X theta: 180 phi: 0

MStower [V6.00.010]

F:\!PROJECT\21. LTU\MONOPOLE 13 M\POLE 13 M_120 KPH\Tapered-Pole 13 m

Civil Engineering Job: Tapered-Pole 13 m TAPERED POLE 13 M 2 TENANT 120 KPH

8 Feb 2013 03:39 PM

Z

X Y theta: 270 phi: 0

MStower [V6.00.010]

F:\!PROJECT\21. LTU\MONOPOLE 13 M\POLE 13 M_120 KPH\Tapered-Pole 13 m

Civil Engineering Job: Tapered-Pole 13 m TAPERED POLE 13 M 2 TENANT 120 KPH

8 Feb 2013 03:39 PM

Y

Z X theta: 0 phi: 90

MStower [V6.00.010]

F:\!PROJECT\21. LTU\MONOPOLE 13 M\POLE 13 M_120 KPH\Tapered-Pole 13 m

B. ANALYSIS INPUT DATA

Page 1 of 1 8 Feb 2013 3:40 PM

Civil Engineering

TITL1 Tapered Pole 13 m TITL2 2 Tenant 120 Kph UNITS 1 PROFILE FACES 1 WBASE RLBAS

0.380 0.0000

PANEL 1 HT FACE SH1 LEG PANEL 2 HT FACE SH1 LEG PANEL 3 HT FACE SH1 LEG PANEL 4 HT FACE SH1 LEG PANEL 5 HT FACE SH1 LEG PANEL 6 HT FACE SH1 LEG PANEL 7 HT FACE SH1 LEG PANEL 8 HT FACE SH1 LEG PANEL 9 HT FACE SH1 LEG PANEL 10 HT FACE SH1 LEG PANEL 11 HT FACE SH1 LEG PANEL 12 HT FACE SH1 LEG PANEL 13 HT FACE SH1 LEG

1.000 TW 1 R1 37 1.000 TW 2 R1 37 1.000 TW 3 R1 37 1.000 TW 4 R1 37 1.000 TW 5 R1 37 1.000 TW 6 R1 37 1.000 TW 7 R1 37 1.000 TW 8 R1 37 1.000 TW 9 R1 37 1.000 TW 10 R1 37 1.000 TW 11 R1 37 1.000 TW 12 R1 37 1.000 TW 13 R1 37

END SECTIONS LIB TAPERED-PO 1 POLY1.200x6 2 POLY2.215x6 3 POLY3.230x6 4 POLY4.245x6 5 POLY5.260x6 6 POLY6.275x6 7 POLY7.290x6 8 POLY8.305x6 9 POLY9.320x6 10 POLY10.335x8 11 POLY11.350x8 12 POLY12.365x8 13 POLY13.380x8 37 DUMMY END

FY FY FY FY FY FY FY FY FY FY FY FY FY FY

0.200 0.215 0.230 0.245 0.260 0.275 0.290 0.305 0.320 0.335 0.350 0.365 0.380

245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0

SUPPORT COORD 0.0 0.0 0.0 FIXED END EOF

MStower [V6.00.010] F:\!PROJECT\21. LTU\MONOPOLE 13 M\POLE 13 M_120 KPH\Tapered-Pole 13 m.td

Page 1 of 2 8 Feb 2013 3:40 PM

Civil Engineering

PARAMETERS ANGN 90.0 CODE EIA222 VB 33.3 END LOADS CASE DL

100 Weight of tower plus ancillaries

CASE 200 Wind load Zero Degrees WL ANGLE 0 CASE 210 Wind load 45 Degrees WL ANGLE 45 CASE 220 Wind load 90 Degrees WL ANGLE 90 CASE 230 Wind load 135 Degrees WL ANGLE 135 CASE 240 Wind load 180 Degrees WL ANGLE 180 CASE 250 Wind load 225 Degrees WL ANGLE 225 CASE 260 Wind load 270 Degrees WL ANGLE 270 CASE 270 Wind load 315 Degrees WL ANGLE 315 CASE 400 Max. Tower Weight COMBIN 100 1.0 CASE 500 Wind Load at 0 Degrees COMBIN 100 1.0 COMBIN 200 1.0 CASE 510 Wind Load at 45 Degrees COMBIN 100 1.0 COMBIN 210 1.0 CASE 520 Wind Load at 90 Degrees COMBIN 100 1.0 COMBIN 220 1.0 CASE 530 Wind Load at 135 Degrees COMBIN 100 1.0 COMBIN 230 1.0 CASE 540 Wind Load at 180 Degrees COMBIN 100 1.0 COMBIN 240 1.0 CASE 550 Wind Load at 225 Degrees COMBIN 100 1.0 COMBIN 250 1.0 CASE 560 Wind Load at 270 Degrees COMBIN 100 1.0 COMBIN 260 1.0 CASE 570 Wind Load at 315 Degrees COMBIN 100 1.0 COMBIN 270 1.0 END ANCILLARIES LINEAR

LIBR P:LIN

LARGE

LIBR P:ANC

MStower [V6.00.010]

F:\!PROJECT\21. LTU\MONOPOLE 13 M\POLE 13 M_120 KPH\Tapered-Pole 13 m.twr

Page 2 of 2 8 Feb 2013 3:40 PM

Civil Engineering

$antena sector 6 unit Heigth 12 PROP1-SECTOR XA 0.00 YA 0.50 ZA 12.00 lib ANTEN ANG 000 AMASS 15 $ Proposed Antenna PROP2-SECTOR XA 0.40 YA 0.30 ZA 12.00 lib ANTEN ANG 060 AMASS 15 $ Proposed Antenna PROP3-SECTOR XA 0.40 YA -0.30 ZA 12.00 lib ANTEN ANG 120 AMASS 15 $ Proposed Antenna PROP4-SECTOR XA 0.00 YA -0.50 ZA 12.00 lib ANTEN ANG 180 AMASS 15 $ Proposed Antenna PROP5-SECTOR XA -0.40 YA -0.30 ZA 12.00 lib ANTEN ANG 240 AMASS 15 $ Proposed Antenna PROP6-SECTOR XA -0.40 YA 0.30 ZA 12.00 lib ANTEN ANG 300 AMASS 15 $ Proposed Antenna $6 unit RU RU1 XA 0.00 YA 0.40 ZA 08.00 lib RU ANG 000 AMASS 15 $ Proposed RU RU2 XA 0.40 YA 0.20 ZA 08.00 lib RU ANG 060 AMASS 15 $ Proposed RU RU3 XA 0.40 YA -0.20 ZA 08.00 lib RU ANG 120 AMASS 15 $ Proposed RU RU4 XA 0.00 YA -0.40 ZA 08.00 lib RU ANG 180 AMASS 15 $ Proposed RU RU5 XA -0.40 YA -0.20 ZA 08.00 lib RU ANG 240 AMASS 15 $ Proposed RU RU6 XA -0.40 YA 0.20 ZA 08.00 lib RU ANG 300 AMASS 15 $ Proposed RU $ 2 unit LAMP LAMP1 XA 1.25 YA 0.00 ZA 9.00 lib LAMP2 ANG 090 AMASS 15 $ Proposed LAMP LAMP2 XA -1.25 YA 0.00 ZA 9.00 lib LAMP2 ANG 270 AMASS 15 $ Proposed LAMP $ 1 unit ACPDB ACPDB XA 0.3 YA 0.00 ZA 3.00 lib ACPDB2 ANG 090 AMASS 10 $ Proposed ACPDB $ 1 unit OTB OTB XA -0.3 YA 0.00 ZA 3.00 lib OTB ANG 270 AMASS 10 $ Proposed OTB $ 1 unit KWH BOX KWH XA 0.0 YA 0.30 ZA 2.50 lib KWH2 ANG 000 AMASS 10 $ Proposed KWH BOX $ 1 unit RECTIFIER REC XA -0.3 YA 0.00 ZA 2.00 lib REC ANG 270 AMASS 50 $ Proposed RECTIFIER $ 1 unit UPS UPS XA 0.3 YA 0.00 ZA 2.00 lib UPS ANG 090 AMASS 10 $ Proposed RECTIFIER END END $name type $ (units) $ $ $ $ $ $ $ $

Dim m

mass kg

af m2

asf m2

aice zre m2 m

RU BOX .52 50 .24 .13 0 ANTEN CYL 2.03 23.4 .57 .035 0 UPS BOX 1.3 300 .85 .42 0 REC BOX .965 200 .67 .46 0 KWH2 BOX .455 8 .16 .07 0 ACPDB2 BOX .49 8 .15 .06 0 LAMP2 CYL .3 15 .06 .05 0 OTB BOX .22 2 .05 .02 0

MStower [V6.00.010]

0

0 0 0 0 0 0 0

xcg m

0

0 0 0 0 0 0 0

xicg fcx fcy fzm icon dx dy dz m 0

1 1 1 100 .29 .46 0.52 $RU Micro BTS 0 1 1 1 14 .125 .28 2.033 $ Sector Antenna 0 1 1 1 100 .65 .65 1.3 $UPS 0 1 1 1 100 .66 .695 .965 $Rectifier 0 1 1 1 100 .19 .36 .455 $KWH 0 1 1 1 100 .2 .3 .49 $ACPDB 0 1 1 1 33 .25 .2 .3 $ LAMP 0 1 1 1 100 .1 .22 .22 $OTB

F:\!PROJECT\21. LTU\MONOPOLE 13 M\POLE 13 M_120 KPH\Tapered-Pole 13 m.twr

C. STRENGTH ASSESSMENT

Page 1 of 1 8 Feb 2013 3:40 PM

Civil Engineering

MSTOWER V6 Dev Member checking to EIA-222-F Job: TAPERED-POLE 13 M Date: 08-FEB-13 15:38:46 TAPERED POLE 13 M 2 TENANT 120 KPH -- L O A D Case Y/N 100 N 200 N 210 N 220 N 230 N 240 N 250 N 260 N 270 N 400 Y 500 Y 510 Y 520 Y 530 Y 540 Y 550 Y 560 Y 570 Y

C A S E S -Title WEIGHT OF TOWER PLUS ANCILLARIES WIND LOAD ZERO DEGREES WIND LOAD 45 DEGREES WIND LOAD 90 DEGREES WIND LOAD 135 DEGREES WIND LOAD 180 DEGREES WIND LOAD 225 DEGREES WIND LOAD 270 DEGREES WIND LOAD 315 DEGREES MAX. TOWER WEIGHT WIND LOAD AT 0 DEGREES WIND LOAD AT 45 DEGREES WIND LOAD AT 90 DEGREES WIND LOAD AT 135 DEGREES WIND LOAD AT 180 DEGREES WIND LOAD AT 225 DEGREES WIND LOAD AT 270 DEGREES WIND LOAD AT 315 DEGREES

Y = Cases to be checked N = Not Used Report Units: Dims., lengths, areas ... mm, mm2 Forces ..................... kN Moments, Torques ........... kNm Stresses ..............N/mm2 (MPa) Allowable stresses to EIA-222-F. Overstress factor for WL: Safety factor for guys: 2.000 Symbols: fy = yield stress nb = no. bolts in end connection. C = Section 5.7 sub-clause used for KL/r. KL/r= Section 5.7.4 slenderness ratio. x/y/v=buckling axis. P = Axial force in member, kN. c=compression f = Axial stress in member, MPa. F = Allowable stress, MPa. * = Stress ratio > 1.0 # = Exceeds code slenderness ratio

1.330

NB: The design approach of EIA-222-F is based on working stress methods. Shaft Members - Cross-section: Octagonal Memb 1 101 201 301 401 501 601 701 801 901 1001 1101 1201

Ht 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

D 200.0 215.0 230.0 245.0 260.0 275.0 290.0 305.0 320.0 335.0 350.0 365.0 380.0

MStower [V6.00.010]

t 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 8.0 8.0 8.0 8.0

fy 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0 245.0

LC 570 560 560 560 560 560 560 560 560 560 540 560 560

P 0 3 3 3 4 9 9 9 10 11 12 18 19

Mx 0 0 0 0 0 0 0 0 0 0 89 0 0

My 0 6 11 17 24 33 43 54 65 76 0 105 122

Mr 0 6 11 17 24 33 43 54 65 76 89 105 122

T 0 0 0 0 0 0 0 0 0 0 0 0 0

fa 0.0 0.7 0.7 0.7 0.9 1.6 1.6 1.6 1.6 1.2 1.3 1.9 1.9

fb 0.8 24.8 43.7 58.9 71.8 89.9 104.7 117.0 127.3 104.0 110.5 120.5 128.8

Fa 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0

F:\!PROJECT\21. LTU\MONOPOLE 13 M\POLE 13 M_120 KPH\Tapered-Pole 13 m.rpt

Fb 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0

0 0 0 0 0 0 0 0 0 0 0 0 0

ratio 0.005 0.173 0.302 0.406 0.495 0.622 0.723 0.807 0.877 0.716 0.761 0.832 0.889

Civil Engineering Job: Tapered-Pole 13 m TAPERED POLE 13 M 2 TENANT 120 KPH

8 Feb 2013 03:41 PM

Design Ratios - % of Code Capacity: